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NETWORK VISUALIZATION

• How to interpret a network drawing?

• What does the position of nodes means?

• Can we draw conclusion from the drawing alone?



NETWORK VISUALIZATION
• Random layout

‣ Assign random positions to nodes, draw edges 
- Useless for more than 5-6 nodes

• Geographical layout
‣ The position of nodes is fixed a priori, often based on geographical location
‣ Variant: position nodes on a circle based on a single, 1D property (age…)



NETWORK VISUALIZATION
• Most commonly used: Automatic layout

‣ Non deterministic
‣ Tries to arrange nodes so that the network is easy to read and understand

- Minimize edge crossings?
- Most commonly, tries to put connected nodes close and unconnected nodes far



NETWORK VISUALIZATION
• Most common algorithms are variant of the force directed 

layout: physical system of bodies with forces acting on them.
‣ Objective: minimize the energy of the system.
‣ Fruchterman-Reingold: Spring+ repulsive forces
‣ Kamada-Kawai: Springs+length proportional to graph distance
‣ Gephi: Force Atlas (custom model)

• Principles of those models
‣ Repulsive forces between nodes
‣ Edges are attracting forces
‣ Minimal (to avoid node overlap) and maximal (to avoid connected component 

drifting out of the figure) distances can be added.



NETWORK VISUALIZATION

• Example: Kamada kawai

•
‣ : position of node, : graph distance 

• Energy of the system:
‣

f(i, j) = | |xi − xj | | − d(i, j)
xi d(i, j)

∑
i≠j

( | |xi − xj | | − d(i, j))2



NETWORK VISUALIZATION

• Naive algorithm:
‣ While (not converged)

- For each node, compute forces on it and update position accordingly

• Problem: repulsive forces are among all pairs of nodes
‣ Complexity 
‣ Solution: multiscale computations…

𝒪(n2)



NETWORK VISUALIZATION

https://people.cs.clemson.edu/~isafro/na13/l22.pdf



NETWORK VISUALIZATION

• More recently, approaches using graph embedding:

• Maximize similarity between a notion of distance in the graph 
and the distance in the drawing
‣ Graph distance can simply be number of hops, but also probability to reach by 

random walks, complex notion including communities, etc.



NETWORK VISUALIZATION
http://kwonoh.net/dgl/

Deep Neural networks

GAN(Generative Adversarial 
Networks) approach

To “generalise” several existing layouts

http://kwonoh.net/dgl/


NETWORK VISUALIZATION

• Can we interpret a force layout?
‣ Yes…



NETWORK VISUALIZATION
• Can we interpret a force layout?

‣ Yes…
‣ And no.



NETWORK VISUALIZATION
• Can we interpret a force layout?

‣ Yes…
‣ And no.



ASSORTATIVITY - HOMOPHILY



Homophily - Assortativity
"birds of a feather flock together"
• Property of (social) networks that nodes of the same attitude tends to be connected with 

a higher probability than expected

• It appears as correlation between vertex properties of x(i) and x(j) if (i,j)∈E

Vertex properties

• age
• gender
• nationality
• political beliefs
• socioeconomic status
• habitual place
• obesity
• …

Highschool network 

Colored by ethnic groups (J Moody)
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Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (high values
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
i a

2
i

1�
P

i a
2
i

where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total number of edges.

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.



Homophily - Assortative mixing

• Opposite of homophily: dissimilar nodes tend to be connected
Disassortativity - Heterophily

Examples
• Sexual/Sentimental 

networks
• Predator - prey 

ecological networks

"Opposites attract"



Homophily - Assortative mixing

• We can take into account…

• Categorical (Enumerative) attributes: vertex features which are comparable but not 
quantifiable (e.g., gender, ethnicity, colour(of goods to sell..), shape, etc.)

• Scalar attributes: vertex features which are comparable and sortable (age, weight, 
income, degree, …)

To quantify homophily



Homophily - Assortative mixing

Categorical attributes

No assortative mixing : r=0 ( )
Perfectly assortative: r=1

Assortative: r>0

eij = a2
i

: fraction of edges between nodes with same attributeseii

: fraction of all edges having at least an end with property i.
=>Sum of degrees of nodes with property i divided by L

ai
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Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (hig hvalues
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
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where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total (total population or
total number of edges).

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is linked to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii�
P

i aibi corresponds to the de�nition of theMod-
ularity, while 1 �

P
i aibi corresponds to the maximal value that

the Modularity could reach if all nodes were in the same commu-
nities.
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A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
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Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (high values
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
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where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).
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Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total number of edges.

Blood Types A AB B O ai
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Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.
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Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (hig hvalues
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.
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Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
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When the property for which we study homophily is categorical,
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that connect nodes of the same category, and the expected value
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where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).
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Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total (total population or
total number of edges).
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Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
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Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.
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Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).
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Homophily - Assortative mixing
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

with  standard deviation of σa ax

5

10 20 30 40 50

age of husband  [years]

10

20

30

40

ag
e 

of
 w

ife
  [

ye
ar

s]

-5 0 5 10 15 20 25

age difference  [years]

0

50

100

150

200

nu
m

be
r

FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

Pearson correlation coefficient of properties
at both extremities of edges

: fraction of edges joining nodes with values x and yexy

Numeric attributes

(Here, discrete version)



Limit of assortativity coefficient
Homophily for numeric variables

When the property for which we study homophily is numeric, ho-
mophily r can be de�ned as the Pearson Correlation Coe�cient
between values at both end of each edge. For details, see New-
man ����.

