COMPLEX NETWORKS



WHO AM |

» Rémy Cazabet
@ GElie Professor (Maitre de conterences)
» Universite Lyon |

» LIRIS, DM2L Team (Data Mining & Machine Learning)

» Computer Scientist => Network Scientist

* Member of IXX]



RESOURCES

* Website of the course:

»  http://cazabetremy.ir/ Teaching/ ComplexNetworks.ntml
» Slides, Cheat sheets, notebooks, etc.

- Contact me: remy.cazabet@univ-lyon | .fr

* | don't have a way to contact you:

» Please send an emall to the address above with: |)your name, 2)the master you
are in (Physics, Computer science, Cognitive science, etc.)


http://cazabetremy.fr/Teaching/ComplexNetworks.html
mailto:remy.cazabet@univ-lyon1.fr

c-LEARNING

* No live streaming (unless needed)
» Recording of classes will be avallable

» Discord channel, join with: https://discord.gg/vBbPDMAZ

» Ask questions that can be helpful to others, about exams, difficult points, etc.



https://discord.gg/vBbPDMAz

CLASS OVERVIEW

 Network Science 1s multi/inter/trans/disciplinary:

» Students from different Master:
- Computer Science (CompSai)
- Complex Systems (Physics, Biology) (CompSys)
- Cognirtive Science (CogSal)

MEOPS /s Cogoc
A e
B aioracticals (TD)

BREempoC]

» 32h lectures



EVALUATION

* 607%= Project.
EiREGel> of 2 or 3.

» Apply class content to analyse a network of your choice
» More details later

» 40%=Sclentific article presentation

» During a class or during the first week of January (last class for CompSys)



B GRRG Sl

* Most lectures with me. Some lectures with Christophe
Srespelle,

* From next session, lectures with me;

» [sthalf: Theory, me talking on slides
» 2nd half; You experimenting on computers
- Please try to bring a computer with battery,

» Please install on your computer:
- Gephi: https://gephi.org software to manipulate and visualize networks

- Python, and some libraries: networkx, sklearn, seaborn (for now) cdlib, thetwork (for later)
- Also for python: Jupyter notebook.

- In case of problems with your computer; all the python work can also be done using google
colab (https://colab.research.google.com) an online python notebook.



https://gephi.org
https://colab.research.google.com

B GRRG Sl

* No need to write down definitions, etc.

» Slides, Cheatsheet

» Questions welcomed

Network Science
Cheatsheet

Made by
é UNIVERSITE Remy Cazabet
() DE LYoN

1 Network Basics

Networks: Graph notation

Graph notation : G = (V, E)
v

set of vertices/nodes.
E set of edges/links.
u anode.
(w,0) € B an edge.

Types of networks

simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) € V does notimply (v, u) €
v

Weighted graph: A weight is associated to every edge.

ther types of graphs (muligraphe, multpartie. e @
Network ph notatio
Graph Graph notation

G=(V.E)
V ={1,2,3,4,5,6}
E = {(0,1),(0,5), (0,4),
(1,2),(1,3),(1,4), (1,5),
(5,4),(4,4),(2,3)}

Counting nodes and edges

N/n | size: number of nodes [V/|.
L/m | number of edges |E|
Lumas | Maximum number of links

Undirected network (’;) — NN -1)/2

N

Directed network: ( )

):N(Nfl)

Network descriptors 2 - Paths

£ | Diameter: maximum distance between any pair of nodes,
(6) | Average distance:

1
0=ty ;dn

Node-Edge description Degree distribution

N, Neighbourhood of u, nodes sharing a link with w.

ku Degree of u, number of neighbors | N, .

Ng* Successors of u, nodes such as (u,v) € E in a directed
graph

Nt Predecessors of u, nodes such as (v, u) € E ina directed
graph

kout Out-degree of u, number of outgoing edges |N2"*|.

kin In-degree of u, number of incoming edges [N:"|

Wy Weight of edge (u, v).

Su Strength of u, sum of weights of adjacent edges, s, =
=, wuv-

Network descriptors 1 - Nodes/Edges

(k) Average degree: Real networks are sparse, ie. typically
(k) < n. Increases slowly with network size, eg.. d ~
log(m)

d/d(G)| Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (eg. BABACE is a valid
walk)

Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length, Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

£, .: Distance: The distance between nodes u, v is the length of the short-
est path

The degree distribution is considered an important network property. They
can follow two typical distributions:

- Bell-curved shaped (Normal/Poisson/Binomial)
- Scale-free, also called long-tail or Power-law

ABell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
man wealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).
0200
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More detals later,

Subgraphs

subgraph H(W): subset of nodes W of a graph G = (V, E) and edges
connecting them in G. i.e., subgraph H(W) = (W, E'),W C V, (u,v) €
E' < wveEWA@uv)EE

Clique: subgraph with d = 1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph

Strongly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections




COMPLEX NETWORKS

(NETWORK SCIENCE)

WHAT?
WHY?
WHY NOW?
WHAT FOR?




