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Artificial Intelligence

● AI is the new electricity
○ AI is the new electricity. It will transform every industry 

and create huge economic value. 
○ Technology like supervised learning is automation on 

steroids. It is very good at automating tasks and will have 
an impact on every sector – from healthcare to 
manufacturing, logistics and retail
(cit. Andrew NG)



Deep Learning
Modern AI is:

Numerical Optimization  + Data 
 

Deep Learning (DL)  is:
1. A branch of Machine Learning (ML)
2. A set of algorithms that attempt to model high-level abstractions 

representation of data from raw data 
3. Inspired by the function of the biological brain 
4. Composed by multiple processing layers of multiple non-linear 

transformations

Deep Learning, Machine Learning



DL is a branch of ML

• Data preparation:
– ML requires structured data as input

• Human intervention to identify the features based 
on the data type
– e.g., for images pixel value, shape, rotation

– DL extract the high-level abstractions 
representation of data from raw data without 
human intervention

• Approach
– ML need to human intervention to provide 

adjustments to improve the accuracy of the 
model

– DL performs an end-to-end learning :
• From raw data to a task (e.g., classification)  the model 

learn how to do it automatically 
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End-to-end learning

5Deep Learning

Source: https://www.deeplearningbook.org/

● DL models extract learns representations 
(features)  from the image in automatically 
manner. 

○ For each hidden layer, given the pixels:
■ the 1st hidden layer identify edges, by comparing 

the brightness of neighboring pixels. 
■ the 2nd hidden layer search for corners and 

extended contours (as collections of edges)
■ the 3rd hidden layer detect parts of specific 

objects (finding specific collections of contours 
and corners). 

■ Finally, this description of the image in terms of 
the object parts it contains is used to recognize 
the objects present in the image.
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Deep learning : a recap



How NNs learn?
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Loss

Learning by trial-and-error
● Trial:

○ Compute the prediction of a given input 
data 

● Evaluate:
○ Provide  a feedback of the correctness of the 

prediction
○ Comparing the actual output with the 

expected input

■ loss= y-ŷ
● Adjust:

○ The weights are iteratively adjusted in order 
to reduce the error

The NN is refined over time to  find the weights that minimise the error on the training 
and  provide more accurate predictions 



Loss function
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• The loss function measures how much the predicted output label is 
different from the expected output (ground truth label).

• The error at each hidden layer is an average of the evaluated error

• The choice of loss function is sensitive to the application task:

Mean squared error (MSE)

● The most commonly used loss 
function for regression

● Squared differences between true 
and predicted values

Cross entropy loss

● Used in classification task
● Measures the performance of a classification model 

whose output is a probability between 0 and 1 by 
increasing its value when the predicted probability 
diverges from the actual label.



Training a NN with backpropagation

● In single-layer NNs the error (loss) is computed as 
a direct function of weights

● In multi-layer NNs the loss is a composition 
function of the weights in earlier layers:
○ The gradient of composition function is performed 

by using the backpropagation algorithm:
■ Two phases: forward and backward 9



Training: forward phase

● The inputs are fed into NNs
● Computation across layers using the current set of weights
● Final prediction:

○ Compare the output with training
○ Compute the derivative of the loss with respect to the output 
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Feed-forward



Training: backward phase

● Learn the gradient of a loss function with respect to the weights
○ Using the chain rule
○ The gradient is used to update the weights
○ Starting from output layer to input

11

Backward



Gradient Descent

12Deep Learning

● First-order iterative optimization algorithm
○ Goal: find a local minimum of a differentiable function (loss function)
○ To train NNs and update the weights

■ To find the weights that minimize the cost function (loss function)
■ Partial derivative with y respect to its inputs x (dy/dx)



Gradient Descent

13

● A gradient measure how much the output of a function changes if you 
change the input
○ Measures the change in all weights with regard to the change in error.
○ Slope of a function

■ The steeper the slope and the faster a model can learn.
■ If the slope is zero, the model stops learning.