Numeric Assortativity index - Properties

Homophily r = 0means that the network has no assortative mix-
ing, r > 0 corresponds to an assortative network (nodes with high
values tend to connect to high values), and r < 0 to a disassorta-
tive network (nodes with high values are preferably connected to
low values).

Degree assortativity

Degree assortativitya, sometimes simply called assortativity, is a
particular case of homophily measured in term of node degrees,
i.e., the numerical value associated to each node is its degree.
The existence of a degree assortativity can be interpreted in term
of a rich club phenomenon: hubs prefer to connect to other hubs.
ER, Con�guration and BA random graph models have a degree
assortativity equals to �, while many real networks have positive
values, and some negative ones.

aNewman ����.

Limits of Assortativity

A limit of assortativity coe�cients as we have de�ned them is that
they summarize the whole network as a single value. However,
di�erent parts of the network might have di�erent types of assor-
tativity.

Illustration of di�erent local assortativity behaviors leading to the
same global assortativity value (bottom: distribution of local
assortatvity). Figure froma, in which the authors propose a

measure of multiscale assortativity.

aPeel, Delvenne, and Lambiotte ����.
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Mixing patterns

Network Science

Cheatsheet

Made by
Remy Cazabet

Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (hig hvalues
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
i a

2
i

1�
P

i a
2
i

where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total (total population or
total number of edges).

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.

Beyond assortative and disassortative, we can study more generally 
Mixing patterns, 

=>preference of nodes with attribute a to connect with nodes with 
attribute b (where a,b can be identical or different)



Mixing patterns

• [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]



Degree-degree correlation
• Assortativity often used for degree assortativity
• An application of assortativity to the case of degrees used as node properties:

• Are important nodes connected to other important nodes with a higher probability than 
expected?

• The degree can be used as any other scalar property
PEARSON-CORRELATION 

Network Science: Degree Correlations  March 7, 2011 M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002) 

normalization: 

� 

σr
2 =max jk(e jk − q jqk ) = jk(qkδ jk − q jqk )

jk
∑

jk
∑

� 

−1≤ r ≤1

If there are degree correlations, ejk will differ from qjqk. The magnitude of the correlation is 
captured by <jk>-<j><k> difference, which is:  

� 

jk(e jk − q jqk )
jk
∑

<jk>-<j><k> is expected to be:  
 positive for assortative networks,  
 zero for neutral networks, 
 negative for dissasortative networks  

To compare different networks, we should normalize it with its maximum value; the 
maximum is reached for a perfectly assortative network, i.e. ejk=qk�jk  

� 

r =
jk(e jk − q jqk )

jk
∑

σr
2

� 

r ≤ 0 disassortative 
neutral 
assortative 

� 

r = 0

� 

r ≥ 0

7

network type size n assortativity r error σr ref.

social































physics coauthorship undirected 52 909 0.363 0.002 a
biology coauthorship undirected 1 520 251 0.127 0.0004 a
mathematics coauthorship undirected 253 339 0.120 0.002 b
film actor collaborations undirected 449 913 0.208 0.0002 c
company directors undirected 7 673 0.276 0.004 d
student relationships undirected 573 −0.029 0.037 e
email address books directed 16 881 0.092 0.004 f

technological











power grid undirected 4 941 −0.003 0.013 g
Internet undirected 10 697 −0.189 0.002 h
World-Wide Web directed 269 504 −0.067 0.0002 i
software dependencies directed 3 162 −0.016 0.020 j

biological















protein interactions undirected 2 115 −0.156 0.010 k
metabolic network undirected 765 −0.240 0.007 l
neural network directed 307 −0.226 0.016 m
marine food web directed 134 −0.263 0.037 n
freshwater food web directed 92 −0.326 0.031 o

TABLE II: Size n, degree assortativity coefficient r, and expected error σr on the assortativity, for a number of social,
technological, and biological networks, both directed and undirected. Social networks: coauthorship networks of (a) physicists
and biologists [43] and (b) mathematicians [44], in which authors are connected if they have coauthored one or more articles
in learned journals; (c) collaborations of film actors in which actors are connected if they have appeared together in one or
more movies [5, 7]; (d) directors of Fortune 1000 companies for 1999, in which two directors are connected if they sit on the
board of directors of the same company [45]; (e) romantic (not necessarily sexual) relationships between students at a US high
school [46]; (f) network of email address books of computer users on a large computer system, in which an edge from user A
to user B indicates that B appears in A’s address book [47]. Technological networks: (g) network of high voltage transmission
lines in the Western States Power Grid of the United States [5]; (h) network of direct peering relationships between autonomous
systems on the Internet, April 2001 [48]; (i) network of hyperlinks between pages in the World-Wide Web domain nd.edu, circa
1999 [49]; (j) network of dependencies between software packages in the GNU/Linux operating system, in which an edge from
package A to package B indicates that A relies on components of B for its operation. Biological networks: (k) protein–protein
interaction network in the yeast S. Cerevisiae [50]; (l) metabolic network of the bacterium E. Coli [51]; (m) neural network of
the nematode worm C. Elegans [5, 52]; tropic interactions between species in the food webs of (n) Ythan Estuary, Scotland [53]
and (o) Little Rock Lake, Wisconsin [54].

