GRAPH/NODE EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.



VARIAN T

* We can differentiate:

» Node embedding

» Edge Embedding

» Substructure embedding
» Whole graph Embedding

* In this course, only node embedaing (often called graph
embedding)
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NAMES

* Representation learning on networks

» Representation learning = feature learning, as opposed to
manual feature engineering (heuristics)

* Embedding => Latent space



IN CONCRETE TERMS

@ " orabhs composed of

» Nodes (possibly with labels)
» Edges (possibly directed, weighted, with labels)

* A graph/node embedding technique in d dimensions will
assign a vector of length d to each node, that will be useful for
*what we want to do with the graph™.

» [t captures some aspect of the network structure

» A vector can be assigned to an edge (u,v) by combining
vectors of u and v



WHAT TO DO WITH
EMBEDDINGS?

» [wo possible ways to use an embedding:

» Unsupervised learning:
- The distance between vectors in the embedding is used for *something*
» Supervised learning:

- Algorithm learn to predict *something® from the features in the embedding



WHAIT CANWE DO WITH
EMBEDDINGS ¢



EMBEDDING TASKS

» Common tasks:

» Link prediction (supervised)
Graph reconstruction (unsupervised link prediction ? / ad hoc)
Community detection (unsupervised)
Node classification (supervised community detection ?)
Role definrtion (Variant of node classification, can be unsupervised)
Visualisation (distances, like unsupervised)
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OVERVIEW OF MOST
POPULAR METHOES



PRE-DEEPWALK
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L& LAPLACIAN EIGENMAPS

* Introduced 200 |

» Objective function:
d 2
y* = min ) |ly; - ylI%S;
%]
- y*: optimal embedding

>

- y;: embedding of node |
- §;;: similarity between nodes i and j (A, heuristic, ...)

* Minimize the product between distance in the
embedding and similarity in the graph
» If nodes are similar, they must be close in the embedding

10



L& LAPLACIAN EIGENMAPS

L yE=min ) [ly; — 1%,
Joe]

» Solution: d eigenvectors of lowest eigenvalues of D~Y2LD ™12

» L Laplacian, with S=A

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications,|a|nd performance: A survey. Knowledge-Based Systems, 151, 78-94.



HOPE: HIGHER-ORDER PROXIMITY
PRESERVED EMBEDDING

* Preserve a proximity matrix
W —mlnz | S, —yly]

* § can be the adjacency matrix, or number of common neighbors,
Adamic Adar, etc.

* As similarity tends towards 0, embedding vectors must tend towards
orthogonality (orthogonal vectors: )’inT — 0

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications,|ai1d performance: A survey. Knowledge-Based Systems, 151, 78-94.



L LE: LOCALLY LINEAR
EMBEDDING

* Introduced 2000

* A node features can be represented as a linear combination of
its neighbors

Y ZAijyj
J

» Objective function:

CyE=min Yy — Y Al
l J



RANDOM WALKS BASED



DEEPWALK

* The first Random Walk+Neural Networks graph embedding
method.

» First of a long series

- Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM. c



SKIPGRAM

Word embedding
Corpus => Word = vectors
Similar embedding= similar context

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

[http://mccormickml.com/2016/04/ | 9/vvc|>6rd2vec—tutoria|—the—s|<ip—gram—model/]



SKIPGRAM

Output Layer
Softmax Classifier

Hldden Layer Probability that the word at a
Linear Neurons /;
Input Vector Ay /

> randomly chosen, nearby
position is “abandon”
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Output weights for “car”

Word vector for “ants”

I X

300 features

Probability that if you
randomly pick a word
nearby “ants”, that it is “car”

300 features

https://towardsdatascience.com/word2vec-skip4gram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM

Output
Input softmax
@) G
X1 0 Hidden e
X2| O N /Khl\ 0 |¥Y2
A hs v :
Vector of word i
hs3 3
- g
X Matrix W = X Matrix W” & |V =
: 2
Xi| 1 8_ 1 Y;
' Context matrix
h
Embedding matrix ~—\_ /
Xyv| 0 N-dimension vector 0 |yv
N N

N=embedding size. V=vocabulary size

https://towardsdatascience.com/word2vec-skipdgram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM

'/( ‘\‘,\% Q N2\ \N\/Ooman F(“V\ w@»
l?o\éo\v\g B 0.44 0.a9 0.02% ’o.qy
MO\SCU\‘I\H'\\(\/‘\ — 0.99 0.05 ©-ou 0.02 }
{:Qrvim'\m'fbxs _— 0.0s 0-43 0-4a4 0 44
A‘SQ —_— 07 0. o-s o-|
L — e s
/N A
K'\f\ K‘\h
K03 Ximy
\Word ! Mo
o G Vecrors ! — ="
Mon b— —
o +\NJ)0oOouN
/ W20~
— =0

|https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/]