Gradient Descent
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● Let us consider a cost function 
y=f(x)=L(x,y)

● Goal: minimizing f(x)
● On each iteration:

○ Compute the slope (gradient)  of f(x) at 
current point 

○  Update the parameters in the opposite 
direction of the gradient
■ the parameters where the gradient gives the 

direction of the steepest ascent
■ by moving x in small steps with opposite sign of 

the derivative
■ the size of the step on each iteration is 

determined by the learning rate α
■ Until we reach a local minimum



Gradient Descent
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● Learning rate: for gradient descent
○ scale the magnitude of our weight updates in order 

to minimize the network's loss function



Chain rule
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● In multi-layer NN the loss is a composition function of the weights in 
earlier layers

● The gradient is computed using backpropagation algorithm  that leverages 
a chain rules
○ It calculates the error gradient in terms of summations of local-gradient 

products

source: 
https://bit.ly/3Gm5Ap5
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Deep Learning : applications



Object classification and object detection
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Is this a cat? What is there in image and 
where?

Which pixels belong to 
which object?



Text

Language Translation Object recognition: speech
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Automatic handwriting generation



Art

Colorize Black & White Images Style transfer

Deep Learning 20



Images

Faking faces and video

Deep Learning 21

Synthesizing Obama: Learning Lip Sync from Audio
https://www.youtube.com/watch?v=9Yq67CjDqvw



Images

Image reconstruction
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Images

Face creation
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Self driving

Self driving cars
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Cybersecurity

Cybersecurity: intrusion detection, malware detection, fraud detection…

Deep Learning 25
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Dark side of AI: adversarial learning



AI in Cybersecurity

● Cybersecurity products are increasingly incorporating Artificial 
Intelligence (AI) technologies (e.g., Machine Learning, Deep 
Learning)
○ PRO: 

• Increase the ability to detect attacks
• Reduce the time spent for  threat detection and incident responses

○ CONS: 
• Attackers use AI to better understand their targets and design new attacks
• AI systems are vulnerable to adversarial attacks

 



Adversarial machine learning

● Study of  attacks on machine 
learning (and deep learning) 
algorithms
○ Collection of techniques to train 

neural networks on how to spot 
intentionally misleading data or 
behaviors

○  Defenses against such attacks
■ preemptively locate vulnerabilities 

and craft more flexible learning 
algorithms

https://deepai.org/machine-learning-glossary-and-terms/adversarial-machine-learning



Adversarial biometric

Chaos Computer Club (CCC), demonstrated that a fingerprint of the 

phone user, photographed from a glass surface, was enough to create a 

fake finger that could unlock an iPhone 5s secured with TouchID.

Fingerprint images coming from a live (left side) and a fake finger 

(right side), almost indistinguishable.

Fake fingers provided by PRA Lab for the ICB 2013 – Spoofing 

Challenge

https://www.euronews.com/2014/03/17/behind-the-mask-of-biometric-security?jwsource=cl

http://www.tabularasa-euproject.org/evaluations/tabula-rasa-spoofing-challenge-2013
https://www.euronews.com/2014/03/17/behind-the-mask-of-biometric-security?jwsource=cl


Adversarial Image

 [Sharif et al (ACM CCS 2016) -Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition]



Adversarial Image

 [Brown et al  2017 -Adversarial Patch]



Adversarial audio

https://nicholas.carlini.com/code/audio_adversarial_examples/

 Mozilla implementation of DeepSpeech.

 [Reveal Transcription] “okay google browse to evil dot com”

 [Reveal Transcription] “without the dataset the article is useless”

 [Carlini et al -Audio Adversarial Examples: Targeted Attacks on Speech-to-Text]

https://nicholas.carlini.com/code/audio_adversarial_examples/
https://github.com/mozilla/DeepSpeech
https://nicholas.carlini.com/code/audio_adversarial_examples/
https://nicholas.carlini.com/code/audio_adversarial_examples/


What are adversarial examples?

Puppy or Muffin? SheepDog or Mop?

Adversarial examples are inputs to machine learning models that an attacker has intentionally designed 
to cause the model to make a mistake; they’re like optical illusions for machines.
https://openai.com/blog/adversarial-example-research/



Categorization of adversarial attacks

● Goal:
○ Error generic -> untarget attacks

○ Error specific -> target attacks

● Capability
○ Poison

○ Evasion

● Knowledge
○ White box

○ Black box



Attacker’s goal

● Error Specificity: 
○ sample misclassified as a specific class or misclassified as any of the classes 

different from the true class

Error-generic Error-specific

Closest class

Target class

Melis et al. 2017. Is Deep Learning Safe for Robot Vision?



