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e Alis the new electricity

o Al is the new electricity. It will transform every industry
and create huge economic value.

o Technology like supervised learning is automation on
steroids. It is very good at automating tasks and will have
an impact on every sector — from healthcare to
manufacturing, logistics and retail |
(cit. Andrew NG)



Deep Learning S

Modern Al is:
Numerical Optimization + Data

v

Deep Learning, Machine Learning

Deep Learning (DL) is:

1. A branch of Machine Learning (ML)

2. A set of algorithms that attempt to model high-level abstractions
representation of data from raw data

3. Inspired by the function of the biological brain

4. Composed by multiple processing layers of multiple non-linear
transformations



DL is a branch of ML 52

« Data preparation:

— ML requires structured data as input
* Human intervention to identify the features based
on the data type

— e.g., for images pixel value, shape, rotation ARTIFICIAL INTELLIGENCE
— DL extract the high-level abstractions A program that can sense, reasan,

act, and adapt

representation of data from raw data without
human intervention

 MACHINE LEARNING
. Approach Vol diorienidighachin o)
ML need to human intervention to provide
adjustments to improve the accuracy of the DEEP
model _ LEARNING
— DL performs an end-to-end learning : st o uxios WA Ea
* From raw data to a task (e.g., classification) the model kel il

learn how to do it automatically




End-to-end learning

Source: https://www.deeplearningbook.org/
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e DL models extract learns representations

(features) from the image in automatically
manner.

o For each hidden layer, given the pixels:

m the 1st hidden layer identify edges, by comparing
the brightness of neighboring pixels.

m the 2nd hidden layer search for corners and
extended contours (as collections of edges)

m the 3rd hidden layer detect parts of specific
objects (finding specific collections of contours
and corners).

m Finally, this description of the image in terms of
the object parts it contains is used to recognize
the objects present in the image.



Deep learning : a recap
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Learning by trial-and-error
e Trial:
o Compute the prediction of a given input
data
e Evaluate:
o Provide afeedback of the correctness of the
prediction f
o Comparing the actual output with the (i) ®# ™ Yored
expected input o . . - (Activation function)
m loss=y-y (Weights)

e Adjust:
o The weights are iteratively adjusted in order
to reduce the error

The NN is refined over time to find the weights that minimise the error on the training
and provide more accurate predictions

Loss



Loss function il

e The loss function measures how much the predicted output label is
different from the expected output (ground truth label).
* The error at each hidden layer is an average of the evaluated error

* The choice of loss function is sensitive to the application task:

Mean squared error (MSE) Cross entropy loss

® Used in classification task

® Measures the performance of a classification model
whose output is a probability between 0 and 1 by
increasing its value when the predicted probability
diverges from the actual label.

® The most commonly used loss
function for regression

e Squared differences between true
and predicted values

Lmse (y, :&) — Hy — :&‘ ‘2 Lmulticlasscrossentropy<y7p(@)) - = Z yCZOQP(@)C



Training a NN with backpropagation R

KDD
® |n single-layer NNs the error (loss) is computed as
a direct function of weights

e In multi-layer NNs the loss is a composition

function of the weights in earlier layers:
o The gradient of composition function is performed

by using the backpropagation algorithm:
m Two phases: forward and backward



Training: forward phase

e The inputs are fed into NNs

e Computation across layers using the current set of weights
e Final prediction:

o Compare the output with training

o Compute the derivative of the loss with respect to the output
Feed-forward

Hidden Layer h' Hidden Layer h? Output Laye



Training: backward phase

® Learn the gradient of a loss function with respect to the weights

o Using the chain rule

o The gradient is used to update the weights
o Starting from output layer to input

AL

Input Layer <

o

Hidden Layer h' Hidden Layer h? Outp

=

—/

put Layer

Backward



Gradient Descent

e First-order iterative optimization algorithm

O Goal: find a local minimum of a differentiable function (loss function)

o To train NNs and update the weights
m To find the weights that minimize the cost function (loss function)
m Partial derivative with y respect to its inputs x (dy/dx)

cost?

local minima

Global minimum
(optimal solution)

KDDE




Gradient Descent ol

® A gradient measure how much the output of a function changes if you

change the input
o Measures the change in all weights with regard to the change in error.

o Slope of a function
m The steeper the slope and the faster a model can learn.
m [f the slope is zero, the model stops learning.

