GRAPH/NODE EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. *Knowledge-Based Systems*, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. *IEEE Transactions on Knowledge and Data Engineering*, *30*(9), 1616-1637.

VARIANT

- We can differentiate:
 - Node embedding
 - Edge Embedding
 - Substructure embedding
 - Whole graph Embedding
- In this course, only node embedding (often called graph embedding)

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. *IEEE Transactions on Knowledge and Data Engineering*, *30*(9), 1616-1637.

NAMES

- Representation learning on networks
 - Representation learning = feature learning, as opposed to manual feature engineering (heuristics)
- Embedding => Latent space

IN CONCRETE TERMS

- A graph is composed of
 - Nodes (possibly with labels)
 - Edges (possibly directed, weighted, with labels)
- A graph/node embedding technique in **d** dimensions will assign a vector of length **d** to each node, that will be useful for *what we want to do with the graph*.
 - It captures some aspect of the network structure
- A vector can be assigned to an edge (u,v) by combining vectors of u and v

WHATTO DO WITH EMBEDDINGS?

- Two possible ways to use an embedding:
 - Unsupervised learning:
 - The distance between vectors in the embedding is used for *something*
 - Supervised learning:
 - Algorithm learn to predict *something* from the features in the embedding

WHAT CAN WE DO WITH EMBEDDINGS?

EMBEDDINGTASKS

Common tasks:

- Link prediction (supervised)
- Graph reconstruction (unsupervised link prediction? / ad hoc)
- Community detection (unsupervised)
- Node classification (supervised community detection ?)
- Role definition (Variant of node classification, can be unsupervised)
- Visualisation (distances, like unsupervised)

OVERVIEW OF MOST POPULAR METHODS

PRE-DEEPWALK

MATRIX DECOMPOSITION

LE: LAPLACIAN EIGENMAPS

- Introduced 200 I
- Objective function:

$$y^* = \min \sum_{i \neq j} ||y_i - y_j||^2 S_{ij}$$

- y*: optimal embedding
- y_i : embedding of node i
- S_{ij} : similarity between nodes i and j (A, heuristic, ...)
- Minimize the product between distance in the embedding and similarity in the graph
 - If nodes are similar, they must be close in the embedding

LE: LAPLACIAN EIGENMAPS

$$y^* = \min \sum_{i \neq j} ||y_i - y_j||^2 S_{ij}$$

- Solution: d eigenvectors of lowest eigenvalues of $D^{-1/2}LD^{-1/2}$
- ightharpoonup L: Laplacian, with S=A

HOPE: HIGHER-ORDER PROXIMITY PRESERVED EMBEDDING

Preserve a proximity matrix

$$y^* = \min \sum_{i,j} |S_{ij} - y_i y_j^T|$$

- S can be the adjacency matrix, or number of common neighbors, Adamic Adar, etc.
- As similarity tends towards 0, embedding vectors must tend towards orthogonality (orthogonal vectors: $y_i y_j^T = 0$)

LLE: LOCALLY LINEAR EMBEDDING

- Introduced 2000
- A node features can be represented as a linear combination of its neighbors'

$$y_i = \sum_j A_{ij} y_j$$

Objective function:

$$y^* = \min \sum_{i} ||y_i - \sum_{j} A_{ij} y_j||^2$$

RANDOM WALKS BASED

DEEPWALK

- The first Random Walk+Neural Networks graph embedding method.
 - First of a long series
- · Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710). ACM.

Word embedding

Corpus => Word = vectors

Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]

Output weights for "car"

N=embedding size. V=vocabulary size

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

GENERIC "SKIPGRAM"

- Algorithm that takes an input:
 - The element to embed
 - A list of "context" elements
- Provide as output:
 - An embedding with interesting properties
 - Works well for machine learning
 - Similar elements are close in the embedding
 - Somewhat preserves the overall structure

DEEPWALK

Skipgram for graphs:

- ► I)Generate "sentences" using random walks
- 2) Apply Skipgram

Parameters:

- Embedding dimensions d
- Context size
- More technical parameters: length of random walks, number of walks starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710). ACM.

NODE2VEC

- Use biased random walk to tune the context to capture
 what we want
 - "Breadth first" like RW => local neighborhood (edge probability?)
 - "Depth-first" like RW => global structure? (Communities?)
 - 2 parameters to tune:
 - p: bias towards revisiting the previous node
 - q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in node2vec. The walk just transitioned from t to v and is now evaluating its next step out of node v. Edge labels indicate search biases α .

RANDOM WALK METHODS

- What is the objective function?
- How to interpret the distance between nodes in the embedding?