Attacker’s capability

● Poisoning: 

○ Training-time

● Evasion: 

○ Test-time

Data Training Model

Evasion

Poisoning



Attacker’s capability

● Injection of bad data into the model’s training ● A perturbed example is create to be misclassified by the 

model

○ e.g., spam emails -try a number of different email 

contents against the model and discover a way to get 

their spam email classified as innocuous.



Poisoning

Strategies:
● Data modification:

○ Label modification  of training data
■ [Biggio et al 2011 -Support Vector Machines Under Adversarial Label Noise]

● Data injection:
○ Augment data with adversarial examples

■ [Barreno et al 2001 - Can machine learning be secure?]

● Logic corruption:
○ The adversary has to ability to  meddle with the learning algorithm

■ [Kloft and Laskov 2010 - Online Anomaly Detection under Adversarial Impact]



Poisoning

Data Training Model

“Giuseppina Andresini”



Poisoning: data injection

Data Training Model

“Jennifer Lawrence”

Jennifer Lawrence

30



Poisoning: data modification

 [Biggio et al (2011) -Support Vector Machines Under Adversarial Label Noise]



Poisoning: data modification

 [Biggio et al (2011) -Support Vector Machines Under Adversarial Label Noise]



Poisoning: deep neural network 



Evasion: attacker’s knowledge

● White box attacks:
○ Knowledge about structure and parameters of the target model

● Gray box attacks: 
○ Knowledge about feature representation or learning algorithm

● Black box attacks:
○ No knowledge about  feature representation and parameters of the model



White box attacks

● Fast Gradient Sign Method (FGSM) - 2015

● Jacobian Based Saliency Map (JSMA)  -2016

● DeepFool - 2016

● Carlini & Wagner - 2017

● …….



Training neural network

Goal: finding the minimum of this loss 

function is equivalent to finding a good set of 

network parameters.

How: differentiate this loss with respect to 
the parameters (theta) . Update the 
parameters such that the loss on that 
sample will decrease.



Adversarial sample

Goal: increase the loss of the model 

on the sample x



Adversarial sample

Let us consider a sample (x, y)  and a model F that maps x to a 

predicted class label y’.

An adversarial sample x
adv  

for an original sample x is defined as:

x
adv 

= x+η where η is a small perturbation added to the input

such that f(x
adv

) ≠ y

Model f

Model f

y’=F(x) 

y’
adv

=F(x
adv

) 

η
+ ≠Attack goal:target or untarget



Adversarial attacks: norm

Given an original sample x an adversarial attack aims to find an 

adversarial example x
adv  

x
adv 

= x+η where η is a small perturbation added to the input

with ||x - x
adv

|| =||η || < ε
● The constraint has the objective of disallowing perturbations 

which could make x unrecognisable (imperceptible perturbation) 
○ without altering much the original sample, attacks can perturb a few 

pixels strongly (L
0
), all pixels slightly (L∞) or a mix of both (L

1
 and L

2
)

[Kotyan et al 2020 Adversarial Robustness Assessment: Why both L0 and L∞ Attacks Are Necessary]

perturbation bound



Adversarial attacks: norm

● ε (pertubation bound) is measured with a mathematical norm
○ L

0
 :  minimize the number of elements (pixels) modified in x

adv
 such that x≠x

adv
■ e.g., in sticker added to stop-sign all the background is preserved only a tiny fraction of the 

environment is modified
○ L

1
:  minimize the Manhattan distance (sum of the total perturbation values) for each 

pixel to create the adversarial sample.
■ L

1
=|x1-x1

adv
|+|x2-x2

adv
|+.....+|xn-xn

adv
|

■ Attack quite uncommon
○ L

2
 :  minimize Euclidean distance (MSE) for each pixel as upper bound to create adv. 

sample
■ L

2
=⎷(x1-x1

adv
)2+(x2-x2

adv
)2+.....+(xn-xn

adv
)2

■ Commonly attack

○ L∞ 
: what  is the maximum value/change to any of the pixels in the x

adv
 image

■ l∞=max(|x1≠x1
adv

|+|x2≠x2
adv

|+.....+|xn≠xn
adv

|)



Evasion attacks: norm

● Different meaning:
○ L

0
:
  
a pixel that changes by 0.0001 is as influential as one that changes by 100, since 

the metric only account the number of pixels to change

○ L∞ 
:  the pixel with the maximum change is taken into account.

