Lecture 5 - Community detection algorithms
Girvan-Newman, Louvain, Leiden

Autumn 2021 - ENS Lyon

Christophe Crespelle
christophe.crespelle@ens-lyon.fr
Communities in complex networks

What is a community?

“Moral” definition

- A group of nodes that share something...
 - People with a common interest
 - Web pages with similar content
 - Proteins realising a common function
Communities in complex networks

What is a community?
”Moral” definition
- A group of nodes that share something...
 - People with a common interest
 - Web pages with similar content
 - Proteins realising a common function
- ... that makes them be in relationship in the network!

Political blogs in US
Languages in Belgium
Communities in complex networks

What is a community?

Structural definition

- A highly connected group of nodes
Communities in complex networks

What is a community?

Structural definition

- A highly connected group of nodes
 - Density inside the community much higher than global density of the network
Communities in complex networks

What is a community?

Structural definition

- A highly connected group of nodes
 - Density inside the community much higher than global density of the network
 - Only few edges toward the rest of the network
Types of structural communities

- **Partition of the nodes** into dense parts sparsely connected between them
 - High density inside communities
 - Few edges between communities
Types of structural communities

• Partition of the nodes into dense parts sparsely connected between them
 ▶ High density inside communities
 ▶ Few edges between communities

• Overlapping communities
 A node can belong to several communities
 ▶ more realistic
 ▶ problem: how to separate communities?
Types of structural communities

- Partition of the nodes into dense parts sparsely connected between them
 - High density inside communities
 - Few edges between communities

- Overlapping communities
 A node can belong to several communities
 - More realistic
 - Problem: how to separate communities?

- Partition of the links
 - A link belongs to exactly one community
 - A node can have links in different communities
Partition of the nodes

Various approaches, among them:
- random walks
- spectral methods
- hierarchical clustering
- divisive methods
- Louvain, Leiden
Partition of the nodes

Various approaches, among them:

- random walks
- spectral methods
- hierarchical clustering
- **divisive methods**
- **Louvain, Leiden**
Partition of the nodes

Various approaches, among them:

- random walks
- spectral methods
- hierarchical clustering
- divisive methods
- **Louvain**, Leiden
Divisive approach: Girvan & Newman 2002

The idea:

1. identify inter-community links
2. remove them
How to identify inter-community links?

- Betweenness centrality of links

 \[C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}} \]

 where

 - \(\sigma_{st} = \# \) shortest paths from \(s \) to \(t \)
 - \(\sigma_{st}(e) = \# \) shortest paths from \(s \) to \(t \) containing \(e \)
How to identify inter-community links?

- Betweenness centrality of links
 \[C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}} \]

 - \(\sigma_{st} = \# \) shortest paths from \(s \) to \(t \)
 - \(\sigma_{st}(e) = \# \) shortest paths from \(s \) to \(t \) containing \(e \)

 - high betweenness \(\iff \) \(e \) is on a high proportion of shortest paths for a high proportion of pairs of nodes
How to identify inter-community links?

- Betweenness centrality of links

 \[C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}} \]
 where

 - \(\sigma_{st} = \# \) shortest paths from \(s \) to \(t \)
 - \(\sigma_{st}(e) = \# \) shortest paths from \(s \) to \(t \) containing \(e \)

 - high betweenness \(\iff \) \(e \) is on a high proportion of shortest paths for a high proportion of pairs of nodes

\[\frac{1}{2} + \frac{1}{2} = 2.5 \]
How to identify inter-community links?

- Betweenness centrality of links

 \[C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}} \]

 where

 - \(\sigma_{st} = \# \) shortest paths from \(s \) to \(t \)
 - \(\sigma_{st}(e) = \# \) shortest paths from \(s \) to \(t \) containing \(e \)

 - high betweenness \(\iff \) \(e \) is on a high proportion of shortest paths for a high proportion of pairs of nodes
The algorithm

- Algo Girvan-Newman(G)
 1. Compute the betweenness centrality of all links e of G
The algorithm (?)

- Algo Girvan-Newman\((G)\)
 1. Compute the betweenness centrality of all links \(e\) of \(G\)
 2. for all links \(e\) in decreasing betweenness centrality do
The algorithm (?)

• Algo Girvan-Newman(G)
 1. Compute the betweenness centrality of all links e of G
 2. for all links e in decreasing betweenness centrality do
 ▶ remove e from G
The algorithm (?)

