
Dynamic networks Project:

Analysis of trophic chains within a marine
ecosystem

We considered a data set depicting carbon exchanges inside a marine ecosystem in
Florida composed of 125 species and decomposition compartments. These species form
complex food chains that involve carbon transfers and recycling. Food chains, also called
trophic chains, consist in carbon transfers between different species that are often
divided into 3 to 5 levels:

1. Decomposers
2. Primary producers that produce their food thanks to photosynthesis: algae,

phytoplankton...
3. Primary consummers that eat primary producers: invertebrates such as corals,

shrimps, lobsters...
4. Secondary consummers that eat primary consummers: fishes
5. Tertiary consumers that eat secondary ones: birds, reptiles, mammals...

etc.

Many ecosystems have keystone species that are important species in balancing the
ecosystem and trophic chains.

This data consists in a directed graph indicating trophic chains in which the source node
is eaten by the target node. We wanted to analyse this ecosystem and to identify
keystone species in the ecosystem.

In [ ]: !pip install cdlib



In [3]:

I- Data treatment and obtaining of the graph

The data we used can be found at: http://networkrepository.com/eco-florida.php
(http://networkrepository.com/eco-florida.php)

The original article that investigates the behaviour of the Florida marine ecosystem is in
the folder attached to this notebook.

We looked for the names of the considered species in the original article and added
labels to nodes.

The data set set is a .edges file indicating directed carbon transfers and their intensity.
Nevertheless, we could not open this .edges file using networkx. To bypass this difficulty,
we saved the text document listing the edges and their weight into a .csv file, before
opening it in Python with the following code.

import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
import csv
from IPython.display import Image
from io import BytesIO
import scipy as sc
from scipy import stats
import os
 
from networkx import algorithms
from networkx.algorithms import centrality
from networkx.algorithms import assortativity
 
import cdlib
from cdlib import algorithms
 
'''To be replaced by local path of the user'''
os.chdir('C:\\Users\\lenovo\\Documents\\Cours\\M2\\Dynamic_Networks\\Projet\\eco-florida\\ProjetDynamicNetworks_LASBATS_Baptiste_NDIAYE_Anne-Betty'
 

http://networkrepository.com/eco-florida.php
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Then, from the obtained array we create a dictionary where keys are source nodes and
values are a tuple containing the target node and the weigth of the carbon transfer.

In [5]:

Finally we built a graph from the edge dictionary that we get. To do so, the dictionary is
converted into a list of 3-tuples containing source node, target node and the weight of
carbon transfer

def read_csv(name):
    with open(name, newline='') as csvfile:
        data = csv.reader(csvfile, delimiter=',', quotechar='|')
        array=[]
        k=0
        for row in data:
            array.append([])
            for x in row:
                array[k].append(x)
            k+=1
        array=np.array(array)
    return(array)
 
 
Trees_edges=read_csv('eco-florida_edges.csv')
Trees_nodes=read_csv('eco-florida_nodes.csv')
 

def array_to_dict(M):
    (n, k)=np.shape(M)
    D={}
    for i in range(1,n):
        Keys=list(D.keys())
        Node=int(M[i][0])
        if Node not in Keys:
            D[Node]=[]
            D[Node].append((int(M[i][1]), float(M[i][2])))
        else:
            D[Node].append((int(M[i][1]), float(M[i][2])))
    return(D)
            
Edgesdict=array_to_dict(Trees_edges)
    
    
Nodesdict={}
for i in Trees_nodes[1:]:
    Nodesdict[int(i[0])]=i[1]
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Let's have a look at our data -

We vizualized the graph using Gephi, the raw graph and the graph with nodes colored by
degree are attached to this notebook as "FloridaEcosystem_Raw.pdf" and
"FloridaEcosystem_ColoredByDegree.pdf".

II- Data analysis: identification of keystone species

As a first approximation we wanted to test whether the structure of our real data can be
recapitulated by a random graph.

To do so, we compared the distribution of degrees in the real graph and a random
version of the graph using the Erdos-Renyi model with the same number of nodes and
edges.

Plot Degree distribution

def dictionary_to_edgelist(D):
    Keys=list(D.keys())
    Edges=[]
    for key in Keys:
        L=D[key]
        n=len(L)
        for i in range(n):
            source=int(float(key))
            target=int(float(D[key][i][0]))
            weight=float(D[key][i][1])
            Edges.append((source, target, weight))
    return(Edges)
               
Edges=dictionary_to_edgelist(Edgesdict) 
#    
GFlorida=nx.DiGraph()
#
GFlorida.add_weighted_edges_from(Edges, weight='carbon_transfer') 
n,m=len(GFlorida.nodes()), len(GFlorida.edges())
ER=nx.gnm_random_graph(n,m) #random Erdos Renyi graph we will use for comparison
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We can see that the degree distribution of our data is way broader than the degree
distribution of a random Erdos renyi graph built with the same number of nodes and
edges. Our data set cannot be recapitulated by a random graph.