B. Models of assortative mixing by degree

In Ref. 22 we studied the ensemble of graphs that have
a specified value of the matrix ejk and solved exactly for
its average properties using generating function methods
similar to those of Section II B. We showed that the phase
transition at which a giant component first appears in
such networks occurs at a point given by det(I−m) = 0,
where m is the matrix with elements mjk = kejk/qj . One
can also calculate exactly the size of the giant component,
and the distribution of sizes of the small components be-
low the phase transition. While these developments are
mathematically elegant, however, their usefulness is lim-
ited by the fact that the generating functions involved
are rarely calculable in closed form for arbitrary speci-
fied ejk, and the determinant of the matrix I−m almost
never is. In this paper, therefore, we take an alternative
approach, making use of computer simulation.

We would like to generate on a computer a random
network having, for instance, a particular value of the
matrix ejk. (This also fixes the degree distribution, via
Eq. (23).) In Ref. 22 we discussed one possible way of
doing this using an algorithm similar that of Section II C.
One would draw edges from the desired distribution ejk

and then join the degree k ends randomly in groups of k
to create the network. (This algorithm has also been

discussed recently by Dorogovtsev et al. [40].) As we
pointed out, however, this algorithm is flawed because
in order to create a network without any dangling edges
the number of degree k ends must be a multiple of k for
all k. It is very unlikely that these constraints will be
satisfied by chance, and there does not appear to be any
simple way of arranging for them to be satisfied without
introducing bias into the ensemble of graphs. Instead,
therefore, we use a Monte Carlo sampling scheme which is
essentially equivalent to the Metropolis–Hastings method
widely used in the mathematical and social sciences for
generating model networks [55, 56]. The algorithm is as
follows.

1. Given the desired edge distribution ejk, we first
calculate the corresponding distribution of excess
degrees qk from Eq. (23), and then invert Eq. (22)
to find the degree distribution:

pk =
qk−1/k
∑

j qj−1/j
. (27)

Note that this equation cannot tell us how many
vertices there are of degree zero in the network.
This information is not contained in the edge dis-
tribution ejk since no edges connect to degree-zero
vertices, and so must be specified separately. On



Average next neighbor degree 

Network Science: Degree Correlations  March 7, 2011 

R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001) 

If there are no degree correlations, kannd(k) is independent of k. 

No degree 
correlations: 

� 

kannd (k) =
′ k ek ′ k 

′ k 
∑

ek ′ k 
′ k 
∑ =

′ k qkq ′ k 
′ k 
∑

qk

= ′ k q ′ k 
′ k 
∑ = ′ k k ' p(k')

< k >′ k 
∑ =

k 2

k

kannd (k): average degree of the first 
neighbors of nodes with degree k. 

� 

kannd
v =

4 + 3+ 3+1
4

� 

kannd (k) = ′ k P( ′ k | k)
′ k 
∑ =

′ k ek ′ k 
′ k 
∑

ek ′ k 
′ k 
∑

Average nearest-neighbour degree
• More detailed characterisation of degree-degree correlations
• kannd: average nearest neighbours degree


• kannd can be written as:


• where P(k’|k) is the conditional probability that an edge of a 
node with degree k points to a node with degree k’

R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)

• If there are no degree correlations:

• kannd is independent of k (nodes of any degrees should have the same 
nearest neighbors degree)


• If the network is assortative knn(k) is a positive function
• If the network is disassortative knn(k) is a negative function


kannd(k) = . . . =
⟨k2⟩
⟨k⟩



Nearest neighbour degree
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Nearest neighbour degree
On Facebook

• [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]



Rich-club coefficient
• How well connected are the well connected among themselves
• It is calculated on a list  of node degree sorted in ascendant order as

• N>k denotes the number of nodes with degree k or larger than k
• E>k measures the number of links between them
• Results are usually compared to random references

• configuration model of equivalent synthetic network
• configuration model of the empirical network


the rich-club coefficient

• How well connected are high-
degree vertices among 
themselves?

• The rich-club coefficient:

• (N>k = # of nodes with degree 
higher than k; E>k = # of links 
between these)

• Values should be compared to 
some random reference or 
null model

• Usually, the configuration 
model is used

• Take as many nodes as in the 
original network, with exactly the 
same degrees, and connect 
randomly

• Empirical networks: exchange 
endpoints of randomly chosen 
pairs of links until the whole 
network has been rewired, see 
lecture 1
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the rich-club coefficient
Colizz’a et al., Nature Physics 2, 2006 
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Algorithm
• rank nodes by degree
• remove nodes in an 

ascendant degree order
• measure the density of 

the remaining network