■ This norm is the commonly used in adversarial attacks



Adversarial attack: norm

[Shafahi et al 2020 Are adversarial examples inevitable?]

Norm: way to measuring the small change in original samples to create 
adversarial samples (distance from original sample)



Adversarial attack: norm

Way to measuring the small change in original samples to create adversarial samples

Norm bound?

Access to 
gradient?

L0 L1 L2 L∞

Untarget Carlini Wagner
DeepFool

PGD
FGSM
BIM

Target JSMA



Fast Gradient Sign Method (FGSM)

[Goodfellow et al 2015 Explaining and Harnessing Adversarial Examples]



Fast Gradient Sign Method (FGSM)

Goal: maximize the loss for the constructed adversarial sample

X
adv

= X + η with respect to the true label y

max L (F(x+η), y)

with ||η ||∞ < ε

[Goodfellow et al 2015 Explaining and Harnessing Adversarial Examples]

● Single step: perturbation is computed 
once by following the gradient of the 
function F

● Constraint optimization: the attack 

applies a bound equal to L∞ 

instead of optimizing the parameters 
to decrease loss (with images 
constant) we optimize the image 
pixels to increase loss (constant 
parameters)



Fast Gradient Sign Method (FGSM)

Adversarial example: X
adv

= X + η

η = ε sign(∇xL(x, y, W))

[Goodfellow et al 2015 Explaining and Harnessing Adversarial Examples]

Gradient loss function with respect to the image x for the true 
label y

small scalar
 (e.g., 0.1, 0.007)

Perturbation

distort pixels in the opposite 
direction of the loss with respect 
to the target class y



Iterative multistep algorithms

● FGSM is a single-step gradient update : limits the power of 

attack

● More powerful: iterative object optimization running steepest 

descent for multiple iterations

● Two extension of FGSM:
○ BIM

○ PGD



Basic Iterative Method (BIM)

● BIM is an extension of  FGSM
○ Add noise in multiple iterations with a step size α
○ After each iteration the result is clipped to ensure that the perturbation 

is within ε-neighbourhood of original sample x (maximum perturbation 

for each pixel)

[Kurakin et al 2017 Adversarial Sample in Physical World]

x
adv

t=Clip 
x,ε{ x

t-1
adv

+α·sign(∇
x
 L(f(xt-1

adv
 ),y))}

t =  number of 
iterations

a = step size of 
iteration         x0

adv
= x

Clip 
x,ε{xadv

}=min{ 255, x+ε, max{0, x- ε, x
adv

}}



Basic Iterative Method (BIM)

[Kurakin et al 2017 Adversarial Sample in Physical World]



Project Gradient Descent (PGD)

PGD is an extension of BIM , where after each step of perturbation, 

the adversarial example is projected back onto the 𝜖-ball of x 

(decided by norm) using a projection function Π

[Madry et al 2019 Towards Deep Learning Models Resistant to Adversarial Attacks]

xt
adv

=Πϵ (x
t-1+α·sign(∇

x
 L(f(xt-1 ),y)))

α=gradient 
step size



Project Gradient Descent (PGD)

● Gradient Descent:is a standard way to solve 

unconstrained optimization problem
○ min

x ∊ R 
f (x) → any x in R can be a solution

● Project Gradient Descent:  is a standard way 

to solve constrained optimization problem.  
○ min

x ∊ Q 
f (x) → not any x in R can be a solution 

but inside the set Q

○ given a point x, PGD try to find a point in Q 

which is closest to x

[Madry et al 2019 Towards Deep Learning Models Resistant to Adversarial Attacks]



Project Gradient Descent (PGD)