SCIENCE

» Science: understanding how things work
» The human body, the motion/characteristics of objects, societies, etc.

» Step |: understand properties of things and rules applying to
them

» Fall of objects, classifications of species, etc.
» Macro-scale properties: temperature, pression



SCIENCE

- 2)Great success of the 19/20 centuries: Reductionism

» lo understand things, | need to understand what they are
made of:

» A human body: organs, vessels => cells => DNA, proteins & stuff ==
pifcleotices .. ..

» Objects: Organic compounds => atoms => protons/electrons/neutrons ==
stuff

« => Now we know. And then what !



SCIENCE

» 3) Iwo situations:
» The system is homogeneous and/or has a regular structure

- =>You can explain it with a bunch of equations

» The system is heterogeneous and/or has a complex structure
- => Understanding each component Is not enough to understand the system
- Understanding each neuron tells you little about how the brain works.
- Understanding how each individual works/behave tells you little about societies
pecc

« => [he structure/relations/interactions matters.

» Networks represent structures



EOMPLEX SYS TERS

- Complex systems: Systems composed of multiple parts
in interactions

- Complex networks model the interactions between the parts

» A common framework applicable to many systems
» =>Many networks share similar characteristics
» =>Similar processes shape the networks



LYON

— Tram
—— RhinExpress

Villefranche-sur-Sadne
Macon

Villefranche-sur-Saéne  Paris

Genéve

Funicular

Metro

Cuire
SNCF - French State Railway
Gare delVaise
< A 2010 @ UrbanRail Net (J. Haseler & R. Schwandl)
Hinon Un‘l_;eorns:le Einstein ;f o
ol La Doua.
Valmy tousse v Gaston Berger
. Charpennes - i Décines - Grand Large
Croix-PaquetC, Charles Hernu\ République -
Gorge Hitel de Ville - Foch _Masséna Willeurbanne Gratte- Ciel . Décines - Centre
Rt uis Pradel N Flachet Gare de Lyon-
Tassin Ed e Brotteaux Collége Bellecombe . Cusset Saint-Exupéry TGV
2 Laurent Bonnevay 5
Prignais sePal e ParDina g TS LaTVERE
Sain-Bel Fourvidre Cordsliers préfecture Gare Pant-Dieu-Villette
T 7 [FhanExpress] Gare de Bel Air - Vaulx-en-Velin - La Soie
view yod  Rpetecod o} Fiace Suihard Villeurbanne __Les Brosses,
Dauphiné-
Minimes bt Lacatsagne Reconnaissance- Balzao
mpre Garibaldi
1 Palais de Justice - Mairie du 3e
Stdust Vidtor H sans Sousi D ey
HEE . Monplaisir - Lumigre
JiEnne et g'Eau

Suche Garigaldi-

e ug Denfielot ) fiean X301
Lyoéd Maryse Bastié - Laénneo
Lumiére') Bashut-
Etats-Unis-§ Mairie du 8¢
Musée Tony Garnier

Mermoz- Pinel

Beauvisage -CISD
E(%X&Ums'

Stade de Gertand v

Parilly  Parilly - Université|

Joliot Curie-
Oulling

Cumulative Number Number
cases isolated quarantined

No control Case isolation I Primary tracing Secondary tracing N
= st
g 2004
Z 1001
L —
(A) "
- Hubse
[ ‘ |, forming a rich 'e
(4 ‘ o) club i . "y
¥ f . = - =
*-. A\ > N ; lon\:' - & i / .
K o8 o out A A B " Metallurgy l
(B) ! g , : a o :
“8 ,_Shortest path R R = s N g
. 2 Fossil Fuel Mini : mr, - e LT ek -
A, o ws& U\t]i:lies ng\\ 5"/, ¥H . -'. AP

