DIFFUSION ON NETWORKS

Spreading processes
Dynamic ON networks
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Spreading processes

Biological epidemic spreading

Spread of Bubonic Plague
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Spreading processes

Malware spreading
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Microsoft Malware Protection Center

Botnet infections (2010) Mobile malware (2011)



Spreading processes

Social contagion

Wikipedia
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Protest diffusion (Arabian spring)

Adoption spreading (Skype)

Karsai et.al. (2014)



Spreading processes

Why on networks?

(1102) Aieasoor ‘60jq add

- Spreading usually happen through interactions
between agents

« Geographic vicinity

(6002) @so8.4

 Physical connection
» Social interaction
- efc.

* Network structure critically influence the
dynamics of spreading processes
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Spreading processes

S|l - SIR - SIS

Three of the most popular models of diffusion in epidemiology
are the Sl, SIR and SIS models. Letters correspond to the states in
which individuals can be according to the model:

-+ Susceptible: Individual is not Infected
- Infected. Individual is Infected

- Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and

we define:
s(t) Fraction of individuals in Susceptible state at time ¢

i(t) Fraction of individuals in Infected state at time ¢
r(t) —raction of individuals in Recovered state at time ¢
10 nitial(t = 0) fraction of infected individuals




Spreading processes
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Homogeneous mixing

Non-network approach

- Any individual can interact with any other
« The population has a finite size

* Individuals have an average number of contacts
per unit of time

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
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S| model

T Infectivity: probability that the contact between an
Infected individual and a Susceptible one results in
the infection of the Susceptible.

Contact rate: average number of contact per person
per time

B Effective contact rate, 3 = 7¢, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.
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The S| model

S| - characteristics

Each of the i infected individuals infects in average g contacts,
but only s = (1 — ¢) of its contacts are indeed susceptible. More
formally using differential equations:

di Rate of new infection: % = Pis = B(1 — 1)1

dt
: : gePt
i(t) | Infected fraction: i(t) = ;2%

s(t) Susceptible fraction: 1 — i(¢)
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The S| model

|
The process can be separated in three steps:

- At first, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(4 is small, % ~ Bi = exponential)

- Due to saturation, the infection of the last individuals is
slow

- The growth is faster and faster until half the population is
infected (argmax,, ,(z(1 —z)) : . =y = 0.5).

If 3 > 0, everyone is infected at the end of the process.

Saturation

9Barrat, Barthelemy, and Vespignani 2008.

i(t) fraction of infected nodes

Exponential outbreak t
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The S| model

Example: technology adoption

CONSUMPTION SPREADS FASTER TODAY
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The SIS model

Additionally to 3, the SIS model reduires another parameter:
L4 recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.
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The SIS model

Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di Rate of new infection: 5i(1 — i) — pi = (8 — u — Bi)
i(t) | Infected fraction”: (1 — %) 1%5;_“ :;t

For large times, i(t) — 1 — % L.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters u
and g.

9Barrat, Barthelemy, and Vespignani 2008.
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The SIS model

A ratio or (Ry)
In the SIS model, an important notion is the A ratio, also called Rp.

o= 7

!

R can be understood as the average number of individuals that ‘ A=2
will be infected by an infected individual, in a population in which l
all other nodes are Susceptible. R is a property of the model
and do not change with time. ‘
Looking at the Rg is important in the early stage of the epidemic: /* *\

- If Rg > 1, there will be an outbreak ‘ ‘ ‘ ‘

-+ if Ry < 1, the epidemic will disappear naturally.

If R isjustabove 1, the outbreak also can stop naturally by chance
In the early stage.




The SIR model

Additionally to 3, the SIR model requires another parameter:
v recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.
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Spreading processes

Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds - di , _dr ,
= s, —pis o, —

- The initial steps of the outbreak still follow an exponential
growth

- The fraction of infected nodes reach a peak and then de-
creases

- The fraction of recovered saturates below 1

+ The fraction of susceptible do not necessarily reach O
’

- The A ratio is defined as A = % Susceptible

4

X

Recovered
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Dol
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Spreading processes

Many other models exist:

SIRD, MSIR, SEIR

SEIS, MSEIRS

Variable contact rate
Voter
Majority rule
Ftc.

Check for instance:
https://ndlib.readthedocs.io/en/latest/reference/reference.ntml#diffusion-
models



https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models
https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models

Spreading on
Networks
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Epidemic spreading on networks

'he homogeneous mixing approach Is clearly
unrealistic: Interactions are organized In networks

40 - &Y

How much does 1t affect spreading!




Epidemic spreading on networks




Epidemic spreading on networks

Notation change on networks

¢ has no meaning in networks (its role is played by the network

structure), so by convention we use g = 7 . the probability for a
node to infect each of its neighbor at each step.