PGD is an extension of BIM , where after each step of perturbation, 

the adversarial example is projected back onto the 𝜖-ball of x 

(decided by L norm) using a projection function Π

[Madry et al 2019 Towards Deep Learning Models Resistant to Adversarial Attacks]

xt
adv

=Πϵ (x
t-1+α·sign(∇_x L(h(xt-1 ),y)))

Different from BIM, PGD uses random initialization for x 

for each iteration  by adding random noise from a 

uniform distribution with values in the range (-ϵ,ϵ)



Project Gradient Descent (PGD)

[Machiraju et al 2021. Bio-inspired Robustness: A Review. ￼]



Jacobian-based Saliency Map Attack (JSMA)

[Wiyatno et al 2018 Maximal Jacobian-based Saliency Map Attack]

t = target class

● JSMA different from FGSM that alter 
all pixel uses L

0
  norm that greedily 

modifies pairs of pixels at a time.
○ using a saliency map, which shows 

an impact each pixel has on the 
classification result.

○ A large value means, that changing 
this pixel will have a significant 
impact on the outcome of the 
classification.

● JSMA is a target attack -> goal to create an adversarial sample that is misclassified in a 
specified class



JSMA: saliency map

[Christopher Kanan (2022). Image Descriptors / Features and Saliency Maps ]

● Saliency Map: visual explanation of  the predictions 
of a classifier
○ gradient of  each input feature xi (e.g., each 

pixel) to the class score (i.e., how influential to 
predict a particular class c)

○ y’(x) = arg max
c
 f(x)(c) ) where f(x) is the 

softmax probabilities vector predicted by the 
model.



JSMA: adversarial saliency map

[Christopher Kanan (2022). Image Descriptors / Features and Saliency Maps ]

● Adversarial saliency map: visual explanation of  
which input features should perturb in order to 
predict the adversarial sample as a target class.

● Adversary want to misclassify a sample x that is 
assigned to a target t
○ f

t
(x) must be increased while the confidence for 

f
j
(x) for all other classes j ≠ t  decrease until 

t=arg max f(x)



JSMA

S (x,t) = measure how a feature(xi ) is positively correlates with t, while also negatively 
correlates with all other classes  j ≠ t

How much F
t
(x) will increase and F

j
(x) will decrease 

given a modification of the input feature i

Modify salient pixels pair iteratively

rejects input with a negative derivative or an overall positive derivative on other classes. 



DeepFool

Compute a minimal norm adversarial perturbation for a given image in iterative manner, 

to find the decision boundary closest to the normal sample

Perform steps by linearly approximate the decision function, according to the l
2
 norm

Perturbation is small since gradient is orthogonal to the boundary

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]



DeepFool for binary classifier

● Using a linear binary classifier, that the robustness of a model (f) for an input x
0
 is equal to the 

distance of x
0
 to the hyperparameter plane (which separates the 2 classes)

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]

r
*
(x)=

● The minimal perturbation r*(x) to change the classifier’s decision must project the input image 
of x

0
 orthogonal to the hyperplane of classification

r*(x)=

L
2
 norm

Gradient

Output 

sign inverted so the 
loss of the classifier 𝑓 
is increased



DeepFool

● !!!Misclassification is not guarantee since models are not linear in nature

○ To alleviate this issue, the algorithm works iteratively and adds the previous perturbation to the 

next perturbation, which is performed until the label changes or max iterations are reached 

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]

1. Start and continue loop while the true label and the label 
of the adversarially perturbed image is the same.

2.  Calculate the projection of the input onto the closest 
hyperplane (minimal perturbation)

3. Add that perturbation to the image and test



DeepFool for multiclass

Multiple binary classifiers
● The minimum perturbation needed would be from 

the closest hyperplane to x
0
. 

● Given there are multiple classes, the loss and 
backpropagation would need to be computed for 
each class label allowed by the function. 

● When finding the minimum perturbation, the 
difference must be taken between the computed 
values for each label and the computed values for 
the label of the original prediction. 

true classmost probability after the true class

Closest hyperplane



DeepFool for multiclass

Multiple binary classifiers

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]

● The minimum perturbation r
*
(x

0
) is the vector that project 

differences of the classifier output and the gradients of the 
outputs, as well as taking the absolute value of the model 
output.