i £
f A Long palh Automobile
/ S— <\ i
(4 \ <) ; \
4 ] N
Sl » MRS ke
k. eV Sl 4 = E / "
3 Q : y Machinery &
() ',5‘}, % Triangular SACRAMENTO - g u : Biher Manufacturing
g connections - ) £2 o ¥
e 29 Real Estate, i .
A around node I g s Finance/Insurance L. el 14
g’g Health Care L = in v/ !
-] [ LJ El y
§ g J ‘, Textiles
& Wy 7 ,
EE [ 38 .1 4 ]
B _— - i .
e Qy/ A A B s - B
£Q Agriculture & Food = . . . Plastics
28 Link size and color (2002 billion $) Node size (2002 billion $)
£8 9 8 00 ..
S% 2001 204 >1 10 200\ 400 701 >1 >10 >100 =1,000
i " e e = B B ] ] @
> c 0 Rt o o
hy= g i 2 5 £ ¢ : 1
Q‘E [ 5 & =22 2 8 @ 3
RATH ] s g 5 ‘;‘? 8 3 g & 2 I
30 53§ ° gz I
iz :  f2 i
29 3 Fy
%‘g & o
w

!
|



PEZARNoDel Rrize InipinEles

Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi

For the discovery of the interplay of disorder and fluctuations in physical
systems from atomic to planetary scales.

For the physical modelling of Earth's climate, quantifying variability and
reliably predicting global warming

Land-use Volcanic Dynamic Ocean circula- @Atmospheric A B
change eruptions & ] vegetation tion, ocean chemistry
R [§ terrestrial chemistr
Non-CO, GHG FAerosol , = E=f ecosystems weatherig{g Albedo, land
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reserves tion 14. Changes in
other climate
12. Invest- 13. Fuel price Gt plles
ments in new
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L — T

https://petterhol.me/202 |/10/06/faraway-so-close-nobel-prize-to-complex-systems/



WHO /¢

* Network scientists:
» Physicists
» Computer scientists
» Mathematicians
» Sociologists
» => Work on similar problems, with converging vocabularies and references

- Applied network scientists

» Geographers, biologists, social scientists, economists, etc.
» =>Experts of I)their domain, and i)complex networks analysis



e CONCLUCHS

» Complex Network Analysis is/should be/will become (iIn my
opinion) one of the basic tools of the modern scientist (and
Data scientist), much as statistics.



A BRIEF HISTORY



. BRIEF RIS TORE

» Graph theory:| /36 - Euler and the bridges of konigsberg

THE BRIDGES OF KONIGSBERG

Can one walk across

the seven bridges and

never cross the same
bridge twice?




B DRIEF HIS TORS

THE BRIDGES OF KONIGSBERG

Answer: No




& DRIEF HIS TORS

* Social networks: 1934 - |lacob Moreno
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KEY PUBLICATIONS

1998: Wiatts & Strogatz - Small-World:
» 2nd Most cited paper of the year in Nature

|999: Barabasi & Albert - scale-free networks:

» Most cited paper of the year in Science

2002: Girvan & Newman - Community detection:

»  Most cited paper of the year in PNAS

2004: Barabasi & Oltvai - Network Biology:

» Most cited paper (ever) in Nature genetics

2010: Kwak et al. - What is Twitter; a Social Network or a News Media?
» Most cited paper (ever) of the WWWV conference

(As of 2076



Materials

Lecture books

omrighted Material A Dpyvighage ot iy Copyrighted Material
— H . L 8§ b | ORKS Filippo Menczer, Santo Fortunato
Dynamical Processes on ] NETWORK and Clayton A. Davis
Complex Networks SR AFi A
Alain Barrat, Marc Barthélemy, Alessandro Vespignani E CROWDS IfSt COUTSB |n
! LA
® 24 ano MARKETS
\/ ALY ~ ., SCIENCE
._ . ° Reasoning about a Highly Connected World < .
.\ \ ® Py g ) o ES
Mark o '.,.,\.';s*/. ° = DAVID EASLEY IR . o °
Newman RN ) o ind gt e P,
¢ © % JON KLEINBERG :

Albert-Laszl6 Barabasi

SCIENCE

CAMBRIDGE

available free online available free online

Reviews

h . 4 . Physics Reports 486 (2010) 75-174
SIAM REVIEW (©) 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 167-256

Contents lists available at ScienceDirect

Contents lists available at ScienceDirect

Physics Reports

The Structure and Function of Physics Reports
Complex Networks* ER journal homepage: www.elsevier.com/locate/physrep

journal homepage: www.elsevier.com/locate/physrep

3 ;
S Community detection in graphs Spatial networks

Santo Fortunato * Marc Barthélemy *

Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I, Italy

REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002

Contents lists available at ScienceDirect
Statistical mechanics of complex networks