ONE DOES HIIT‘SIMI'IY

o= 1V
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Gradient Descent

® Let us consider a cost function
y=f(x)=L(x,y)
® Goal: minimizing f(x)
® On each iteration:
o Compute the slope (gradient) of f(x) at
current point
Update the parameters in the opposite
direction of the gradient

©)

the parameters where the gradient gives the
direction of the steepest ascent

by moving x in small steps with opposite sign of
the derivative

the size of the step on each iteration is
determined by the learning rate a

Until we reach a local minimum

Cost
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W —aVwL(z,y, W)



Gradient Descent

® Learning rate: for gradient descent

o scale the magnitude of our weight updates in order
to minimize the network's loss function

2.00
Too low Just right Too high i85
150
1(0) 1(6) 1(0) 125
* 1.00
/ 0.75
0.50
—
0.25
0.00
9 0 6
A sm.all learning rate The opt.imal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
befqre reach!ng the minimum point which lead to divergent
minimum point “behaviors

W —aVwL(z,y, W)



Chain rule ot

® In multi-layer NN the loss is a composition function of the weights in

earlier layers
® The gradient is computed using backpropagation algorithm that leverages

a chain rules
o It calculates the error gradient in terms of summations of local-gradient

products _
y =g(f(z))

dg _ dg df LY
de df dx

source: ﬁ\ f

https://bit.ly/3Gm5Ap5




Deep Learning : applications




Object classification and object detection %8

Classification Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

N k>
Y
Single object Multiple objects
Is this a cat? What is there in image and Which pixels belong to

where? which object?



Text

Language Translation

Encoder
Input
sentence
Self-attention
Feed-forward

The OO
woman & CCIIIIITO
took & CITIIIITO®
the o OIIIIO®
empty ® OCITTITO#

The_ The_
woman_
took_ took_
the_ the_
empty_ empty_
magazine magazine

17/ %

Object recognition: speech

Audio nput
“Hello World™ Irpst ekias Cutsut
v o/ :
e

Feature Extraction

v A1 OO ...

Automatic handwriting generation

‘IL Wears V}U’L L\/n/'l{#ﬂm éy me

\\' was nojf wntten b\/ Me.

ll/’ was no+ weriHen ﬁ),] Mme



Art

Colorize Black & White Images

Style transfer




Images

Faking faces and video

b) Our result

Synthesizing Obama: Learning Lip Sync from Audio
https://www.youtube.com/watch?v=9Yq67CjDqvw




Images

Image reconstruction

KDDE




Images

Face creation

source

destination

Coarse styles copied




Self driving

Self driving cars




Cybersecurity ot

Cybersecurity: intrusion detection, malware detection, fraud detection...

BIOMETRIC 1D SEARCH

- Credit Card Fraud Detection

=







Al in Cybersecurity s

® Cybersecurity products are increasingly incorporating Artificial

Intelligence (Al) technologies (e.g., Machine Learning, Deep
Learning)
o PRO:

* Increase the ability to detect attacks

* Reduce the time spent for threat detection and incident responses
o CONS:

* Attackers use Al to better understand their targets and design new attacks
* Al systems are vulnerable to adversarial attacks




Adversarial machine learning Shis

e Study of attacks on machine
learning (and deep learning)

Learning phase

d |g0 I’Ith ms Training | pachine Learning
. . . ,  data Algorithm
o Collection of techniques to train e M
neural networks on how to spot =[] 7 7 e
. . . . a\7h
lntentlonally mlsleadlng data or ® & X """"""""""""""" orodicion phase.
. v

behaviors Advacasty :
H 1 _New Model Predictions
o Defenses against such attacks | ~data

m preemptively locate vulnerabilities
and craft more flexible learning
algorithms

https://deepai.org/machine-learning-glossary-and-terms/adversarial-machine-learning



Adversarial biometric L

Chaos Computer Club (CCC), demonstrated that a fingerprint of the
phone user, photographed from a glass surface, was enough to create a
fake finger that could unlock an iPhone 5s secured with TouchlID.

iPhone 5s fingerprint sensor 'hacked' within days of launch

A group of German hackers has found a way to bypass Apple's TouchID, and claims
that fingerprint biometrics is an unsuitable method of access control.