Cummulated carbon flow for each nodes

#real data
Degreedict={}
for i in list(GFlorida.degree()):
        Degreedict[i[0]]=i[1]
Degreelist=[]
for i in range(1,n+1):
    Degreelist.append(Degreedict[i])
#comparative ER network    
rdDegreedict={}
for i in list(ER.degree()):
        rdDegreedict[i[0]]=i[1]
rdDegreelist=list(rdDegreedict.values())
    
plt.figure(1, figsize=(10,4))
 
plt.subplot(1,2,1)
plt.hist(Degreelist, bins=100)
plt.xlabel('Degree')
plt.ylabel('Number of occurences')
plt.title('Real data')
 
plt.subplot(1,2,2)
plt.hist(rdDegreelist, bins=100)
plt.xlabel('Degree')
plt.ylabel('Number of occurences')
plt.title('Random Network')
 
plt.show()



We call flow the carbon flow between two nodes (species or detritic compartment). We
hypothesized that the keystone species of the ecosystem are the species that exchange
a lot of carbon and that have a prominent position in the ecosystem.

Thus we first compute the cummulated carbon exchange for each node. We also tried to
link the importance of carbon exchange by the number of links that a specie or a
compartment has with other species/compartments.

In [8]:

In [9]:

Out[9]: ['Benthic POC',
 'Water POC',
 'Water flagellates',
 'Thalassia',
 'Benthic flagellates']

#List of cummulated carbon flux for each node
CummulFlow=[0 for i in range(n)]
for i in range(1,len(Edgesdict)):
    CummulFlow[i-1]=sum(k[1] for k in Edgesdict[i]) #add positive flows
    for j in Edges: #remove negative flows
        if j[1]==i:
            CummulFlow[i]-= j[2]
            
#List of the total amount of carbon a node exchanges with its neighbours( received+send)'''
TotFlow=[0 for i in range(n)]
for i in range(1,len(Edgesdict)):
    TotFlow[i-1]=sum(k[1] for k in Edgesdict[i]) #add positive flows
    for j in Edges: #remove negative flows
        if j[1]==i:
            TotFlow[i]+= j[2]
 
#We add the cummulative flow as a node attribute
Cummul_flow={}
for node in list(GFlorida.nodes()):
  Cummul_flow[node]=CummulFlow[node-1]
nx.set_node_attributes(GFlorida, Cummul_flow, 'cummul_flow')
  
 
#Identification of key carbon exchangers
def get_highcarbon_species(cummulflowdict,p):
  sortedbtw=sorted(cummulflowdict.items(), key=lambda item: item[1])
  highest_cflow=[]
  for i in range(1,p+1):
    highest_cflow.append(Nodesdict[sortedbtw[-i][0]])
  return highest_cflow

get_highcarbon_species(Cummul_flow,5)



In [10]:

We observed that the highest carbon exchanges involve the detritic compartments
(Benthic POC and Water POC) and some primary producers (flagellates that are
unicellular organisms and thalassia that is a type of algae).

Nevertheless, there is no correlation between the degree of the node and the amount of
carbon it exchanges. The total amount of carbon exchanged is not directly linked to the
number of exchanges between the considered node and its neighbors.

Betweenness centrality

Another important parameter to characterize keystone species in an ecosystem is their
place is the network of carbon exchanges. If we remove a keystone specie from the
ecosystem, trophic chains would be imbalances.

Then we used the betweenness centrality to identify determinant species in the carbons
exchanges.

To better analyze the relationship between communities and node degree, betweenness
or carbon flux we also plotted the mean of the considered centrality in each community.

#Plot carbon flux according to node degree
Degreepernode=[0 for i in range(n)]
for i in range(1,n+1):
    Degreepernode[i-1]=Degreedict[i]
 
plt.figure(2, figsize=(13,4))
plt.subplot(1,2,1)
plt.scatter(Degreepernode,CummulFlow)
plt.xlabel('Node degree')
plt.ylabel('Cummulated flow of the node')
plt.title('Relative amount of carbon exchanges (send-received)')
 
plt.subplot(1,2,2)
plt.scatter(Degreepernode,TotFlow)
plt.xlabel('Node degree')
plt.ylabel('Total carbon flow involving the node')
plt.title('Total amount of carbon exchanges (send+|received|)')
plt.show()
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We can observe that the two nodes with the highest betweeness correspond to detritic
compartments (Benthic POC and Water POC). The most important species are small
invertebrates that are primary consummers.

Interestingly, our algorithm allows the detection of detritical compartments that are the
nodes with the highest betweenness and carbon echanges. Species of highest
betweeness are primary consummers while species with high carbon exchanges are
primary producers.

This is compatible with intuition. On the one hand, detritical compartments and primary
producers receive a lot of carbon from dead animals and plants, and are at the base of
trophic chains so are a source of food for a lot of other species. On the other hand,
primary consummers have a higher betweenness because they are low on the trophic
chain to they are a link between many higher consummers and the producers of food.

Then we wondered whether the betweenness of nodes depends on their degree. Are
nodes of high betweenness,which serve as bridges between different parts of the
network, also nodes of high degree? To answer this question we analyzed the homophyly
between node degree and betweenness centrality.