Physics Reports 519 (2012) 97-125

Physics Reports
Réka Albert* and Albert-LaszI6 Barabasi

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/physrep

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The structure and dynamics of multilayer networks
Characterization and Modeling of weighted

sa,bx : q@ s de i~ figh
Temporal networks S. Boccaletti*>*, G. iBlancom R Cdneado , Cl del Gen}lg) : hy
networks J. Gomez-Gardefies', M. Romance ¢, I. Sendifia-Nadal’¢, Z. Wang ",
Petter Holme #P<*, Jari Saramki 4 M. Zanin ™"
2 IceLab, Department of Physics, Umea University, 901 87 Umed, Sweden
b Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
© Department of Sociology, Stockholm University, 106 91 Stockholm, Sweden
7 . 9 Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, 00076 Aalto, Espoo, Finland
Marc Barthélemy!, Alain Barrat?, Romualdo Pastor-Satorras®,

and Alessandro Vespignani?

...and many more...all of them on arXiv.org!


http://arXiv.org

Materials

Pop-science books

"Actgssibla and engaging A good introdustion to the topic.” —Nature

S1X
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Albert-Laszlo
Barabasi
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g ) \ {H

e e
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THE SCIENCEOF
A-CONNECTED AGE

WITH ATNEW,CHAPTER

DUNCAN 'Ju WATTS

' How Everything is Connected to Everything Else

~—KIRKUS REVIEWS

r r r -
Albert-Laszlo Barabasi
NICHOLAS A. CHRISTAKIS, MD, PhD

AND JAMES H. FOWLER, PhD I

Guido Caldarelli & Michele Catanzaro

NETWORKS
A Very Short |lj|tl'0gl{?ti0n — “’." ;
i > *

_
Connecdcted
THE UNIVERSAL

The Surprising Power of Our Social Networks LAws 0 F s u c c Es s

and How They Shape Our Lives

< THE SCIENCE BENIND WHY PLOPLE SUCCEED O FAILD
OXFORD

Copyrighted Material Cagyrightd Matorol

I have a copy I can lend



Materials

Specific Journals

Volume 1 Number2 December 2013 ISSN 2051-1310 (PRINT)
ISSN 2051-1329 (ONLIINE)

VOL. 1 » 2013 « NO. 1

—— Joljgelie]
Complex Networks

€10z Jequieoaq g JequinN | SWn|oA

3ONIIDS JYOMLIN

Applied
Network

Science

Editors-in-Chief:
Hocine Cherifi- Ronaldo Menezes

SHOMEN XSIAUIOD) JO [OUINOP

L Y n

@I0IXO

A N2 X AMBRIDGE | :
www.comnet.oxfordjournals.org OXFORD it O 7 - S:NIVERSITYPRESS ".‘" @_ SPrlngel’Open

UNIVERSITY PRESS

NUIAEK2ILX HEE22



CONFERENCES

* NetScl, NetScal X - The Network Science Soclety (Since 2006)

* International Conference on Complex Networks and their
Applications (Since 201 [)

» CompleNet - International Conference on Complex
Networks (Since 2009)

S rance:

» MARAMI (Modeles & Analyse des Reseaux : Approches Mathématiques &
Informatiques) (Since 2009)



PROGRAM

Day Time Room Group Topic Resources

Tuesday Nov.16  8h00-10h00 B All Introduction, Describing Networks

Thursday Nov. 18 10h15-12h15 C All Centralities, Gephi, networkx intro

Tuesday Nov. 23 08h00-10h00 B All Teacher: Christophe Crespelle. Phase transition in ER random graphs
Thursday Nov. 25 8h00-10h00 C CSonly (practicals)Data to Network: Scientometric Networks PDF

Thursday Nov. 25 10h15-12h15 C All Random Graph Models Il, Community Structure

Tuesday Nov. 30 08h00-10h00 B All Teacher: Christophe Crespelle. Community detection algorithms.
Thursday Dec. 2 8h00-10h00 C CSonly (practicals)Data to Network: Movies PDF

Thursday Dec. 2 10:15-12:15 C All Community Evaluation, Hypergraphs, Multigraphs, etc.