1%


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

| https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|
20


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM”

» Algorithm that takes an input:

» The element to embed
» A list of “context’’ elements

* Provide as output:

» An embedding with interesting properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

i



DEEPWALK

» Skipgram for graphs:

» [)Generate “sentences’ using random walks
» 2)Apply Skipgram

S rameters:

» Embedding dimensions d
RS enitext size

» More technical parameters: length of random walks, number of walks starting
from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



NODE2VEC

» Use biased random walk to tune the context to capture

*what we want™®

» "“Breadth first” like RW => local neighborhood (edge probability ?)
» “Depth-first” like RW => global structure ¢ (Communities ?)
» 2 parameters to tune:

- Pp: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in nodeZvec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases c.

| T— m—

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



RANDOM WALK METHODS

 What Is the objective function ¢

BEE Bicinterpret the distance between nodes In the
embedding !

il



RANDOM WALK METHODS

Approximately

y =min » p(nj|n;) —o(yiy, )
(%,7)

with p(w;|w;) the probability to encounter node n; in a random
walk of a chosen length starting from node n;. Its objective is
therefore to make the distance in the embedding proportional to
a random walk based distance in the graph.

X

with o the softmax function defined as ﬁ a function commonly
used in neural networks to add non-linearity and to ensure that the

solution is a probability.

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation Iearrﬂ%g on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.



RANDOM WALK METHODS

» Scalabilrty:
» Skipgram uses techniques from machine learning developed for very large
datasets: highly scalable (not necessarily fast or cost efficient)

» Matrix factorization methods require the similarity matrix § as
input
» Computing all random walk distance: O(n?)
» k random walks of length £ from each node: O(n)

26



ENCODER DECODER
FRAMEVWORK

Minimize a global loss defined as:

i — Z f(DEC(Zl, Zj)9 Sf‘g(via V]))

(v,V)EE

DEC: Decoder function (e.g, DEC(z;, 7)) = zl-sz)
S¢: Ground truth similarity (e.g, S () = Ajj)
£ Chosen loss function (e.g., £(a,b) = |a — b|)

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation Iearrﬁn/g on graphs: Methods and applications. arXiv preprint arXiv:1709.05584



ENCODER DECODER
FRAMEWORK

Type Method Decoder  Proximity measure Loss function (¥)
Laplacian Eigenmaps [4]  ||z; — ;|3 general DEC(z,2;) - sg(vi, v;)
Matrix Graph Factorization [1] ,L-sz A; ; DEC(Z;,2;) — sg(vi, v;) %
factorization GraRep [9] z, 7, AR S A%,j, S Aﬁj DEC(%;, ;) — sg(vi,v;)||3
HOPE [44] z; 7, general DEC(z;,2;) — sg(vi,v;)||3
sz :
DeepWalk [46] g ijzk pg(vi|v;) —sg(vi,v;) log(DEC(Z4,25))
Random walk ZkEVTe Z
Bzi z;

node2vec [27]

Z;l_Zk:
kcy €

pg(vj|v;) (biased)

—5g(vi, vj) log(DEC(24, 25))

pg(vj | v;): probability of visiting V;on a fixed-length random walk started

from v,

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation Iearrﬂrég on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.



SOME REMARKS ON WHAT
ARE EMBEDDINGS



ADJACENCY MATRIX

* An adjacency matrix is an “embedding”... In high dimension

* [ hat represents the structural equivalence

» 2 nodes have similar “embeddings” it they have similar neighborhoods
» Distance=># of different neighbors (Manhattan Distance)

» Standard dimensionality reduction (I-SNE, PCA) of this
matrix!
» Small dimensions
» But still uninturtive notion of distance

30



BRAPH LAYOURE

» Graph layouts are also embeddings.
» Force layout, kamada-kawal ...

* [ hey try to put connected nodes close to each other and
non-connected ones “not close”

* Problem: they usually try to avoid overlaps

« Often not scalable

31



NODE EMBEDDING:
VISUALIZATION



A\ DIRBELG

» Graph embedding can be used to visualize graphs

B EEiE N o redlce the embedding from d tor2

s ESINIE
» PCA

e,

* Interpretable positions of nodes

* But not necessarily optimized for human reading

55



CLIQUE RING

5> cliques of size 20 with | edge between them

Spring layout
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NODE EMBEDDING:
EOMMUNITY DE | ECTICHS



CLUSTERING EMBEDDINGS

* Many algorithm exists for elustering non-network data
» K-means, DBscan, etc.