KDDE

Fingerprint images coming from a live (left side) and a fake finger
(right side), almost indistinguishable.

charged Photo: ALAM

Fake fingers provided by PRA Lab for the ICB 2013 — Spoofing
Challenge

By Sophie Curtis
9:33AM BST 23 Sep 2013
{27k olowers |

The group, known as the Chaos Computer Club (CCC), demonstrated
that a fingerprint of the phone user, photographed from a glass surface,
was enough to create a fake finger that could unlock an iPhone 5s
secured with TouchID.

iPhone

Technology » Apple »
Technology News »
Sophie Curtis »

F 1 https://www.euronews.com/2014/03/17/behind-the-mask-of-biometric-security ?jwsource=cl


http://www.tabularasa-euproject.org/evaluations/tabula-rasa-spoofing-challenge-2013
https://www.euronews.com/2014/03/17/behind-the-mask-of-biometric-security?jwsource=cl

Adversarial Image e

[Sharif et al (ACM CCS 2016) -Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition]
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Classifier Input a Classifier Output
e :
place sticker on table
» banana sl_ug snail orange

Classifier Output

BEE—
toaster banana piggy_bank spaghetti_

[Brown et al 2017 -Adversarial Patch]



Adversarial audio el

https://nicholas.carlini.com/code/audio adversarial examples/

Mozilla implementation of DeepSpeech.
[Reveal Transcription] “okay google browse to evil dot com”

[Reveal Transcription] “without the dataset the article is useless”

[Carlini et al -Audio Adversarial Examples: Targeted Attacks on Speech-to-Text]


https://nicholas.carlini.com/code/audio_adversarial_examples/
https://github.com/mozilla/DeepSpeech
https://nicholas.carlini.com/code/audio_adversarial_examples/
https://nicholas.carlini.com/code/audio_adversarial_examples/

o000,
What are adversarial examples? Vol
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Puppy or Muffin?

SheepDog or Mop?

Adversarial examples are inputs to machine learning models that an attacker has intentionally designed

to cause the model to make a mistake; they’re like optical illusions for machines.
https://openai.com/blog/adversarial-example-research/



Categorization of adversarial attacks

e Goal:
o Error generic -> untarget attacks
o Error specific -> target attacks
o Capability
o Poison
o Evasion
o Knowledge
o  White box
o Black box



Attacker’s goal i

o Error Specificity:
o sample misclassified as a specific class or misclassified as any of the classes

different from the true class
Target class

N

5 \Closest class

Error-generic Error-specific

Melis et al. 2017. Is Deep Learning Safe for Robot Vision?



Attacker’s capability

KDD
e Poisoning:
o Training-time
e Evasion:

O Test-time Cvasion

Poisoning @




Attacker’s capability

Injection of bad data into the model’s training

true model
/ poisoned
model

A )
o..‘.?'?"-.'..o
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KDDE
A perturbed example is create to be misclassified by the
model

O  e.g., spam emails -try a number of different email
contents against the model and discover a way to get
their spam email classified as innocuous.

Purtubrated
test sample

Evasion Attack



Poisoning

Strategies:
e Data modification:

©)

Label modification of training data

[Biggio et al 2011 -Support Vector Machines Under Adversarial Label Noise]

e Data injection:

©)

Augment data with adversarial examples

[Barreno et al 2001 - Can machine learning be secure?]

® Logic corruption:

©)

The adversary has to ability to meddle with the learning algorithm

[Kloft and Laskov 2010 - Online Anomaly Detection under Adversarial Impact]
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Poisoning

U

“Giuseppina Andresini”



Poisoning: data injection

Jennifer Lawrence

U

“Jennifer Lawrence”




Poisoning: data modification

untainted data tainted data

[Biggio et al (2011) -Support Vector Machines Under Adversarial Label Noise]




Poisoning: data modification T

Trairing data no pasoning ) Tranng data (pasonad)

Backdoored s1op sign
(labeled as speedimit)

Backdoor | pasoning integrity attacks place mishibaled Yaining points n a regon of he
festure space by from the rest of Faning data. The leaning agonitm labeds such
region as desired, dlowing for subsequent invusions ! medassifcaions at test Sme

[Biggio et al (2011) -Support Vector Machines Under Adversarial Label Noise]



Poisoning: deep neural network

Training samples

Adversarial
regions

Adversarial
regions

regions

Adversarial

Class A

Class B




Evasion: attacker’s knowledge Vit

e White box attacks:

o Knowledge about structure and parameters of the target model

e Gray box attacks:

o Knowledge about feature representation or learning algorithm

e Black box attacks:

o No knowledge about feature representation and parameters of the model




White box attacks

Fast Gradient Sign Method (FGSM) - 2015
Jacobian Based Saliency Map (JSMA) -2016
DeepFool - 2016