As betweenness centrality does not take into account the directionnality of graphs, we
can compare the results obtain with real dat with the results obtained with a random
undirected graph having the same number of edges and nodes.

In [12]:

Out[11]: ['Water POC', 'Other demersals fishes', 'Meroplankton', 'Flatfishe
s', 'Loon']

#This functions return a dictionary whose keys are species indexes and values are betweeness
def get_betweeness(G, w):
    dict_betweeness=nx.algorithms.centrality.betweenness_centrality(
    return(dict_betweeness)
  
 
#This function returns the names of the p species whith the highest betweeness
def get_imp_species(betweenessdict,p):
  sortedbtw=sorted(betweenessdict.items(), key=lambda item: item[1])
  highest_betweeness=[]
  for i in range(1,p+1):
    highest_betweeness.append(Nodesdict[sortedbtw[-i][0]])
  return highest_betweeness
 
get_imp_species(get_betweeness(GFlorida, 'carbon_transfer'),5)
 

def plot_betweenness(G, w=None, thresh=None, pos=None):
    Degree=[]
    Betweenness=[]
    L=list(G.degree())
    dict_betweenness=get_betweeness(G, w)
    Keys=list(dict_betweenness.keys())
    n=len(Keys)
    if pos=='sup':
        for i in range(n):



Pearson corelation coefficient for real data: 0.346633452465892 pv
alue: 6.117352519452672e-05

        for i in range(n):
            if dict_betweenness[Keys[i]]>thresh:
                Degree.append(L[i][1])
                Betweenness.append(dict_betweenness[Keys[i]])
    elif pos=='inf':
        for i in range(n):
            if dict_betweenness[Keys[i]]<thresh:
                Degree.append(L[i][1])
                Betweenness.append(dict_betweenness[Keys[i]])
    else:
        for i in range(n):
            Degree.append(L[i][1])
            Betweenness.append(dict_betweenness[Keys[i]])
    return [Degree, Betweenness]
 
 
plt.figure(3, figsize=(13,4))
plt.subplot(1,2,1)
Degree=plot_betweenness(GFlorida,'carbon_transfer')[0]
Btw=plot_betweenness(GFlorida,'carbon_transfer')[1]
plt.scatter(Degree, Btw)
plt.xlabel('Node degree')
plt.ylabel('Betweenness centrality')
plt.title('Real data')
 
plt.subplot(1,2,2)
Degreerd=plot_betweenness(ER)[0]
Btwrd=plot_betweenness(ER)[1]
plt.scatter(Degreerd, Btwrd)
plt.xlabel('Node degree')
plt.ylabel('Betweenness centrality')
plt.title('Random network')
 
plt.show()
 
print('Pearson corelation coefficient for real data:',stats.pearsonr



We can observe that there is a homophily between node degree and betweenness, as
indicated by a positive Pearson correlation coefficient. Nevertheless, this homophily is
much smaller than the one observed for the random graph. This positive correlation
between node degree and betweenness could be due to the detritic compartments that
have both high degree and high betweeness. For species, species that are linked to
many other are not particularly the most important ones, as defined by betweenness.

III- Data analysis: Study of communities

Community analyses

This section aims at finding and understanding the different communities that may be
present within the ecosystem. We wondered whether species within this ecosystem are
best grouped according to the trophic chain they belong to, or according to their position
in the trophic chain. For instance, do communities correspond to all primary producers,
all secondary producers etc., or do they correspond to the different trophic chains in the
ecosystems from primary producers to secondary predators?

1) Identification of communities and link with important node parameters

Community analysis using the Louvain algorithm can only be performed on undirected
graphs.

First, we separated the communities in a undirected version of the graph using the
Louvain algorithm.

In [13]:

There are 4 communities in this ecosystem

Und_G=GFlorida.to_undirected()
Communities=algorithms.louvain(Und_G)
Dict_commu=Communities.to_node_community_map()
indexmax_commu=(max(Communities.to_node_community_map().values())) #list of length 1 with containing the index of the higher community
nb_commu=indexmax_commu[0]+1
print("There are", nb_commu, "communities in this ecosystem" )



In [39]:

In [40]:

Out[40]: 0.1806246479895475

'''takes a dictionary that contains nodes as keys and the list of communities they belong
to as values, and returns a dictionary with communities as keys and list of nodes as
values'''
def get_community_nodes(Dict_comm):
    Dict_nodes={}
    Communities=[]
    nodes=list(Dict_comm.keys())
    n=len(nodes)
    for i in range(1,n+1):
        community=Dict_comm[i][0]
        if community not in Communities:
            Dict_nodes[community]=[i]
            Communities=list(Dict_nodes.keys())
 
        else:
            Dict_nodes[community].append(i)
    return (Dict_nodes)
'''program to get the modularity of the program on a partition given by the distribution
in communities'''    
    
def get_modularity(G):
    Communities=cdlib.algorithms.louvain(G)
    Dict_communities=Communities.to_node_community_map()
    Dict_comm=dict(Dict_communities)
    Dict_nodes=get_community_nodes(Dict_comm)
    Keys=list(Dict_nodes.keys())
    Partition=[]
    for key in Keys:
        Partition.append(Dict_nodes[key])
    mod=nx.algorithms.community.modularity(G, Partition)
    return(mod)

get_modularity(Und_G)



In [34]:

There are 4 communities in the ecosystem.