On Networks ﬁ = T On hOQ)Z%Z”eOUS
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Homogeneous networks

Homogeneous
o |
Mixing

di ‘ Rate of new infection: & = Bis = B(1 — 1)

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ¢ = k.
For instance, the SI model becomes:

dz N
S = Bk (1 — )i

ER random graph =>approximation still holds,

(k = (k))
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Homogeneous networks

Ry on networks

In homogeneous or ER networks, Rg is naturally defined as 5<k>

Another way to express the same thing is that, if we deﬁne RO =
5 , then the epidemic threshold is not equal to 1 but to <k>




Epidemic spreading on heterogeneous networks

- In degree heterogeneous networks the k = <k)
approximation does not hold

- Solution: Degree Block Approximation

- Assumption: all nodes with the same degree are
statistically equivalent

 Look for infection/susceptible node densities in the
degree groups
Uk
Sk

- Calculate the global average by a sum considering
the degree distribution

Z:ZP(k)Zk S:ZP(k)Sk

k



Epidemic spreading on heterogeneous networks

Homogeneous di — BN — 2
Networks dt Bk )

Heterogeneous Degrees - S

For the SI model, we know that all nodes are infected in the end,

but what may vary Is speed of the process.
The speed of diffusion by degree block can be expressed as:

dig,
— = Bk(1 — )0
- Bk(1 — ix)Oy
with ©; being the fraction of infected neighbors of a node with

degree k.
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S| process on heterogeneous networks

Heterogeneous Degrees - Sl - time scale

From previous equations, it can be shown® that the time scale r

of the process, i.e., a measure inversely proportional to its speed,
& (k)

ST = BR —(R) |

Thus, for a given average degree (k) and a given 3, the more het-
erogeneous the degrees, the faster the diffusion.

If the degree distribution follows a power law of exponent o < 3,
we have seen that (k2) diverge towards infinity, thus 7 tends to-
ward O, thus the diffusion is nearly instantaneous.




S| process on heterogeneous networks
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SIS process on heterogeneous networks

Heterogeneous Degrees - \

For SIS and SIR models, it can also be shown® that the epidemic

threshold \ (or Ry) Is not reached when A = % > 1 as in ho-

2
mogeneous networks, but when A > EZ—%

This means that in a very heterogeneous network, an outbreak
can start even if )\ is very small, and below 1. Intuitively, even if



Community structure and spreading

~—(A) Structural Trapping—
Multiple

(B) Social Reinforcement
Multiple |

. Exposures ] ::
Q

(C) Homophily

\

\}
\
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(D) Retweet Network

English

Fox News

#foxnews

Example:
Opinion diffusion

(Competing diffusion processes)

(A) Structural trapping: dense communities with few outgoing links naturally trap information flow. (B) Social reinforcement:
people who have adopted a meme (black nodes) trigger multiple exposures to others (red nodes). In the presence of high
clustering, any additional adoption is likely to produce more multiple exposures than in the case of low clustering, inducing
cascades of additional adoptions. (C) Homophily: people in the same community (same color nodes) are more likely to be

similar and to adopt the same ideas.

Stegehuis, C., Van Der Hofstad, R., & Van Leeuwaarden, J. S. (2016). Epidemic spreading on complex networks with community structures. Scientific reports, 6, 29748.



Experiments



SIR - Scale Free

In this experiment, we compare an ER network to Configuration
Models with power law degree distributions.
Network parameters:n = 1000, (k) = 5. We vary the exponent of
the distribution, while keeping (k) = 5 constant.
SIR parameters. 6 = 0.2,y = 0.5. The Initial number of infected
nodes is 5, all of them in the same community structure.
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The highest the exponent of the degree distribution, the faster is
the diffusion.




SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.

Network parameters. n = 1000, (k) = 5.

SBM parameters Number of blocks |C| = 100. We vary L™,
the fraction of all edges that are inside blocks. When L™
0.01,p"" ~ p°*t = 0.005. When L** = 0.9,p*™ = 0.5, p°u?
0.0005

SIR parameters. 6 = 0.2,y = 0.5. The initial number of infected
nodes is 5, all of them in the same community structure.

0

We observe that the more marked the communities, the less
efficient the spreading process.




SIR - Spatial effect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the 1 dimensional
space. If p = 1, each node is connected to exactly k random
nodes.

Network parameters:n = 1000, (k) = 5

SIR parameters. 0 = 0.2,y = 0.5. The initial number of infected
nodes is 5, being 5 direct neighbors.

step

The more nodes tend to be connected to direct neighbors in
space, the slower the diffusion.




Applications



Applications

- Model fitting (to better know an observed diffusion)
- Predicting future trends
 Epidemic control

» Vaccine, etc. => Which nodes/edges to target?

- Example of strategy: friend paradox
« Vaccine contacts of random nodes instead of random nodes

l 9Cohen, Havlin, and Ben-Avraham 2003. J