RANDOM WALK METHODS

Approximately

$$y = \min \sum_{(i,j)} p(n_j|n_i) - \sigma(y_i y_j^T)$$

with $p(w_j|w_i)$ the probability to encounter node n_j in a random walk of a chosen length starting from node n_i . Its objective is therefore to make the distance in the embedding proportional to a random walk based distance in the graph.

with σ the softmax function defined as $\frac{e^x}{\sum e^x}$, a function commonly used in neural networks to add non-linearity and to ensure that the solution is a probability.

RANDOM WALK METHODS

- Scalability:
 - Skipgram uses techniques from machine learning developed for very large datasets: highly **scalable** (not necessarily *fast* or *cost* efficient)
- Matrix factorization methods require the similarity matrix \boldsymbol{S} as input
 - Computing all random walk distance: $\mathcal{O}(n^2)$
 - k random walks of length ℓ from each node: $\mathcal{O}(n)$

ENCODER DECODER FRAMEWORK

Minimize a global loss defined as:

$$L = \sum_{(v_i, v_j) \in E} \ell(DEC(z_i, z_j), s_{\mathcal{G}}(v_i, v_j))$$

DEC: Decoder function (e.g., $DEC(z_i, z_j) = z_i^T z_j$) $s_{\mathcal{G}}$: Ground truth similarity (e.g., $s_{\mathcal{G}(v_i, v_j)} = A_{ij}$) ℓ : Chosen loss function (e.g., $\ell(a, b) = |a - b|$)

ENCODER DECODER FRAMEWORK

Type	Method	Decoder	Proximity measure	Loss function (ℓ)
Matrix factorization	Laplacian Eigenmaps [4] Graph Factorization [1] GraRep [9] HOPE [44]	$egin{aligned} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2 \ \mathbf{z}_i^{ op} \mathbf{z}_j \ \mathbf{z}_i^{ op} \mathbf{z}_j \ \mathbf{z}_i^{ op} \mathbf{z}_j \end{aligned}$	general $\mathbf{A}_{i,j}$ $\mathbf{A}_{i,j}, \mathbf{A}_{i,j}^2,, \mathbf{A}_{i,j}^k$ general	$\begin{aligned} & \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) \cdot s_{\mathcal{G}}(v_i, v_j) \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \end{aligned}$
Random walk	DeepWalk [46]	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$	$-s_{\mathcal{G}}(v_i, v_j) \log(\text{DEC}(\mathbf{z}_i, \mathbf{z}_j))$
	node2vec [27]	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$ (biased)	$-s_{\mathcal{G}}(v_i, v_j) \log(\text{DEC}(\mathbf{z}_i, \mathbf{z}_j))$

 $p_{\mathcal{G}}(v_j | v_i)$: probability of visiting v_j on a fixed-length random walk started from v_i

SOME REMARKS ON WHAT ARE EMBEDDINGS

ADJACENCY MATRIX

- · An adjacency matrix is an "embedding"... in high dimension
- That represents the structural equivalence
 - ▶ 2 nodes have similar "embeddings" if they have similar neighborhoods
 - Distance=># of different neighbors (Manhattan Distance)
- Standard dimensionality reduction (T-SNE, PCA) of this matrix?
 - Small dimensions
 - But still unintuitive notion of distance

GRAPH LAYOUT

- · Graph layouts are also embeddings.
 - Force layout, kamada-kawai
- They try to put connected nodes close to each other and non-connected ones "not close"
- Problem: they usually try to avoid overlaps
- Often not scalable

NODE EMBEDDING: VISUALIZATION

FROM DTO 2

- · Graph embedding can be used to visualize graphs
- Requires to reduce the embedding from d to 2
 - TSNE
 - PCA
 - **)**
- Interpretable positions of nodes
- But not necessarily optimized for human reading

CLIQUE RING

5 cliques of size 20 with I edge between them

NODE EMBEDDING: COMMUNITY DETECTION

CLUSTERING EMBEDDINGS

- · Many algorithm exists for clustering non-network data
 - K-means, DBscan, etc.
- · Clustering: group nodes that are close in the feature space.