Carlini & Wagner - 2017

KDDE
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Training neural network ot

Goal: finding the minimum of this loss
E Ji function is equivalent to finding a good set of

\ / network parameters.
 Li@,y,0) = (fo(@) ~y)°
| How: differentiate this loss with respect to

the parameters (theta) . Update the
parameters such that the loss on that
sample will decrease.

e 0 =0 — aVyL(z,y, 0)



Adversarial sample is

KDDE

Goal: increase the loss of the model

// on the sample x
() —
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Let us consider a sample (x, y) and a model F that maps x to a KPPE
predicted class label y’.

Adversarial sample

An adversarial sample x_, for an original sample x is defined as:

X . =X+l where ) is a small perturbation added to the input
such thatf(x ) #y

Modelf | — Y’'=F(x)

Modelf R adsz(Xadv)

Attack goal:target or untarget
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Adversarial attacks: norm S, e

SR
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Given an original sample x an adversarial attack aims to find an

adversarial example x_
X . =X+l where 1 is a small perturbation added to the input
with [ 1x-x,,, [1 =110 1] <€ ——
e The constraint has the objective of disallowing perturbations

which could make x unrecognisable (imperceptible perturbation)

o without altering much the original sample, attacks can perturb a few
pixels strongly (L), all pixels slightly (L) or a mix of both (L, and L))

[Kotyan et al 2020 Adversarial Robustness Assessment: Why both L, and L, Attacks Are Necessary]



Adversarial attacks: norm o iie

KDDE
® ¢ (pertubation bound) is measured with a mathematical norm

o L,: minimize the number of elements (pixels) modified in x_, such that x;'fxaoIV
m e.g., insticker added to stop-sign all the background is preserved only a tiny fraction of the

environment is modified

o L,: minimize the Manhattan distance (sum of the total perturbation values) for each

pixel to create the adversarial sample.
L=t [ [ XX
m Attack quite uncommon
o L, : minimize Euclidean distance (MSE) for each pixel as upper bound to create adv.
sample
o L=V(xat )P
m Commonly attack
o L_:what is the maximum value/change to any of the pixels in the x

m o |_=max(|x#Ex | H]CEC [+ [ XE )

adv |

] OIV)2+ ..... +(x"-x"

Lqy IMage



Evasion attacks: norm
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e Different meaning:
O o i

L_: a pixel that changes by 0.0001 is as influential as one that changes by 100, since
the metric only account the number of pixels to change
o L :

the pixel with the maximum change is taken into account

m This norm is the commonly used in adversarial attacks



Adversarial attack: norm oI e

Norm: way to measuring the small change in original samples to create
adversarial samples (distance from original sample)

lo-norm=5000
(sparse)

OriginCll |2_norm:’|0 |m'n0rm:0,05

egyptian cat traffic light traffic light traffic light
(28%) (97%) (96%) (80%)

[Shafahi et al 2020 Are adversarial examples inevitable?]



Adversarial attack: norm o, 8
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Way to measuring the small change in original samples to create adversarial samples

Norm bound?

Accgss to L, L, L, L
gradient? ©
Untarget Carlini Wagner | PGD
DeepFool FGSM
BIM

Target JSMA



Fast Gradient Sign Method (FGSM

+.007 x

“Danda” noise “gibbon”

577% confidence 99.3% confidence

[Goodfellow et al 2015 Explaining and Harnessing Adversarial Examples]



Fast Gradient Sign Method (FGSM) s

Goal: maximize the loss for the constructed adversarial sample
X, = X+ with respect to the true label y

instead of optimizing the parameters
to decrease loss (with images

max L (F(X+I7), y) /constant) we optimize the image

pixels to increase loss (constant

with | |Q ||, <€ parameters)

® Single step: perturbation is computed '
once by following the gradient of the :

+.007 x
function F
® Constraint optimization: the attack . —
. T sign(V,J(0,2,y)) 3
applies a bound equal to L P i B
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al 2015 Explaining and Harnessing Adversarial Examples]



Fast Gradient Sign Method (FGSM) e

Adversarial example: X_ =X +n

N
N = €sign(V.L(x, y, W)) erturbation

/ \ Gradient loss function with respect to the image x for the true
label y

small scalar

.g., 0.1, 0.007,
(e-g ) +.007 x

distort pixels in the opposite

direction of the loss with respect . x +
to the target class ’ e esign(Ve J(0, z, y))
& Y “panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al 2015 Explaining and Harnessing Adversarial Examples]