Tuesday Dec.7 08h00-10h00 B All Visualization - Assortativity

Thursday Dec. 9 8h00-10h00 C CSonly (practicals)Data to Network: Project

Thursday Dec. 9 10h15-12h15 C All Dynamic Networks

Tuesday Dec. 14 8h00-10h00 B All Spatial Networks

Thursday Dec. 16 8h00-10h00 C CSonly (practicals)Data to Network: Project + Optional

Thursday Dec. 16 10h15-12h15 C All Spreading Processes

Tuesday Jan.4  8h00-10h00 B All Machine Learning on graphs (Link Prediction, Node Classification)
Thursday Jan.6 10h15-12h15 C All End of article presentations

Tuesday Jan.11  8h00-10h00 B Info only Teacher: Christophe Crespelle. Betweenness centrality and graph editing

Thursday Jan. 13 10h15-12h15 B1 Info only Graph Embedding
Tuesday Jan.18 8h00-10h00 B Info only Graph Convolutional Networks
Thursday Jan. 20 10h15-12h15 B1 Info only TBA




INTERNSHIPS

Graph Analysis for illegal activity tracking in Brtcoin
transaction network

http://cazabetremy.fr/rRessources/Brtcoin_Internship.pdf

Contact me before the end of the week !



GRAPHS & NETWORKS



GRAPHS & NETWORKS

Network often refers to real systems
" WWW,

»social network

* metabolic network.

- Language: (Network, node, link)

Graph is the mathematical
representation of a network
*Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

N

person | friendship

neuron | synapse
Website | hyperlink
company jownership
gene | regulation



GRAPH
REPRESENTATION



NETWORK REPRESEN TATIONS

Networks: Graph notation

Graph notation: G = (V, F)
Vv set of vertices/nodes.
E set of edges/links.
u eV a node.
(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V =1{1,2,3,4,5,6}
E={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5), (5,5), (4,3)}




NETWORK REPRESEN TATIONS

G — (V. L)

» Often encoded as edge list or adjacency list

« Software: custom data structure and p— r—

manipulation
» add_nodes([1,]]), add_edge(i,)), ...

3 2 4
44444
4 68

* Libraries in many languages
» Networkx (python)
» igraph (python, C, R)
» Graph-tools (python, C)




Types of
Networks



Undirected networks

Opte project

G=(V E)
(uv) €EE=(Hvu €L

* The directions of edges do
not matter

* Interactions are possible
between connected entities
In both directions

117
207.205.25!

The Internet: Nodes - routers, Links - physical wires



Directed networks

Moritz Stefaner, eigenfactor.com

G=(V E)
(u,v) EE =z (vu) €EE

* The directions of
edges matter

* Interactions are
possible between
connected entities
only in specified
directions

\ Citation network: Nodes - publications, Links - references



http://eigenfactor.com

Weighted networks

Onnela et.al. New Journal of Physics 9, 179 (2007).

G=(V E, w)
w: (u,v) EE=R

- Strength of
Interactions are
assigned by the
weight of links

o
a¥-e
So00!

®e

Social interaction network: Nodes - individuals
Links - social interactions




Bipartite network

® O

Disease
Gene
Up-reg.
Dn-reg.

<

P AP o 0

2881

. Emﬂh 62

Genes (mostly up-regulated) by
SLE, FSGS, and MGN

Genes (mostly down-regulated) by
SLE, FSGS, MGN, and IgAN

" |gAN /
=2 /AN SN
Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3

Gene-desease network:
Nodes - Desease (7)&Genes (747)
G=(U, V, E) Links - gene-desease relationship

GaYy—o
Vuv)EE ucUandveEV



Multiplex and multilayer networks

G=(V E), i=1..M

* Nodes can be present in
multiple networks
simultaneously

* These networks are
connected (can influence
each other) via the
common nodes

=

=

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

[Mendez-Bermudez et al. 2017]



Temporal and evolving networks
G=(V, Ey), (uvt,d) € E;

t - time of interaction (u,Vv)
d - duration of interaction (u,v,t)

* Temporal links encode time varying interactions

G=(Vs, Er)
v(t) €V
(M,V,O EEt

» Dynamical nodes and
links encode the
evolution of the
network

Mobile communication network
Nodes - individuals
Links - calls and SMS



NETWORK REPRESEN TATIONS

Node-Edge description

Neighbourhood of u, nodes sharing a link with w.

Degree of u, number of neighbors | N, |.

Successors of u, nodes such as (u,v) € FE in a directed
graph

Predecessors of u, nodes such as (v, u) € FE in a directed
graph

Out-degree of u, number of outgoing edges | N2**|.
In-degree of u, number of incoming edges | N" |

Weight of edge (u, v).