We evaluated the quality of the partition using modularity score.The value of 0.18 shows
that the connectivity within the communities is higher than within a random graph, but
that the intra-community connectivity remains low. This is in line with the hypothesis that
they correspond to the different levels of trophic chains such as soil & decomposers,
primary producers such as algae, primary consummers, and secondary consummers
such as birds. Under this hypothesis, the internal connection within each community
would not be very high as each community capture species at the same trophic level but
belonging to different trophic chains.

To test the plausibility of this hypothesis, we tried to characterize the identified
communities using node characteristics such as betweenness or degree. We plotted the
distribution of node degree, betweenness centrality and average carbon flows across
communities

------------------------------------------------------------------
---------
KeyError                                  Traceback (most recent c
all last)
<ipython-input-34-2aa34b305cfe> in <module>
      2 Dict_communities=Communities.to_node_community_map()
      3 Dict_comm=dict(Dict_communities)
----> 4 get_community_nodes2(Dict_comm)

<ipython-input-30-7144f7b9821c> in get_community_nodes2(Dict_comm)
     22     n=len(nodes)
     23     for i in range(n):
---> 24         community=Dict_comm[i][0]
     25         print(community)
     26         if community not in Communities:

KeyError: 0

Communities=cdlib.algorithms.louvain(Und_G)
Dict_communities=Communities.to_node_community_map()
Dict_comm=dict(Dict_communities)
get_community_nodes2(Dict_comm)



In [41]: #takes a dictionary that has lists of one element in front of the keys, and returns the same dictionary with numbers as entries, not in the lists
def convert_values(D):
    new_D={}
    Keys=list(D.keys())
    n=len(Keys)
    for i in range(n):
        new_D[Keys[i]]=D[Keys[i]][0]
    return(new_D)
 
#plots the communities in ordinates as a function of another parameter, default is degree, can be average flow or betweenness
def plot_communities(G, abscissa, weight):
    Communities=algorithms.louvain(G, weight)
    Dict_communities=convert_values(Communities.to_node_community_map
    X_values=[]
    comm_plot=[]
    Keys=list(Dict_communities.keys())
    n=len(Keys)
    if abscissa=='degree':
        for i in range(n):
            X_values.append(G.degree(Keys[i]))
            comm_plot.append(Dict_communities[Keys[i]])
    if abscissa=='cummul_flow':
        for i in range(n):
            X_values.append(G.nodes[Keys[i]]['cummul_flow'])
            comm_plot.append(Dict_communities[Keys[i]])
    if abscissa=='betweenness':
        dict_betweeness=nx.algorithms.centrality.betweenness_centrality
        for i in range(n):
            X_values.append(dict_betweeness[Keys[i]])
            comm_plot.append(Dict_communities[Keys[i]])
    return[X_values,comm_plot]
  



In [42]:

To better analyze the relationship between communities and node degree, betweenness
or carbon flux we also plotted the mean of the considered centrality in each community.

In [43]:

plt.figure(5, figsize=(18,4))
plt.subplot(1,3,1)
Y=plot_communities(Und_G, abscissa='degree',weight='carbon_transfer'
X=plot_communities(Und_G, abscissa='degree',weight='carbon_transfer'
plt.scatter(X, Y)
plt.xlabel('Communities')
plt.ylabel('Node degree')
 
plt.subplot(1,3,2)
Y=plot_communities(Und_G, abscissa='betweenness',weight='carbon_transfer'
X=plot_communities(Und_G, abscissa='betweenness',weight='carbon_transfer'
plt.scatter(X, Y)
plt.xlabel('Communities')
plt.ylabel('Betweenness')
 
plt.subplot(1,3,3)
Y=plot_communities(Und_G, abscissa='cummul_flow',weight='carbon_transfer'
X=plot_communities(Und_G, abscissa='cummul_flow',weight='carbon_transfer'
plt.scatter(X, Y)
plt.xlabel('Communities')
plt.ylabel('Cummulated carbon flow')
 
plt.show()
 

# get the confidence intervals around the different values    
 
def mean_confidence_interval(data, confidence=0.95):
    a = 1.0 * np.array(data)
    n = len(a)
    m, se = np.mean(a), sc.stats.sem(a)
    h = se * sc.stats.t.ppf((1 + confidence) / 2., n-1)
    return h  
    
#gets a dictionary with the different communities as keys and the list of the properties of the nodes present 
#in those different communities as entries, properties can be degree, betweenness or average flow      
    
def get_community_properties(G, weight, prop):
    Communities=algorithms.louvain(G,weight)
    Dict_communities=convert_values(Communities.to_node_community_map
    Keys=list(Dict_communities.keys())
    n=len(Keys)
    Property={0:[], 1:[], 2:[], 3:[]}
    if prop=='betweenness':



    if prop=='betweenness':
      dict_betweenness=nx.algorithms.centrality.betweenness_centrality
      for i in range(n):
          for community in list(Property.keys()):
              if Dict_communities[Keys[i]]==community:
                  Property[community].append(dict_betweenness[Keys[i
    if prop=='cummul_flow':
        for i in range(n):
            for community in list(Property.keys()):
                if Dict_communities[Keys[i]]==community:
                    Property[community].append(G.nodes[Keys[i]]['cummul_flow'
    if prop=='degree':
        for i in range(n):
            for community in list(Property.keys()):
                if Dict_communities[Keys[i]]==community:
                    Property[community].append(G.degree[Keys[i]])
    return(Property)
 