DeepFool for multiclass

Multiple binary classifiers

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]

1. Store the difference between the original gradients and the 
gradients of each of classes (w

k
) and the difference between 

labels (f
k
)

2. Calculate the minimal vector that projects c on the closes 
hyperplane 

3. Total perturbation is the sum over all calculated 
perturbation



DeepFool vs FGSM

Predict: turtle
DeepFool

True label: whale Predict: turtle
FGSM



Carlini Wagner (CW) attack

● Goal: find a small change η that make an image x misclassified but so that 

the result is still a valid image/example

○ All the other attacks were using constraints on perturbation (𝜖), here 

the score is used as a penalizer, modulated by C.

● How close we are getting to being classified as t

[Carlini et al 2017 Towards Evaluating the Robustness of Neural Networks]

f=[1-C(x+η)
t
]

Probability of x+η to be classified as t.
If the probability is low value of f is closer to 1 value of f is closer to 1 whereas when it is classified 
as t, f is equal to 0.

C(x+η)
t 
=t is satisfied if f(x+η) ≤ 0 is satisfied



Carlini Wagner (CW) attack

● How close we are getting to being classified as t

[Carlini et al 2017 Towards Evaluating the Robustness of Neural Networks]

f(x’) = max (max{Z(x’)i } - Z(x’)t, -k}
with i ≠ t

vector of 
probabilities for 
target class

highest 
probabilities for 
non target 
classes

difference between “what the model thinks the current image most probably is” and “what we want it to 
think/ misclassified target”. So when the model thinks that this image is what we want it to think, this value 
is negative (the probability of target class is higher than any of the non target classes)

lower limit of loss, at last the value in -k 
will always hold



Comparison

[Sanglee et al 2020 On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image Classification]



Evasion: black box

● Transferability based black-box attack :
○ train a substitute model, and craft adversarial examples against the substitute, 

and transfer them to a victim model

● It is very likely that an adversarial example of one network can 

fool another network

● Transferability depends on the type of attack

○ e.g. examples built with FGSM are highly transferable



Evasion: Black box

Training a local model to substitute for the target DNN, using inputs synthetically 

generated by an adversary and labeled by the target DNN.

[Papernot et al. 2017 Practical Black-Box Attacks against Machine Learning]



Evasion: black box

● train a substitute network based on the input/output

● pairs of the target network

● build adversarial examples for the substitute network

● attack the target network with the examples built for the 

substitute network

● due to transferability the attack is very likely to succeed



Adversarial transferability
White box scenario: 
access to the model

Target model gibbon
Adversarial 
sample

Transferability captures the 
ability of an attack against a 
machine-learning model to be 
effective against a different, 
potentially unknown, model 
that was
learned for the same problem 
(this was observed in the 
context of deep learning, as 
well as for
other learning paradigms)

[Demontis et al 2019 Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks]
[Papernot et al 2016 Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples]



Defense Strategy

● Reactive defense

● Proactive defense



Reactive defense

● Timely detection of novel attack

● Frequent classifier retraining

● Verification of consistency of classifier against training data and 

ground-truth label

Biggio et al. 2014  Security Evaluation of Pattern Classifiers under Attack



Proactive defense: simulating attack

● Gradient hiding

● Adversarial training

Biggio et al. 2014  Security Evaluation of Pattern Classifiers under Attack



Proactive defense: gradient hiding

● Gradient masking: 
○ reduce the sensitivity of models to small changes by finding adversarial 

direction using a substitute

○ smooths the model’s decision surface in adversarial directions

○ defensive distillation 

Papernot al. 2016  Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples
Papernot et al 2016 Towards the Science of Security and Privacy in Machine Learning



Distillation vs Defensive distillation

● Distillation was first introduced by Hinton et al. in, where the goal was for a 

small model to mimic a large, computationally expensive model.

○ Teacher and student

● Defensive distillation has a different goal:

○ two model that are the same but one model is trained to predict the 

probabilities output by another model that was trained earlier

○ smooths the model’s decision surface in adversarial directions exploited by 

the adversary.