- Algo Girvan-Newman(G)
 1. Compute the betweenness centrality of all links e of G
 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G
The algorithm (Girvan-Newman)

- Algo Girvan-Newman(G)
 1. Compute the betweenness centrality of all links e of G
 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G
 3. output the dendogram of G
The algorithm

- Algo Girvan-Newman(G)
 1. Compute the betweenness centrality of all links e of G
 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G
 3. output the dendogram of G
The algorithm

- **Algo Girvan-Newman**(G)
 1. Compute the betweenness centrality of all links e of G
 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G
 - update the betweenness centrality of all links
 3. output the dendogram of G
The algorithm

- **Algo Girvan-Newman**(G)
 1. Compute the betweenness centrality of all links e of G
 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G \(O(m) \)
 - update the betweenness centrality of all links \(O(m^2) \)
 3. output the dendogram of G

- **Complexity**
 - betweenness for all links : \(O(nm) \)
 - connected components : \(O(m) \)
 - \(m \) iterations
 - Overall : \(O(nm^2) \)

\(n = 10^9 \) \(m = 10^5 \)
The Louvain algorithm

- Idea: optimize a quality function for node partitions

 ▶ modularity: maximize(\(\#\text{edges inside} - \#\text{edges outside}\))
 \(\iff\) maximize(\(\#\text{edges inside}\))
The Louvain algorithm

- Idea: optimize a quality function for node partitions

- Modularity: \[\text{maximize}(\text{#edges inside} - \text{#edges outside}) \]
 \[\Leftrightarrow \text{maximize}(\text{#edges inside}) \]

- Problem... the best partition is a single community!!!
The Louvain algorithm

- Idea: optimize a quality function for node partitions

 - modularity: \(\text{maximize}(\#\text{edges inside} - \#\text{edges outside}) \)
 \(\Leftrightarrow \text{maximize}(\#\text{edges inside}) \)

- Problem... the best partition is a single community!!!

- Correction: compare to a randomized version of the network

Original network vs configuration model
Modularity

- Proportion of edges inside communities

\[Q = \sum_{i} \left(\frac{k_i}{2m} \right) \gamma_{i} \delta(c_i, c_j) \]

- \(A \): the adjacency matrix of \(G \)
- \(k_i \): the degree of node \(i \)
- \(c_i \): the community of node \(i \)
- \(\delta \) is the Kronecker symbol: \(\delta(c_i, c_j) = 1 \) iff \(c_i = c_j \)
- \(=0 \) otherwise
Modularity

- Proportion of edges inside communities

 A the adjacency matrix of G
 k_i the degree of node i
 c_i the community of node i
 δ is the Kronecker symbol: $\delta(c_i, c_j) = 1$ iff $c_i = c_j$

 $\frac{1}{2m} \sum_{i,j \in V} A_{ij} \delta(c_i, c_j)$ where

original network

configuration model
Modularity

original network

- Proportion of edges inside communities

\[A \text{ the adjacency matrix of } G \]
\[k_i \text{ the degree of node } i \]
\[c_i \text{ the community of node } i \]
\[\delta \text{ is the Kronecker symbol: } \delta(c_i, c_j) = 1 \text{ iff } c_i = c_j \]

- In the original network: \[\frac{1}{2m} \sum_{i,j \in V} A_{ij} \delta(c_i, c_j) \]

- In the configuration model: \[\frac{1}{2m} \sum_{i,j \in V} \frac{k_i k_j}{2m} \delta(c_i, c_j) \]
Modularity

• Proportion of edges inside communities

\[A \text{ the adjacency matrix of } G \]
\[k_i \text{ the degree of node } i \]
\[c_i \text{ the community of node } i \]
\[\delta \text{ is the Kronecker symbol: } \delta(c_i, c_j) = 1 \text{ iff } c_i = c_j \]

- In the original network:
 \[\frac{1}{2m} \sum_{i,j \in V} A_{ij} \delta(c_i, c_j) \]

- In the configuration model:
 \[\frac{1}{2m} \sum_{i,j \in V} k_i k_j \delta(c_i, c_j) \]

• modularity: \[Q(P) = \frac{1}{2m} \sum_{i,j \in V} [A_{ij} - \frac{k_i k_j}{2m}] \delta(c_i, c_j) \]
 \[= \frac{1}{2m} \sum_{c \in P} [e_c - \frac{\delta_c^2}{2m}] \]
Modularity

- Proportion of edges inside communities

\[A \] the adjacency matrix of \(G \)
\(k_i \) the degree of node \(i \)
\(c_i \) the community of node \(i \)
\(\delta \) is the Kronecker symbol: \(\delta(c_i, c_j) = 1 \) iff \(c_i = c_j \)

- In the original network:
 \[\frac{1}{2m} \sum_{i,j \in V} A_{ij} \delta(c_i, c_j) \]

- In the configuration model:
 \[\frac{1}{2m} \sum_{i,j \in V} \frac{k_i k_j}{2m} \delta(c_i, c_j) \]