 
#plots the means of the tested properties across the communities, can be degree, average  flow or betweenness. 
#Also implements the error bars of the 95% confidence interval (assuming normal distribution)   
    
def plot_mean_props(G, weight, prop, ylabel):
    fig, ax=plt.subplots()
    Property=get_community_properties(G, weight, prop)
    Communities=list(Property.keys())
    n=len(Communities)
    Labels=['community '+str(Communities[i]+1) for i in range(n)]
    x_pos=np.arange(len(Labels))
    List_bars=[]
    List_errors=[]
    for community in Communities:
        List_bars.append(np.mean(Property[community]))
        List_errors.append(mean_confidence_interval(Property[community
    ax.bar(x_pos, List_bars, yerr=List_errors)
    ax.set_xticks(x_pos)
    ax.set_xticklabels(Labels)
    plt.ylabel(ylabel)
    plt.title('distribution of '+ylabel+' across the communities', wrap
    plt.show()
 



In [44]:

In [45]:

In [46]:

plot_mean_props(Und_G,weight='carbon_transfer', prop='degree', ylabel

plot_mean_props(Und_G, weight='carbon_transfer', prop='betweenness', 

plot_mean_props(Und_G, weight='carbon_transfer', prop='cummul_flow', 



In [47]:

In [53]:

Out[53]: [70, 37, 16, 5]

#Number of elements inside each community for the GFlora ecosystem
def nb_in_commu(G,weight):    
  Communities=algorithms.louvain(G,weight)
  Dict_communities=Communities.to_node_community_map()
  nb_commu=max(Dict_communities.values())[0]+1
  C=[[] for i in range(nb_commu)]
  Nodes=list(G.nodes())
  for node in Nodes:
    j=Dict_commu[node][0]
    C[j].append(node)
  Imp_commu=[len(C[i]) for i in range(nb_commu)]
  return(Imp_commu)

nb_in_commu(Und_G,'carbon_transfer')



Those results allow to characterize the different communities present in the ecosystem.
Nevertheless we noted that the number of species/compartments in each community is
very imbalanced. This makes difficult the comparison of means. Moreover, errors bars are
huge here and none of the betweenness centralities of carbon flow are statistically
different between communities.

We can make qualitative comparisons betweenn the obtained communities to get
insights into what they could represent.

Community 1: high BC, highest degree, low carbon flow:

This may correspond to detritical compartments and primary producers. They are at the
base of trophic chains: they receive carbon from dead beings but they undergo high
carbon uptake, which is consistent with low cummulated carbon flow and high degree.

Community 2: similar profile with lower degrees but higher BC and average carbon
flows:

This may correspond to primary consummers, as we saw earlier that they have the
highest betweenness centrality. They have quite a central role ( high degrees), but
relatively low carbon flows could indicate that there is predation/carbon uptake, which
seems consistent with primary consummers.

Community 3: low carbon flows and low degrees:

BC centrality is hard to analyze here. This could correspond to primary or secondary
consummers. They are at intermediate levels of trophic chains which could explain the
low carbon flow (their eat as much as they get eaten by other species). But they are high
enough in trophic chains to have few links to other species.

Community 4: the highest carbon flows, with the lowest degrees and BC:

This could correspond to the highest-level of consummers or predators. They don't have
a lot of predators so their intake of carbon is positive: they withdraw more food from the
network than they serve as food. They are at the top of the trophic chains which could
account for their low degree and betweenness centrality.

We still need to compare these hypotheses with the nodes label. Moreover, the huge
error bars make the interpretation difficult.

We also plotted the different communities with two of their characteristics: degree (x-axis)
and average carbon flows or betweenness (y-axis)



In [49]:

Plot with betweenness and degrees

#gets 2 dictionaries, the keys are the different communities, the entries lists of node properties, 
#for X, it's degrees, for Y, it can be betweenness or average flow        
    
def distinguish_communities(G, weight, prop):
    Communities=algorithms.louvain(G,weight)
    Dict_communities=convert_values(Communities.to_node_community_map
    Keys=list(Dict_communities.keys())
    n=len(Keys)
    X_value={0:[], 1:[], 2:[], 3:[]}
    Y_value={0:[], 1:[], 2:[], 3:[]}
    if prop=='betweenness':
        dict_betweeness=nx.algorithms.centrality.betweenness_centrality
        for i in range(n):
            for community in list(X_value.keys()):
                if Dict_communities[Keys[i]]==community:
                    X_value[community].append(G.degree[Keys[i]])
                    Y_value[community].append(dict_betweeness[Keys[i
    if prop=='cummul_flow':
        for i in range(n):
            for community in list(X_value.keys()):
                if Dict_communities[Keys[i]]==community:
                    X_value[community].append(G.degree[Keys[i]])
                    Y_value[community].append(G.nodes[Keys[i]]['cummul_flow'
    return(X_value, Y_value)
    