EMBEDDING ROLES

STRUC2VEC/ROLE2VEC

- In node2vec/Deepwalk, the context collected by RW contains the labels of encountered nodes
- Instead, we could memorize the **properties** of the nodes: attributes if available, or computed attributes (degrees, CC, ...)
- =>Nodes with a same context will be nodes in a same "position" in the graph
- => Capture the role of nodes instead of proximity

STRUCT2VEC: DOUBLE ZKC

NODE CLASSIFICATION WITH EMBEDDINGS

NODE CLASSIFICATION

- · To each node is associated a vector in the embedding
 - This vector corresponds to topological features of the node, used instead of, for instance, centralities
 - Both types of features can be combined
- · As usual, a classifier can be trained using those features

NODE CLASSIFICATION

Algorithm	Dataset		
	BlogCatalog	PPI	Wikipedia
Spectral Clustering	0.0405	0.0681	0.0395
DeepWalk	0.2110	0.1768	0.1274
LINE	0.0784	0.1447	0.1164
node2vec	0.2581	0.1791	0.1552
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5
Gain of node2vec [%]	22.3	1.3	21.8

Controversies...

LINK PREDICTION WITH EMBEDDINGS

UNSUPERVISED LINK PREDICTION

- Unsupervised link prediction from embeddings
- =>Compute the distance between nodes in the embedding
- =>Use it as a similarity score

SUPERVISED LINK PREDICTION

- Supervised link prediction from embeddings
- =>embeddings provide features for nodes (nb features: dimensions)
 - Combine nodes features to obtain edge features
- =>Train a classifier to predict edges based on features from the embedding

SUPERVISED LINK PREDICTION

Operator	Result
Average	(a + b)/2
Concat	$[\mathbf{a}_1,\ldots,\mathbf{a}_d,\mathbf{b}_1,\ldots,\mathbf{b}_d]$
Hadamard	$[\mathbf{a}_1 * \mathbf{b}_1, \dots, \mathbf{a}_d * \mathbf{b}_d]$
Weighted L1	$[\mathbf{a}_1 - \mathbf{b}_1 , \dots, \mathbf{a}_d - \mathbf{b}_d]$
Weighted L2	$[(\mathbf{a}_1 - \mathbf{b}_1)^2, \dots, (\mathbf{a}_d - \mathbf{b}_d)^2]$

Combining nodes vectors into edge vectors

SUPERVISED LINK PREDICTION

- How well does it works?
- According to creators articles
 - Node2vec (2016)
 - VERSE (2018)
- =>These methods are better than the state of the art

Op	Algorithm	Dataset		
		Facebook	PPI	arXiv
	Common Neighbors	0.8100	0.7142	0.8153
	Jaccard's Coefficient	0.8880	0.7018	0.8067
	Adamic-Adar	0.8289	0.7126	0.8315
	Pref. Attachment	0.7137	0.6670	0.6996
	Spectral Clustering	0.5960	0.6588	0.5812
(a)	DeepWalk	0.7238	0.6923	0.7066
	LINE	0.7029	0.6330	0.6516
	node2vec	0.7266	0.7543	0.7221
	Spectral Clustering	0.6192	0.4920	0.5740
(b)	DeepWalk	0.9680	0.7441	0.9340
	LINE	0.9490	0.7249	0.8902
	node2vec	0.9680	0.7719	0.9366
	Spectral Clustering	0.7200	0.6356	0.7099
(c)	DeepWalk	0.9574	0.6026	0.8282
	LINE	0.9483	0.7024	0.8809
	node2vec	0.9602	0.6292	0.8468
	Spectral Clustering	0.7107	0.6026	0.6765
(d)	DeepWalk	0.9584	0.6118	0.8305
	LINE	0.9460	0.7106	0.8862
	node2vec	0.9606	0.6236	0.8477

(a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-L2

LINK PREDICTION

· Personal opinion: not that simple

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In *International Conference on Complex Networks and their Applications* (pp. 81-93). Springer, Cham.

48

LINK PREDICTION

• First few predictions: advantage to heuristics

Better prediction at distance 2, worst otherwise

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In *International Conference on Complex Networks and their Applications* (pp. 81-93). Springer, Cham.

49

MODEL STACKING

FOR LINK PREDICTION

MODEL STACKING

Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks. *Proceedings of the National Academy of Sciences*, *117*(38), 23393-23400.

Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks. *Proceedings of the National Academy of Sciences*, *117*(38), 23393-23400.