» Clustering: sroup nodes that are close in the feature space.

36



EMIBEDDING ROLES



STRUC2VEC/ROLE2ZVEC

* In node2vec/Deepwalk, the context collected by RWV contains
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
SINBNEES I avallable, or computed attributes (degrees .

« =>Nodes with a same context will be nodes In a same
“position” In the graph

» =>(apture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Miring (pp. 385-394). ACM.



BERUC | 2VEC : DOUBLE ZISSs
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ACM SIGKDD International Conference on Knowledge Discovery and Data Mifing (pp. 385-394). ACM.



NODE CLASSIHCATICHS
WITH EMBEDDINGS



NODE CLASSIFICATION

» lo each node Is associated a vector In the embedding

» This vector corresponds to topological features of the node, used instead of,
for instance, centralities

» Both types of features can be combined

* As usual, a classifier can be trained using those features

il



NODE CLASSIFICATION

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) | 0.25,0.25 4,1 4, 0.5
Gain of node2vec [ %] 22.3 1.3 21.8

R

@ehlie sl

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



LINK PREDICTION WITH
EMBEDDINGS

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In International
Conference on Complex Networks and their Applications (pp. 81-93). Springer, Charrg}.



UNSUPERVISED
LINK PREDICTION

* Unsupervised link prediction from embeddings
» =>Compute the distance between nodes in the embedding

» =>Use It as a similarity score

44



SUPERVISED
LINK PREDICTION

* Supervised link prediction from embeddings

» =>embeddings provide features for nodes (nb features:
dimensions)
» Combine nodes features to obtain edge features

* =>Train a classifier to predict edges based on features from
the embedding

255



SUPERVISED
LINK PREDICTION

Operator Result

Average (a+b)/2

Concat (0,550 5 5 Aty Dy s s by]
Hadamard [a; xbq,..., ag *by]
Weighted L1 [|la; — b1l,...,|lag — byl]
Weighted L2 (a; —b1)%, ..., (ag —by)?]

Combining nodes vectors Into edge vectors

46



SUPERVISED
LINK PREDIC [TON

« How well does 1t works ?

» According to creators

articles

Node2vec (2016)
» VERSE (2018)

« =>[hese methods are
better than the state of
the art

Algorithm Dataset
Facebook | PPI arXiv
Common Neighbors | 0.8100 0.7142 | 0.8153
Jaccard’s Coefficient | 0.8880 0.7018 | 0.8067
Adamic-Adar 0.8289 0.7126 | 0.8315
Pref. Attachment 0.7137 0.6670 | 0.6996
Spectral Clustering 0.5960 0.6588 | 0.5812
(a) | DeepWalk 0.7238 0.6923 | 0.7066
LINE 0.7029 0.6330 | 0.6516
node2vec 0.7266 0.7543 | 0.7221
Spectral Clustering 0.6192 0.4920 | 0.5740
(b) | DeepWalk 0.9680 0.7441 | 0.9340
LINE 0.9490 0.7249 | 0.8902
node2vec 0.9680 0.7719 | 0.9366
Spectral Clustering 0.7200 0.6356 | 0.7099
(¢) | DeepWalk 0.9574 0.6026 | 0.8282
LINE 0.9483 0.7024 | 0.8809
node2vec 0.9602 0.6292 | 0.8468
Spectral Clustering 0.7107 0.6026 | 0.6765
(d) | DeepWalk 0.9584 0.6118 | 0.8305
LINE 0.9460 0.7106 | 0.8862
node2vec 0.9606 0.6236 | 0.8477

47

(a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-L.2

(AUC)



LINK PREDICTION

* Personal opinion: not that simple
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Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In

International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



LINK PREDICTION

* First few predictions: advantage to heuristics

Better prediction at distance 2, worst otherwise
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Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



MODEL STACKING
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MODEL STACKING

Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks.
Proceedings of the National Academy of Sciences, 117(38), 23393-23400.

social (124) BN biological (179) economic (122) B technological (67) B information (18) transportation (38)
- N N ™
0.08 topol. embed. model-based
[}
O
& 0.06
S
o
E 0.04 1
£
(G] )
0.02 | ]
e A o 001010 i o b b L LA B h i

1
F TR FFELE TR FFEF T I F S R QPQ” & & K

QO S o R
™ SR . \ P @‘“ N c;b‘“ %Q§
R I F £ Y E P U
v e N O > ¥ QO Q\' % Q
& PN v &
v £ @0 Qﬁ

Sl



Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks.
Proceedings of the National Academy of Sciences, 117(38), 23393-23400.