    
#plots the nodes with degree in abscissa and average flow and betweenness in ordinate,
#different colours are used for the different communities, the legend is included''' 
    
def plot_gap_communities_with_legend(G, weight, prop):
    fig, ax=plt.subplots()
    X_value, Y_value=distinguish_communities(G, weight, prop)
    Colours=['blue', 'red', 'green', 'purple']
    Communities=list(X_value.keys())
    for i in range(4):
        ax.scatter(X_value[Communities[i]], Y_value[Communities[i]], 
    plt.xlabel('degree')
    plt.ylabel(prop)
    legend = ax.legend()
    ax.add_artist(legend)
    if prop=='betweenness':
        t_prop='betweenness centralities'
    if prop=='cummul_flow':
        t_prop='cummulative carbon flows'
    plt.title('distribution of degrees and '+t_prop+' across communities'
    plt.show()



In [50]:

Plot with cummulated flow and degree

In [51]:

No particular tendency can be observed from these plots. No combination of parameters
can be used to efficiently distinguish communities.

Comparison of the communities with theoretical communities consisting in the different
trophic levels

Finally, we wanted to test whether the comunity partition given by the Louvain algorithm
correspong to the different levels of trophic chains by directly looking at the species
inside communities.

To do so, we converted the obtained communities into 4 lists containing the name of
species within the same community.

plot_gap_communities_with_legend(Und_G, weight='carbon_transfer', prop

plot_gap_communities_with_legend(Und_G, weight='carbon_transfer',prop



In [52]:

Community 1 : 70 nodes ['Stone crab', 'Herbivorous amphipods', 'Pr
edatorous shrimp', 'Pink shrimp', 'Omnivorous crabs', 'Pinfish', '
Other demersals fishes', 'Herbivorous ducks', 'Omnivorous ducks', 
'Benthic POC', 'Unknown3', 'Sharks', 'Rays', 'Bonefish', 'Sardines
', 'Catfish', 'Eels', 'Toadfish', 'Brotulas and Batfishes', 'Golds
potted killifish', 'Snooks', 'Seahorses', 'Gulf pipefish', 'Dwarf 
seahorse', 'Snappers', 'Gray snapper', 'Mojarras', 'Porgies', 'Sci
aenids', 'Spadefish', 'Blennies', 'Flatfishes', 'Loon', 'Greeb', '
Pelican', 'Comorant', 'Big herons and egrets', 'Small herons and e
grets', 'Ibis', 'Roseate Spoonbill', 'Predatory ducks', 'Fruiforme
s', 'Small shorebirds', 'Gulls and terns', 'Kingfisher', 'Dolphin'
, 'Spiny lobster', 'Tarpon', 'Pufferfishes', 'Callinectes species'
, 'Filefishes', 'Raptors', 'Barracudas', 'Predatory gasteropods', 
'Other cnidaria', 'Echinodermata', 'Code Goby', 'Clown Goby', 'Ben
thic flagellates', 'Benthic cilliates', 'Meiofauna', 'Detritivorou
s gasteropods', 'Detritivorous polychaetes', 'Predatory polychaete
s', 'Macrobenthos', 'Benthic crustaceans', 'Detritivorous amphipod
s', 'Detritivorous crabs', 'Predatory crabs', 'Epiphyte grazing ga
steropods']
Community 2 : 37 nodes ['2um spherical phytoplancton', 'Synedococc
us', 'Small Diatoms', 'Meroplankton', 'Water POC', 'Green turtle', 
'Mollies', 'Parrotfishes', 'Mullets', 'Anchovies', 'Bay anchovy', 
'Lizardfish', 'Silversides', 'Jacks and runners', 'Pompano and per
mits', 'Grunts', 'Spotted seatrout', 'Red drum', 'Other pelagics f
ishes', 'Crocodiles', 'Loggerhead', 'Hawksbill turtle', 'Needlefis
hes', 'Mackerels', 'Water flagellates', 'Water ciliates', 'Acartia 
tonsa', 'Oithona nana', 'Paracalanus', 'Other Copepoda', 'Other zo
oplankton', 'Sponges', 'Bivalves', 'Pelagic feeding polychaetes', 
'Coral', 'Killifishes', 'Rainwater killifish']
Community 3 : 16 nodes ['Unknown1', 'Big Diatoms', 'Benthic microa
lgae', 'Thalassia', 'Halodule', 'Syringodium', 'Roots', 'Drift alg
ae', 'Epiphytes', 'Unknown2', 'Isopods', 'Halfbeaks', 'Manatee', '
Groupers', 'Herbivorous shrimp', 'Grass shrimp']
Community 4 : 5 nodes ['Oscillatoria', 'Dinoflagellates', 'Other p
hytoplankton', 'DOC', 'Free bacteria']