Strength of u, sum of weights of adjacent edges, s, =

Dy Wuw.




Node degree

Number of connections of a node
« Undirected network

* Directed network

2 0
1 \
In degree

1 1

1
. N\,
Out degree




Weighted degree: strength




BESCRIPTION OF GRAFES



DESCRIPTION OF GRAPHS

* When confronted with a graph, how to describe it/
* How to compare graphs?

* What can we say about a graph!?



o Vi

Counting nodes and edges

size: number of nodes |V |.
number of edges | E|
Maximum number of links

N
2

Undirected network: (

— N(N —1)/2
)

Directed network: (




Wikipedia HL
Twitter 2015
Facebook 2015
Brain c. Elegans
Roads US
Airport traffic

o Vi

#nodes (n)

#edges (m)




DENSITY

Network descriptors - Nodes/Edges

Average degree: Real networks are sparse, I.e., typ-
ically (k) < n. Increases slowly with network size,
e.g., (k) ~ log(m)“

Density: Fraction of pairs of hodes connected by an
edge in G.

d = L/Lmax

9Leskovec, Kleinberg, and Faloutsos 2005.




DENSITY

#nodes | #edges | Density |
Wikipedia  1.5x105 30

.........................................................................................................................................................................

Twitter 2015 O 6 416

.........................................................................................................................................................................

Facebook | | 5 - | 570

Brain c. | 46

.........................................................................................................................................................................

Roads Calif. . - D7

.........................................................................................................................................................................

Airport | 21

Beware: density hard to compare between
oraphs of different sizes




DENSITY

* [t has been observed that:

» When graphs increase In size, the average degree increases
- (Density on the contrary, decreases)
» This increase Is very slow

* Think of friends In a social network

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations." Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining. 2005.
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Broido, Anna D., and Aaron Clauset. "Scale-free networks are rare." Nature communications 10.1 (2019): 1-10.



DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

>

P(V) (humber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)



DEGREE DISTRIBUTION

* In a fully random graph (Erdos-Renyi), degree distribution is
(close to) a normal distribution centered on the average
degree

* In real graphs, In general, it I1s not the case:

» A high majority of small degree nodes
» A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law
» More detalls later in the course



SUBGRAPHS

Subgraphs

Subgraph H (W) (induced subgraph): subset of nodes W of a graph
G = (V, E) and edges connecting them in G, i.e, subgraph H(W) =
(W,E",W C V,(u,v) € B/ < u,ve WA (u,v) €E

Clique: subgraph with d = 1

Triangle: clique of size 3
Connected component. a subgraph in which any two vertices are con- @
nected to each other by paths, and which is connected to no additional ver-

tices in the supergraph @
Strongly Connected component: In directed networks, a subgraph in which

any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which Figure after Newman, 2010
any two vertices are connected to each other by paths if we disregard di-

rections

/O
SRS @ Nodes/Edges
O—0 ‘ __ | Inthe subgraph

.

original graph

not an induced subgraph

After “A. DZY Loves Physics”



CLUSTERING COEFFICIENT

* Clustering coefficient or triadic closure

* Iriangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles Is a big difference between real and random networks



CLUSTERING COEFFICIENT

Triangles counting

9., - triads of u: number of triangles containing node u
A - number of triangles in the graph total number of triangles in the graph,

A = % D uey Ou

Each triangle in the graph is counted as a triad once by each of its nodes.

6, - - triads potential of u: maximum number of triangles that could exist

around node u, given its degree: §,'** = 7(u) = (kg)

A™** - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: A™#* = £ 3~ . §™%*(u)




CLUSTERING COEFFICIENT

C'.. - Node clustering coefficient: density of the subgraph induced by the

neighborhood of u, C',, = d(H (N, ). Also interpreted as the fraction of all

possible triangles in N, that exist, %

u

O
U O Triangles=2
4
Possible triangles= <2> =6
Edges: 2 C,=2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3




EEUS | ERING COERFICIERNSS

(C') - Average clustermg coefficient: Average clustering coefficient of all
nodes in the graph, C = + > uwecv C

Be careful when interpreting this value, since all hodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C' value is very sensitive, i.e., for a node u of de-
gree 2, C,, € 0,1, while nodes of higher degrees tend to
have more contrasted scores.