MODEL STACKING

Table S12. Average AUC, precision, and recall performances of the link prediction algorithms ove(jZ4 social networks_as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predicto sted for maximum F

measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm | AUC | Precision | Recall Table 1. Link prediction performance (mean-tstd. err.), measured by
Q 0.89+0.07 | 0.42+0.13 | 0.85+0.08 W%dicﬁon algorithms applied to
Q-MR 0871007 | 038L0.16 | 0.78 £ 0.07 e 548 structurally diverse network our corpus.
Q-MP 0.86 £ 0.08 | 0.25+0.07 | 0.83+0.09
B-NR (SBM) 0.93+£0.06 | 0.3+£0.08 | 0.85+0.12 algorithm AUC [ precision | recall
B-NR (DC-SBM) 0.93 £0.07 | 0.28 £0.08 | 0.88+0.08 a S 1012 IO A 2k
cICL-HKK 0.93+0.08 | 034+£0.1 | 0.85+0.14 MR e Lols oAk IR
B-HKK 0.88+£0.07 | 0.17£0.05 | 0.79 +£0.17 = 064 £ 015 |0 0o E RO TN
ITguEly O 00, 6 w020 IO EIEVIIE 0,05 B-NR (SBM) 0.81+£0.13 | 0.13+0.12 | 0.65=+ 0.22
REI(PEM) L Orel #0502 10008 @007 0. 19 B-NR (DC-SBM) 0.7 202 0 P ozEE o R R
MDL (DC-SBM) 0.93+£0.09 | 0.26£0.09 | 0.89 +0.11
o e e e cICL-HKK 0.79+0.13 | 0.14+0.14 | 0.58 £ 0.25
B-HKK 0.77+0.13 | 0.11+0.1 | 051 +0.26
mean .mo.del—based 0.91 £ 0.08 0.3+0.12 0.84 +£0.12 Infomap 0.73 £ 0.14 012 +0.12 0.68 £0.13
mean !nd!v. topol. 0.64 +0.19 0.2 +0.27 0.56 & 0.33 MDL (SBM) 0.79 £ 0.15 014 +0.13 057 £03
mean indiv. topol. & model 07+£021 | 022+0.25 | 0.62+0.32 MDL (DC-SBM) 0812101 0132011 | 078 £ 0.12
GOV, o Ul el 0= 03 Oy il 20 S-NB 0.71£0.19 | 0.12+0.13 | 0.66 +0.17
b-vgae 0.95 £ 0.08 | 0.09 =+ 0.02
— — mean model-based 0.744+0.16 | 0.12+0.13 | 0.63+£0.21
gliiopol Uy =e G el == UL | e 2= 0.2 mean indiv. topol. 0.6 0,137 | 00N RO
all modelbased 095+ 007 0T+ o7 | 068 £ 0.17 mean indiv. topol. & model | 0.63+0.15 | 0.09+0.16 | 0.55 % 0.33
all embed. 0.95+0.11 | 0.75+£0.23 | 0.74 +0.23
all topol. & model 0.98+0.06 | 0.89 +0.22 | 0.88=+0.19 emb-DW 0.63+£0.23 | 0.17+0.19 | 0.42+0.35
all topol. & embed. 0.96+0.1 | 0.86+0.22 | 0.83+0.25 emb-vgae 0.69£0.19 | 0.05+£0.05 | 0.69=+0.21
all model & embed. 0.96+0.09 | 078 £0.21 | 0.74 + 0.22 <& topol. 0.86+0.11 | 0.42+0.33 | 0444032 _
< alltopol.,, model & embed. 0.974+0.09 | 0.86+0.23 | 0.84+£0.23 > all model-based 8-83—6—+2——0-39—+0-5 U3 TF029
all embed. 0.77+0.16 | 0.32+0.32 | 0.32+£0.31
all topol. & model 0.87 £ 0.1 0.48 £0.36 | 0.35+0.35
all topol. & embed. 0.84 £0.13 0.4+0.34 0.39 £0.33
all model & embed. 0.84 £0.13 | 0.36 £0.32 | 0.36 +0.31
< alltopol., model & embed. | 0.85+0.14 | 0.42+0.34 | 0.39+0.33"
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