○ The second distilled model is more robust to attacks such as the fast 

gradient sign method or the Jacobian-based saliency map approach 

[Papernot et al 2016- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks]
[Hinton at al 2014 Distilling the Knowledge in a Neural Network]

https://arxiv.org/abs/1511.04508


Defensive Distillation

Training using the probability distribution as the target, not just the argmax class label

[Papernot et al 2016- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks]

Same 
architecture

Soft label



Defensive distillation is not robust

● Carlini et al. (2016)  prove that  with a slight modification to the standard 

adversarial attacks, distilled networks can be attacked

● Defensive distillation work on attacks that use gradient to approximate each 

pixel’s importance to modify to create adversarial sample (e.g., JSMA)

● Carlini et al. propose  attacks using the logits to create adversarial sample ( not 

softmax)

○ instead of taking the gradient of the inputs to the softmax, they take the 

gradient of the actual output of the network

○  For T = 100, attacks had 96.4% success rate while only changing on average 

36.4 pixels; works on all T from 1 to 100 

[Carlini et al 2016- Defensive Distillation is not robust to Adversarial Examples]



Extending defensive distillation

[Papernot et al 2017- Extending Defensive Distillation]



Proactive defense: adversarial training

● Introduce adversarial samples in training set to improve the 

robustness of the target model
○ [Szegedy et al 2013 - Intriguing properties of neural networks: inject adversarial samples and modified its labels]

○ Malik

● Punish misclassified adversarial image
○ [Huang et al 2016 - Learning with a Strong Adversary]



Adversarial training: data augmentation

● GAN (generative adversarial network)

● Adversarial autoencoder



GAN

[Goodfellow et al 2014- Generative Adversarial Networks]



GAN

Painting above was made by a GAN and sold for 
$432 thousand

https://time.com/5435683/artificial-intelligence-painting-christies/

https://time.com/5435683/artificial-intelligence-painting-christies/


Adversarial autoencoder

[Makhzani et al 2016- Adversarial autoencoders]



Adversarial training: feature robustness

[Ilyas et al 2019- Adversarial Examples Are Not Bugs, They Are Features]



Adversarial training: feature robustness

● Goal: robust ML as humans classification

● Classifiers tend to use any available signal 

to do so, even those that look 

incomprehensible to humans to generalize

● Adversarial examples can be attributed to 

the presence of non-robust features:

○ highly predictive

○ incomprehensible to humans.

[Ilyas et al 2019- Adversarial Examples Are Not Bugs, They Are Features]



Adversarial training: feature robustness

Standard training: use all of features, maximize accuracy

Adversarial training: use only single robust features (at the expense of accuracy)

[Ilyas et al 2019- Adversarial Examples Are Not Bugs, They Are Features]

Under adversarial perturbation 



XAI for feature robustness

● AI-based systems (e.g., Deep Learning-based systems ) are 
accurate, but they usually learn black-box models

● Unjustifiable and misleading predictions may make systems 
vulnerable to attacks
○ by leading to unsecured critical systems

● Explainable and interpretative results make AI solutions more 
robust and trustworthy
○ Transparency of model decisions is  mandatory to:

■ provide justifiable decision making 
■ produce accurate explanations of decision models’ behavior
■ help to design effective countermeasures 



XAI taxonomy 
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XAI taxonomy

Can it explain 
more models?

Model-agnostic Model-specific

Does it explain only one 
sample or the entire model?

Global Local 

When is it used?

Post-hoc Intrinsic 



Explanation
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Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, IEEE International Conference on Computer Vision (ICCV), 2017



Explanation of network flow attacks

NSL-KDD dataset
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Top-1 Grad-CAM 
(attack)

Top-2 Grad-CAM 
(attack)

Caforio et al., Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems. DS 2021, 2021 



Dalex 
(moDel Agnostic Language for Exploration and eXplanation)

• Model agnostic and post-hoc technique 

• To understand both the global and local structure of black box models
• To explain the behavior of models by measuring the global relevance of 

features on decisions
○ It uses permutation-based feature-importance

■ It permutes the value of each feature
■ It computes a loss function before and after the permutation
■ If the loss increases  then the feature is important
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Przemyslaw B. DALEX: Explainers for complex predictive models in R, Journal of Machine Learning, 2018



Robust feature selection with XAI

• Adversarial training to learn robust deep neural models
• Post-hoc global explanations with DALEX