C'9 - Global clustering coefficient: Fraction of all possible triangles in the

graph that do exist, C9 = <35



CLUSTERING COEFFICIENT

@ lopal CC:

» In random networks, GCC = density
- =>very small for large graphs

Network Size (k) C Crand Reference
WWW, site level, undir. 8187 )] 35.21 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 ).18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225206 61 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 043 1.8X10°* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 0.066 1.1x10> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 0.496 3%X10°* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 059 5.4x107° Barabasi et al., 2001
Neurosci. co-authorship 209 293 51 ULgE 1 Sl ? Barabasi e al., 2001
E. coli, substrate graph 282 T 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph Sl o8 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 Sl 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 22 311 13.48 U7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Rl RELAITED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

¢, .- Distance: The distance between nodes wu, v is the length of the short-
est path




All shortest path algorithm

finding shortest paths in a weighted graph with positive or negative edge weights
(but with no negative cycles)

proc FloydWarshall(G=(V,E,w))
1 // let dist be a |V| x |V| array of minimum distances initialized to ® (infinity)
2 for each edge (u,v)
3 dist[u][Vv] « w(u,v) // the weight of the edge (u,v)
for each vertex v
dist[v][Vv] « O
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][]]
dist[i][j] « dist[i][k] + dist[k][]j]
end if

=0: k=1: k = 4:
Checking and updating all paths going @i@ @_‘L@ﬁ@‘ ‘i‘i@
through nodes k=1, 2, 3, ... , N by @

assuming that:

shp(i.j,k)=
min(shp(i,j,k-1)), shp(i,k,k-1)+shp(k,j,k-1))

P WO 00 J O U &

= O

Complexity: O(n3)




PATH RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
W = n(n — 1) ;dij




AVERAGE PATH LENGITH

* The famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

* Not too sensible to noise

» Tells you If the network Is “'stretched” or “hairball” like



SIDE-STORY: MILGRAM
EAPERIMENTS

B lROrid experiment (60's) | EEEEEEEE \

' ' : North Dakota y
» Give a (physical) mail to random people T

» Ask them to send to someone they don't know =
- They know his city, job

» They send to their most relevant contact

* Results: In average, 6 hops to arrive

Texas




SIDE-STORY: MILGRAM
EAXPERIMENTS

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web



SIDE-STORY: MILGRAM
EAXPERIMENTS
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SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

+ Average distance must be short, i.e., (£) =~ log(N)

-+ Clustering coefficient must be high, i.e.,, much larger than in a ran-
dom network , e.g., C? > d, with d the network density

More on this during the random network class



BORE-PERIPHERY : CORENESS

Goal: To identify dense cores of high degree nodes in networks

Cores and Shells

Many real networks are known to have a core-periphery structure, ie,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest subgraph
H(C) such as all nodes have at least a degree k, ie, Vu € C, k7 < E,

withk T the degree of node w in subgraph H. 2 A k'Core Of G can be Obtained

fr?erinisi:_é);/ee.rtex u has coreness k if it belongs to the k-core but not to by recy rSively remOVi ng a” the
c-shell: all vertices whose coreness is exactly c. Vertices Of deg ree |eSS than k

until all vertices in the remaining
graph have at least degree k.

® 1-shell @® 2-shell ® 3-shell




TRIADS COUNTING
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TRIADS COUNTING

—e— Anomalous group (18 countries)
—e— Majority group (166 countries)
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3- node graphlets
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GRAPHS AS
PIATRICES

Matrices in short

Matrices are mathematical objects that can be thought as tables of hum-

bers. The size of a matrix is expressed as m X n, for a matrix with m rows
and n columns. The order (row/column) is important.
M, ; is a notation representing the element on row m and column j.




AD|ACENCY MATRIX

The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is defined as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from 1to IV, and there is an
edge between nodes ¢ and j if the corresponding position of the matrix A; ;
is not 0.

- A value on the diagonal means that the corresponding node has a
self-loop

- the graph is undirected, the matrix is symmetric: A;; = A;; forany
i,7.
-+ In an unweighted network, and edge is represented by the value 1.

- In a weighted network, the value A;; represents the weight of the
edge (4, 5)

A - Adjacency Mat.

(O 1 0 0 1 1\
1 0 1 1 1 1
O 1 0 1 0 O
0O 1 1 0 0 O
1 1 0 0 1 1
\1 1 0 0 1 O/




ADJACENCY MATRIX

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

Multiplying A by itself allows to know the number of walks of a given length
that exist between any pair of nodes: Afj corresponds to the number of

walks of length 2 from node i to node j, Afj to the number of walks of
length 3, etc.