Communities=algorithms.louvain(Und_G, 'carbon_transfer')
Dict_commu=Communities.to_node_community_map()
nb_commu=max(Dict_commu.values())[0]+1
L_commu=[[] for i in range(nb_commu)]
for node in list(Und_G.nodes()):
  community=Dict_commu[node][0]
  L_commu[community].append(Nodesdict[node]) #add the name of the considered specie in the appropriate community list
 
for i in range(nb_commu):
  print('Community',i+1,':', len(L_commu[i]),'nodes', L_commu[i])



Here we can observe that the detritic compartments 'DOC', 'Water POC' and 'Benthic
DOC' are in separated communities (respectively in the communities 4, 2 and 1). Another
exemple is that the community 2 gathers predators such as crocodiles and primary
consummers such as meroplanktons. These seem to disagree with our hypothesis that
the 4 communities separate species according to their level in trophic chains.

Nevertheless, we can observe that the first community contains many fishes and birds
that are secondary and tertiary consummers. The second community contains a lot of
small fishes such as anchoives, killifishes and other primary consummers such as
cilliates. The third community is mainly composed of primary producers such as
epiphytes (they are plants), algae, micro algae or diatoms. The fourth community is
composed of small invertebrates that are also primary producers.

To conclude there a maybe tendencies in communities that group species with similar
levels in trophic chains. But this partition clearly does not separate species according to
their trophic level.

Other parameters influence modularity, then partition into communities.

IV- Assortativity analysis

Assortativity measurements allow to understand whether a specific set of nodes builds
edges with neighbors that share the same properties. Here, we propose to compute the
assortativity regarding the different properties in the four communities. Finding a higher
assortativity regarding a specific parameter in the communities compared to the basic
graph would suggest that the clustering in communities grouped nodes based on that
property.

On the other hand, finding disassortativity within the communities would indicate that the
clustering tended to group nodes of different properties, which would also provide
valuable informations over the relationships captured within the communities.

All in all, we expect that analyzing the assortativity in our different communities regarding
betweenness, degree and average carbon flow between species will help to understand
what groups species within the same community, and thus to get a better idea on the
structuration of the ecosystem.

We computed the assortativity of an undirected graph regarding the different
communities.

In [54]:

The next functions allow to run distinct analyses on the assortativity of different
communities.

def get_community_assortativity(G, weight):
    Communities=algorithms.louvain(G, weight)
    Dict_communities=Communities.to_node_community_map()
    nx.set_node_attributes(G, Dict_communities, 'Community')
    community_assortativity=nx.algorithms.assortativity.attribute_assortativity_coefficient
    return(community_assortativity)



In [55]:

Then, we separated the subgraphs generated by the different communities in order to get
the differences in assortativity between the communities.

'''takes a dictionary that contains nodes as keys and the list of communities they belong
to as entries, and returns a dictionary with communities as keys and list of nodes as
entries'''
 
def get_community_nodes(Dict_comm):
    Dict_nodes={}
    Communities=list(Dict_nodes.keys())
    Keys=list(Dict_comm.keys())
    n=len(Keys)
    for i in range(n):
        community=Dict_comm[Keys[i]]
        if community not in Communities:
            Dict_nodes[community]=[Keys[i]]
            Communities=list(Dict_nodes.keys())
        else:
            Dict_nodes[community].append(Keys[i])
    return(Dict_nodes)
 
 
'''takes a graph, a property and a list of nodes, and returns a dictionary containing the
nodes as keys and their property as entry, can work with betweenness and average flow'''
 
def node_properties(G, list_nodes, prop):
    Dict_prop={}
    n=len(list_nodes)
    if prop=='betweenness':
        dict_betweeness=nx.algorithms.centrality.betweenness_centrality
        for i in range(n):
            Dict_prop[list_nodes[i]]=dict_betweeness[list_nodes[i]]
    else:
        for i in range(n):
            Dict_prop[list_nodes[i]]=G.nodes[list_nodes[i]][prop]
    return(Dict_prop)



In [56]:

Finally, we obtained and plotted the assortativities associated to different properties in
the different communities. A high assortativity will indicate some homogeneity in the
species linked in the different communities.

'''gets a dictionary that contains communities as keys and associated subgraphs of G
as entries, will be useful to get assortativity within communities'''
 
def get_community_graphs(G):
    Dict_subgraphs={}
    Communities=cdlib.algorithms.louvain(G)
    Dict_comm=convert_values(Communities.to_node_community_map())
    Dict_nodes=get_community_nodes(Dict_comm)
    Comm_list=list(Dict_nodes.keys())
    n=len(Comm_list)
    for i in range(n):
        Sub_nodes=Dict_nodes[Comm_list[i]]
        Sub_graph=G.subgraph(Sub_nodes)
        Dict_flows=node_properties(G, Sub_nodes, 'cummul_flow')
        nx.set_node_attributes(Sub_graph, Dict_flows, 'cummul_flow')
        Dict_betweenness=node_properties(G, Sub_nodes, 'betweenness'
        nx.set_node_attributes(Sub_graph, Dict_betweenness, 'betweenness'
        Dict_subgraphs[Comm_list[i]]=Sub_graph
    return(Dict_subgraphs)