- Modularity:
 \[Q(\mathcal{P}) = \frac{1}{2m} \sum_{i,j \in V} [A_{ij} - \frac{k_i k_j}{2m}] \delta(c_i, c_j) \]
 \[= \frac{1}{2m} \sum_{c \in \mathcal{P}} [e_c - \frac{a_c^2}{2m}] \]

- NP-hard to maximize modularity
Utility of modularity

• Come back to the dendrogram produced by Girvan-Newman
Other quality functions

• Distance to cluster graphs

$$\text{dist-cluster}(P) = \#\text{missing edges inside} + \#\text{edges outside}$$
Other quality functions

- Distance to cluster graphs

\[\text{dist-cluster}(\mathcal{P}) = \#\text{missing edges inside} + \#\text{edges outside} \]

- \textbf{NP-hard} to minimize distance to cluster graphs
Other quality functions

- **Distance to cluster graphs**

 \[\text{dist-cluster}(\mathcal{P}) = \#\text{missing edges inside} + \#\text{edges outside} \]

 NP-hard to minimize distance to cluster graphs

- **Constant Potts Model**

 \[\text{CPM}(\mathcal{P}) = \sum_c [e_c - \gamma \left(\binom{n_c}{2} \right)] \]

 where \(e_c = \# \text{ edges inside community } c \)

 and \(n_c = \# \text{ nodes in community } c \)

 \(\gamma \) is a chosen constant \(\leq 1 \)
Other quality functions

- Distance to cluster graphs
 \[\text{dist-cluster}(\mathcal{P}) = \# \text{missing edges inside} + \# \text{edges outside} \]
 \(\text{NP-hard} \) to minimize distance to cluster graphs

- Constant Potts Model
 \[\text{CPM}(\mathcal{P}) = \sum_c [e_c - \gamma \binom{n_c}{2}] \]
 where \(e_c = \# \text{ edges inside community } c \)
 and \(n_c = \# \text{ nodes in community } c \)
 \(\gamma \) is a chosen constant \(\leq 1 \)
 for \(\gamma = 0 \)?
Other quality functions

- Distance to cluster graphs
 - $\text{dist-cluster}(\mathcal{P}) = \# \text{missing edges inside} + \# \text{edges outside}$
 - NP-hard to minimize distance to cluster graphs

- Constant Potts Model
 - $\text{CPM}(\mathcal{P}) = \sum_c [e_c - \gamma \binom{n_c}{2}]$
 - where $e_c = \# \text{edges inside community } c$
 - and $n_c = \# \text{nodes in community } c$
 - γ is a chosen constant ≤ 1
 - for $\gamma = 0$ → all the nodes connected
 - for $\gamma = 1$ → all the nodes isolated.
Other quality functions

- **Distance to cluster graphs**

 \[\text{dist-cluster}(\mathcal{P}) = \# \text{missing edges inside} + \# \text{edges outside} \]

 NP-hard to minimize distance to cluster graphs

- **Constant Potts Model**

 \[\text{CPM}(\mathcal{P}) = \sum_c [e_c - \gamma \left(\frac{n_c}{2} \right)] \]

 where \(e_c = \# \text{edges inside community } c \)

 and \(n_c = \# \text{nodes in community } c \)

 \(\gamma \) is a chosen constant \(\leq 1 \)

 - for \(\gamma = 0 \)?
 - for \(\gamma = 1 \)?
 - for \(\gamma = 1/2 \)?
Is modularity a good quality function?

- Resolution issue: tends to make too large communities
Is modularity a good quality function?

- Resolution issue: tends to make too large communities
 Example: ring of p copies of a k-clique ($n = p \cdot k$)
Is modularity a good quality function?

- Resolution issue: tends to make too large communities
 Example: ring of p copies of a k-clique ($n = p \cdot k$)

\[\mathcal{P}_a = \text{the cliques} \]
Is modularity a good quality function?

- Resolution issue: tends to make too large communities
 Example: ring of p copies of a k-clique ($n = p.k$)

$$\mathcal{P}_a = \text{the cliques}$$

$$\mathcal{P}_b = \text{the cliques grouped by two}$$
Is modularity a good quality function?

- Resolution issue: tends to make too large communities
 Example: ring of p copies of a k-clique ($n = p.k$)

$\mathcal{P}_a = \text{the cliques}$

$\mathcal{P}_b = \text{the cliques grouped by two}$

Which one is "morally" the best community partition?
Is modularity a good quality function?