MODEL STACKING

Table S12. Average AUC, precision, and recall performances of the link prediction algorithms over 124 social networks as a subset of CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm	AUC	Precision	Recall
Q	0.89 ± 0.07	0.42 ± 0.13	0.85 ± 0.08
Q-MR	0.87 ± 0.07	0.38 ± 0.16	0.78 ± 0.07
Q-MP	0.86 ± 0.08	0.25 ± 0.07	0.83 ± 0.09
B-NR (SBM)	0.93 ± 0.06	0.3 ± 0.08	0.85 ± 0.12
B-NR (DC-SBM)	0.93 ± 0.07	0.28 ± 0.08	0.88 ± 0.08
cICL-HKK	0.93 ± 0.08	0.34 ± 0.1	0.85 ± 0.14
B-HKK	0.88 ± 0.07	0.17 ± 0.05	0.79 ± 0.17
Infomap	0.91 ± 0.04	0.29 ± 0.08	0.83 ± 0.05
MDL (SBM)	0.94 ± 0.07	0.31 ± 0.09	0.87 ± 0.16
MDL (DC-SBM)	0.93 ± 0.09	0.26 ± 0.09	0.89 ± 0.11
S-NB	0.94 ± 0.07	0.3 ± 0.1	0.87 ± 0.08
mean model-based	0.91 ± 0.08	0.3 ± 0.12	0.84 ± 0.12
mean indiv. topol.	0.64 ± 0.19	0.2 ± 0.27	0.56 ± 0.33
mean indiv. topol. & model	0.7 ± 0.21	0.22 ± 0.25	0.62 ± 0.32
emd-DW	0.95 ± 0.1	0.45 ± 0.16	0.92 ± 0.13
emb-vgae	0.95 ± 0.08	0.09 ± 0.02	0.96 ± 0.09
all topol.	0.97 ± 0.08	0.89 ± 0.21	0.88 ± 0.2
all model-based	0.95 ± 0.07	0.76 ± 0.2	0.68 ± 0.17
all embed.	0.95 ± 0.11	0.75 ± 0.23	0.74 ± 0.23
all topol. & model	0.98 ± 0.06	0.89 ± 0.22	0.88 ± 0.19
all topol. & embed.	0.96 ± 0.1	0.86 ± 0.22	0.83 ± 0.25
all model & embed.	0.96 ± 0.09	0.78 ± 0.21	0.74 ± 0.22
all topol., model & embed.	0.97 ± 0.09	0.86 ± 0.23	0.84 ± 0.23

Table 1. Link prediction performance (mean±std. err.), measured by AUC, precision, and recall, for link prediction algorithms applied to the 548 structurally diverse networks in our corpus.

algorithm	AUC	precision	recall
Q	0.7 ± 0.14	0.14 ± 0.17	0.67 ± 0.15
Q-MR	0.67 ± 0.15	0.12 ± 0.17	0.63 ± 0.13
Q-MP	0.64 ± 0.15	0.09 ± 0.11	0.59 ± 0.17
B-NR (SBM)	0.81 ± 0.13	0.13 ± 0.12	0.65 ± 0.22
B-NR (DC-SBM)	0.7 ± 0.2	0.12 ± 0.12	0.61 ± 0.24
cICL-HKK	0.79 ± 0.13	0.14 ± 0.14	0.58 ± 0.25
B-HKK	0.77 ± 0.13	0.11 ± 0.1	0.51 ± 0.26
Infomap	0.73 ± 0.14	0.12 ± 0.12	0.68 ± 0.13
MDL (SBM)	0.79 ± 0.15	0.14 ± 0.13	0.57 ± 0.3
MDL (DC-SBM)	0.84 ± 0.1	0.13 ± 0.11	0.78 ± 0.12
S-NB	0.71 ± 0.19	0.12 ± 0.13	0.66 ± 0.17
mean model-based	0.74 ± 0.16	0.12 ± 0.13	0.63 ± 0.21
mean indiv. topol.	0.6 ± 0.13	0.09 ± 0.16	0.53 ± 0.35
mean indiv. topol. & model	0.63 ± 0.15	0.09 ± 0.16	0.55 ± 0.33
emb-DW	0.63 ± 0.23	0.17 ± 0.19	0.42 ± 0.35
emb-vgae	0.69 ± 0.19	0.05 ± 0.05	0.69 ± 0.21
all topol.	0.86 ± 0.11	0.42 ± 0.33	0.44 ± 0.32
all model-based	0.83 ± 0.12	0.39 ± 0.34	0.3 ± 0.29
all embed.	0.77 ± 0.16	0.32 ± 0.32	0.32 ± 0.31
all topol. & model	0.87 ± 0.1	0.48 ± 0.36	0.35 ± 0.35
all topol. & embed.	0.84 ± 0.13	0.4 ± 0.34	0.39 ± 0.33
all model & embed.	0.84 ± 0.13	0.36 ± 0.32	0.36 ± 0.31
all topol., model & embed.	0.85 ± 0.14	0.42 ± 0.34	0.39 ± 0.33