In [57]:

Degree-related assortativities in all the different communities

'''takes a graph and a property (degree, betweenness or average_flow), does the analysis 
of communities and returns the assortativity associated to all the different communities 
on the targeted property'''    
    
def get_crosscomm_assortativity(G, prop):
    List_assortativity=[]
    Dict_subgraphs=get_community_graphs(G)
    Communities=list(Dict_subgraphs.keys())
    n=len(Communities)
    if prop=='degree':
        degree_assortativity=nx.algorithms.assortativity.degree_assortativity_coefficient
        List_assortativity.append(degree_assortativity)
        for i in range(n):
            comm_graph=Dict_subgraphs[Communities[i]]
            degree_assortativity=nx.algorithms.assortativity.degree_assortativity_coefficient
            List_assortativity.append(degree_assortativity)
    else:
        prop_assortativity=nx.algorithms.assortativity.attribute_assortativity_coefficient
        List_assortativity.append(prop_assortativity)
        for i in range(n):
            comm_graph=Dict_subgraphs[Communities[i]]
            prop_assortativity=nx.algorithms.assortativity.attribute_assortativity_coefficient
            List_assortativity.append(prop_assortativity)
    return(List_assortativity)
 
 
'''plots the assortativity of the different communities of the graph G regarding the 
property given as an input'''    
    
def plot_assortativities(G, prop):
    Colors=['black']
    Communities=['whole graph']
    for i in range(1, 5):
        Communities.append('comm. '+str(i))
        Colors.append('green')
    List_assortativity=get_crosscomm_assortativity(G, prop)
    plt.ylim(0, 1.1*max(List_assortativity, key=abs))
    plt.bar(Communities, List_assortativity, color=Colors)
    plt.ylabel(prop+'-related assortativity')
    plt.title('distribution of '+prop+'-related assortativities across communities'
    plt.show()



In [59]:

Betweenness-related assortativities in all the different communities

In [ ]:

Carbon flow-related assortativities in all the different communities

plot_assortativities(Und_G, 'degree')

plot_assortativities(Und_G, 'betweenness')



In [ ]: plot_assortativities(Und_G, 'cummul_flow')



A first observation is thats in all cases (except degree assortativity for community 3), the
communities show a higher disassortativity than the whole graph, which indicates that
species connected within communities tend to show disparities in their properties.

One could think of explaining this by the fact the edges present within the communities
only capture relationships between species of different trophic levels that present
different properties, while this effect could be attenuated in the whole graph by the
interconnectivity between trophic chains that is not captured within communities.

A high disassortativity was observed on degreees within communities. This implies that
the topologies captured within communities are the bindings between strongly connected
species and weakly connected ones.

There is no betweenness-based assortativity or carbon flow- based assortativity, which
indicates that communities are not built around them.

According to those results, it doesn't seem that communities capture clusters of nodes of
specific properties but rather topologies in the graph, which results in the degree
disassortativity. Community 4 captures a strongly connected node (the detritic
compartment DOC) and its weakly connected neighbors (here primary producers), which
results in the value of disassortativity. Such topology is also found in communities 1 and
2 where the two other detritic compartments (water DOC and benthic DOC) are found.
The presence of those strongly-connected nodes is likely responsible for the values of
disassortativities within those communities.

Most species in the third compartment are primary producers and no detritic
compartment is present, which likely results in the absence of disassortativity.

Interestingly, the fact that communities are overall more disassortative than the graph
itself suggest that edges linking similar nodes are present between communities and not
inside of them.

The results of assortativity are consistent with the content of the communtities. The fact
that each detritic compartment seems associated to a geographical area (water could be
unsalty waters, benthic DOC could be the sea compartment) may indicate that
communities were separated based on the location where their species live. But such
correlation is hard to establish solely on the labels, and the presence of aquatic species
inside of all the communities doesn't seem consistent with this hypothesis.

Another remark is that some cycles exist within this network with carbon recylcling in
some circular trophic chains. The existence of both cycles and linear relationships
between species of this network could make difficult the analysis of the partition obtained
with community detection. Further analyses on the number of cycles would be interesting
to understand the relationships captured by communities.



In this project we tried to characterize keystone species in a marine
ecosystem and to analyze the structure of this ecosystem.

We showed that our algorithm enables the detection of detritical
compartments that distinguish from all other species via their high node-
degree and betweeness centrality. We observed that important species in
this ecosystem are species that are low in trophic chains. Intuitively, such
species are the the main source of carbon for the rest of the ecosystem,
which explains their importance.

We hypothesized that the ecosystem is structured around the different
levels of trophic chains. We determined the number and characteristics of
communities using Louvain algorithm. The low number of communities (4)
is in aggreement with our hypothesis, and we tried to attribute each
community to a level in the trophic chain according to their characteritics.
Nevertheless we observed that the repartition of species does not match
our hypothesis. We then tried to characterize the parameters that drive
the partition of species using assortativity analyses, which seems to
indicate a segregation of communities based on topological structures
such as the organisation of species around their detritic compartment.