- Resolution issue: tends to make too large communities
 Example: ring of p copies of a k-clique ($n = p.k$)

$\mathcal{P}_a = \text{the cliques}$
$\mathcal{P}_b = \text{the cliques grouped by two}$

▸ Which one is "morally" the best community partition?
▸ Which one has higher modularity?
Louvain algorithm

• **Given a partition**, make a pass through all the vertices:
 ▶ consider each vertex x once in an arbitrary order
 ▶ move x to the community that gives the largest increase in modularity

$G \ (n=30,m=46)$
Louvain algorithm

- **Given a partition**, make a pass through all the vertices:
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity

 Obs.: non-neighbouring community is never the best

$G (n=30,m=46)$
Louvain algorithm

- **Given a partition**, make a pass through all the vertices:
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs.: non-neighbouring community is never the best
Louvain algorithm

- **Given a partition**, make a pass through all the vertices:
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs.: non-neighbouring community is never the best

Decompose the move:
- place x alone in its own community
- consider moving x to each neighbouring community

$G \ (n=30, m=46)$
Louvain algorithm

- **Given a partition**, make a pass through all the vertices:
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs.: non-neighbouring community is never the best

Decompose the move:
- place x alone in its own community
- consider moving x to each neighbouring community

$G \ (n=30, m=46)$

$$\Delta Q(C, i) = \left(\frac{eC + k_i}{2m} - \left(\frac{aC + k_i}{2m} \right)^2 \right) - \left(\frac{eC}{2m} - \left(\frac{aC}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right)$$
Louvain algorithm

- **Given a partition**, make a pass through all the vertices:
 - consider each vertex \(x \) once in an arbitrary order
 - move \(x \) to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move:
- place \(x \) alone in its own community
- consider moving \(x \) to each neighbouring community
Louvain algorithm

```
1 augmented ← true;
2 while augmented do
3     P₀ ← {{x} | x ∈ V(G)}; P ← P₀; Q ← 0;
4     while augmented do
5         augmented ← faux;
6         for i de 1 a n do
7             Qori ← Q;
8             i moves to c_iso = {i}; Q ← Q − ΔQ_out(i);
9             Q_max ← Q; c_max ← c_iso;
10            for c ∈ P do
11                if Q + ΔQ_in(c) > Q_max then
12                    Q_max ← Q + ΔQ_in(i, c);
13                    c_max ← c;
14                end
15            end
16            If Q_max = Qori then c_max ← c_ori else augmented ← true;
17            i moves to c_max; Q ← Q_max;
18        end
19    end
20    if P ≠ P₀ then augmented ← true; G ← G/P;
21 end
22 return {Expand(P) | P ∈ P};
```
Leiden algorithm

Two improvements over Louvain

• Complexity
Leiden algorithm

Two improvements over Louvain

- Complexity
 - Consider moving only vertices whose neighbours have moved
Leiden algorithm

Two improvements over Louvain

• Complexity
 ▶ Consider moving only vertices whose neighbours have moved
 ▶ Maintain a queue for them
Leiden algorithm

Two improvements over Louvain

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - Maintain a queue for them
 - Same worst case complexity, but better in practice
Leiden algorithm

Two improvements over Louvain

• Complexity
 ▶ Consider moving only vertices whose neighbours have moved
 ▶ Maintain a queue for them
 ▶ Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
Leiden algorithm

Two improvements over Louvain

• Complexity
 ▶ Consider moving only vertices whose neighbours have moved
 ▶ Maintain a queue for them
 ▶ Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
 ▶ Just before contracting communities, for each community
Leiden algorithm

Two improvements over Louvain

• Complexity
 ▶ Consider moving only vertices whose neighbours have moved
 ▶ Maintain a queue for them
 ▶ Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
 ▶ Just before contracting communities, for each community
 ▶ Place vertices alone in their own sub-community
Leiden algorithm

Two improvements over Louvain

• Complexity
 ▶ Consider moving only vertices whose neighbours have moved
 ▶ Maintain a queue for them
 ▶ Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
 ▶ Just before contracting communities, for each community
 ▶ Place vertices alone in their own sub-community
 ▶ Merge sub-communities that are strongly connected
Leiden algorithm

Two improvements over Louvain

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - Maintain a queue for them
 - Same worst case complexity, but better in practice

-Disconnected (or poorly connected) communities
 - Just before contracting communities, for each community
 - Place vertices alone in their own sub-community
 - Merge sub-communities that are strongly connected
 - Contract only the obtained sub-communities
Leiden algorithm

Two improvements over Louvain

• Complexity
 ▶ Consider moving only vertices whose neighbours have moved
 ▶ Maintain a queue for them
 ▶ Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
 ▶ Just before contracting communities, for each community
 ▶ Place vertices alone in their own sub-community
 ▶ Merge sub-communities that are strongly connected
 ▶ Contract only the obtained sub-communities
 ▶ At the next step start from the partition defined by the whole communities