○ To perform feature selection by extracting the top-k features ranked by DALEX on 
the training set
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Al- Essa et al, XAI to explore robustness of features in adversarial training for cybersecurity . Accepted to 26th International Symposium on methodologies for Intelligent System (ISMIS) 2022



Robust feature selection with DALEX
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Al- Essa et al, XAI to explore robustness of features in adversarial training for cybersecurity . Accepted to 26th International Symposium on methodologies for Intelligent System (ISMIS) 2022

Legend
(1) T+A (FGSM) explains T
(2) T+A (FGSM) explains A
(3) T+A (BIM) explains T
(4) T+A (BIM) explains A
(5) T+A (PGD) explains T
(6) T+A (PGD) explains A

MalDroid20 CICIDS17



Robust feature selection with DALEX
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• B: which discards both adversarial training and XAI-based feature selection
• T+A: which discards XAI-based feature selection
• T+A+XAIFS (n): which implements both adversarial training and XAI-based 

feature selection (with n number of feature selected)

 

Al- Essa et al, XAI to explore robustness of features in adversarial training for cybersecurity . Accepted to 26th International Symposium on methodologies for Intelligent System (ISMIS) 2022
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SHAP 
(SHapley Additive exPlanation)

• Model agnostic and post-hoc technique 

• It produces local explanations of decisions for single samples

• Based on the game theory, Shapley Values
○ SHAP values measure the average contribution of each feature  on a decision 

and  show whether a feature has a positive or negative effect on a decision 
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Lundberg et al., A unified approach to interpreting model predictions, in Advances, Neural Information Processing Systems, 2017



Improving accuracy with SHAP 

● Combination of Adversarial Training and XAI 
○ Adversarial training with FGSM to create a new deep neural model robust to 

adversarial samples

○ SHAP to extract the local feature importance for each training sample 

○ Fine-tuning of the the deep  neural model driven  by XAI values
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Al-Essa et al.(B) , An XAI-based adversarial training approach for cyber-threat detection. Accepted in  IEEE CyberSciTech/ PICom/ DASC/ CDBCom, 2022 



Improving accuracy with SHAP 

● Analysis of SHAP explanations for the class Banking (testing samples) on 
Maldroid20 dataset
○ A decision yielded with a model trained using Adversarial training and XAI-based 

fine-tuning is better separated from a decision yielded with a model trained without 
fine tuning
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Without Fine-tuning With Fine-tuning
Al-Essa et al. , An XAI-based adversarial training approach for cyber-threat detection. Accepted in  IEEE CyberSciTech/ PICom/ DASC/ CDBCom, 2022 



XAI to detect adversarial samples

● Fidel et al. (2019) use SHAP to extract the heatmaps of both genuine 
and adversarial samples 
○  The heatmaps are used as signatures to detect adversarial samples
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Fidel G. et al ., When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures.ArXiv 2019



XAI to create adversarial samples 

● Kuppa et al. (2021)  propose a method to create adversarial sample with 
XAI:
○ Identify robust features that influence the class decision boundaries of the classifier
○ Perturbate robust features to create adversarial sample
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Kuppa et al.,  Adversarial XAI Methods in Cybersecurity, .IEEE Transactions on Information Forensics and Security, 2021



Conclusion

Why Machine learning is vulnerable to adversarial attacks?

● Deep Neural network is data hungry
○ [Simon-Gabriel et al 2018 -Adversarial Vulnerability of Neural Networks Increases with Input Dimension]

● Nonlinearity of deep learning models
○ Overfitting of training data

○ Insufficient generalization ability to predict unknown data

● Adversarial vulnerability is a direct result of our models’ 

sensitivity to well-generalizing features in the data:
○ Classifiers tend to use any available signal to do so, even those that look 

incomprehensible to humans

○ Different classifiers tend to find the same set of relevant features

■  that is why attacks can transfer across models!



Conclusion

● Defensive strategy:
○ Know your enemy

■ Attackers’ goal and capability

○ Build machine learning model able to detect zero-days 

attacks
■ Reducing overfitting: defensive distillation, dropout

○ Design for attacks
■ Adversarial training

■ Feature robustness (e.g., XAI)



Classify this: is a cat or a dog?
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