Multiplying A by a column vector W of length 1 x N can be thought as
setting the ¢ th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W. This is convenient when working with random walks
or diffusion phenomenon.

Graph

A - Adjacency Mat.

0O 1 0 O 1 1
1 01 1 1 1
0O 1 0 1 0 O
0O 1 1 0 0 O
1 1 0 0 1 1
1 1 0 0 1 O

A2
3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3



LAPLACIAN

Graph Laplacian

The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Ad-
jacency matrix, often used in Graph theory and Spectral Graph Theory.
It is defined as D — A, with D the Degree matrix of the graph, defined as a

N x N matrix with D;; = k; and zeros everywhere else.

Intuitively, Laplace operator is a generalization of the second derivative, and
Is defined in discrete situations, for each value, as the sum of differences be-
tween the value and its "neighbors". e.g., in time, the 2" derivative accelera-
tion is the difference between current speed and previous speed. In a B&W
picture, it's the difference between the greylevel on current pixel and the
greylevel of 4 or 8 closest pixels, and perform edge detection. On a graph,
with W a column vector representing values on nodes, LW computes for

each node the difference to neighbors.

Graph A - Adjacency Mat.
0 1 0 0 1
1 0 1 1 1
01 0 1 0
0 1 1 0 O
1 1 0 0 1
1 1 0 0 1

O OO = =

D - Degree Matrix

3
0
0
0
0

\o

o OO o oto

S oo N OO

SO NO OO

O OO OO O

0
0
0
0

0
3

L - Laplacian

/3—10 0—1—1\

—1-1-1-1
0 -12-10 O
0O -1-12 0 O
-1-10 0 4 -1
\1—10 0O -1 3




SPECTRAL GRAPH THEORY

Spectral Graph Theory is a whole field in itself, and beyond the
scope of this class. A few elements for those with a linear algebra
background:

- The adjacency matrix of an undirected simple graph is
symmetric, and therefore has a complete set of real eigen-
values and an orthogonal eigenvector basis.

- The set of eigenvalues of a graph is the spectrum of the
graph.

- Eigenvalues are denotedas \g < A1 < X2 < ... A\p

- The largest eigenvalue \g lies between the average and
maximum degrees

- The number of closed walks of length k in G equals
>0 Af

- A graph is bipartite if and only if its spectrum is symmetric
(ie., if Ais an eigenvalue, then sois — A

+ If G is connected, then the diameter of G is strictly less
than its number of distinct eigenvalues




SPECTRAL GRAPH THEORY

Spectral properties of L

Eigenvalues of the Laplacian have many applications, such as spectral clsu-
tering, graph matching, embedding, etc. Assuming G undirected with eigen-
values A\g < A1 < Ay < ...\, here are some interesting properties:

- The smallest eigenvalue \; equals O

- The number of O eigenvalues gives the number of connected com-
ponents




RANDOM WALK
MATRIX

Random Walk matrix

Another useful matrix of a graph is the Random Walk Transition Matrix R.

It is the column normalized version of the adjacency matrix. R;; can be un-
derstood as the probability for a random walker located on node 7 to move
to 3.

Graph A - Adjacency Mat. Random W. mat.
1 1 1
01 0 0 1 1 (05 9 9 1 3)
1 0 1 1 1 1 Il gll11

0 1 0 1 0 0 1,1
0 1 1 0 0 0 5 02 00
\1 1 0 0 1 1) 0 £ 5000

1 1. 0 0 1 0

L1004
\! Lo oo



EXEMPLE OF GRAPH
FUNALTSIS

» Source: [ The Anatomy of the Facebook Social Graph, Ugander
st a2l 2400 HE

» The Facebook friendship network in 201 |



EXEMPLE OF GRAPH
FUNALTSIS

» /21 M users (nodes) (active in the last 28 days)
e cdoes
» Average degree: |90 (average # friends)

B dldnidecree: 99

B shinccied component: 99.9 1 7%



EXEMPLE OF GRAPH
FUNALTSIS
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Fract
1e-07 1e-05 1e-03 1e-01

Degree distribution



EXEMPLE OF GRAPH
FUNALTSIS
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Fraction
0.00 0.05 0.10 0.15 0.20

EXEMPLE OF GRAPH
FUNALTSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

(More ReXiaEE

20 40 60 80 100
Neighbor’s age




EXEMPLE OF GRAPH
FINALTSIS
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EXEMPLE OF GRAPH
ANALYS\S

g%

Country similarity

84.2% percent of edges are

within countries

(More In the comirmiSiiis
detection class)