Iterative multistep algorithms ,
KDDE

e FGSM is a single-step gradient update : limits the power of

attack
e More powerful: iterative object optimization running steepest
descent for multiple iterations

e Two extension of FGSM:

o BIM
o PGD
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Basic Iterative Method (BIM) Vel

KDDE
e BIM is an extension of FGSM

o Add noise in multiple iterations with a step size a
o After each iteration the result is clipped to ensure that the perturbation
is within €-neighbourhood of original sample x (maximum perturbation

for each pixel) a = step size of

0 - iteration
X =
adv

t—l t-1 . t-1
X.qy =Clip X7, +arsign(V L(F(X, ).v))}

/ Clip  {x_, }=min{ 255, x+€, max{0, x- €, x_, }}

t = number of
iterations

[Kurakin et al 2017 Adversarial Sample in Physical World]



Basic lterative Method (BIM)

(b) Clean image (c) Adv. image, e = 4

[Kurakin et al 2017 Adversarial Sample in Physical World]

(d) Adv. image, € = 8
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Project Gradient Descent (PGD) =

KDDE

PGD is an extension of BIM , where after each step of perturbation,
the adversarial example is projected back onto the ¢-ball of x
(decided by norm) using a projection function I

High
S

Xt =M (x"+asign(V L(f(x*),y)))

™~

a=gradient
step size

[Madry et al 2019 Towards Deep Learning Models Resistant to Adversarial Attacks]



grad

ient descent.

Project Gradient Descent (PGD) 2

e Gradient Descent:is a standard way to solve o

unconstrained optimization problem =1

o min Rf (x) — any x in R can be a solution

e Project Gradient Descent: is a standard way

2 -5 6 1 2
projected gradient descent

to solve constrained optimization problem.
o mianQf (x) — not any x in R can be a solution
but inside the set Q
o given a point x, PGD try to find a point in Q

which is closest to x

[Madry et al 2019 Towards Deep Learning Models Resistant to Adversarial Attacks]



Project Gradient Descent (PGD) e

PGD is an extension of BIM , where after each step of perturbation,
the adversarial example is projected back onto the e-ball of x
(decided by L norm) using a projection function I \

Xt =M (xX*+a-sign(V _x L(h(x"),y)))

Different from BIM, PGD uses random initialization for x
for each iteration by adding random noise from a
uniform distribution with values in the range (-€,€)

Low
loss

[Madry et al 2019 Towards Deep Learning Models Resistant to Adversarial Attacks]
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a) "Dog" perturbed noise x127 "Red wine"

P Wt T T L W

b) "Dog" perturbed noise x127 "Toilet tissue"

p— Jp—

[Machiraju et al 2021. Bio-inspired Robustness: A Review. &



Jacobian-based Saliency Map Attack (JSMA) '-f"'-..';.'
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® JSMA is a target attack -> goal to create an adversarial sample that is misclassified in a

specified class t = target class

e JSMA different from FGSM that alter iterate
all pixel uses L, norm that greedily / \
modifies pairs of pixels at a time. S b= 8) (p*, q%)

O using a saliency map, which shows
an impact each pixel has on the
classification result.

o Alarge value means, that changing

this pixel will have a significant low /1,,/,
impact on the outcome of the \
classification.

[Wiyatno et al 2018 Maximal Jacobian-based Saliency Map Attack]



JSMA: saliency map ol
KDDE
e Saliency Map: visual explanation of the predictions

Butterfly Person

of a classifier

o gradient of each input feature x' (e.g., each
pixel) to the class score (i.e., how influential to
predict a particular class c)

o y'(x) =arg max_f(x)(c) ) where f(x) is the
softmax probabilities vector predicted by the
model.

[Christopher Kanan (2022). Image Descriptors / Features and Saliency Maps ]
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JSMA: adversarial saliency map

Butterfly Person

® Adversarial saliency map: visual explanation of
which input features should perturb in order to
predict the adversarial sample as a target class.
® Adversary want to misclassify a sample x that is
assigned to a target t
o f.(x) must be increased while the confidence for
fj(x) for all other classes j #t decrease until
t=arg max f(x)

[Christopher Kanan (2022). Image Descriptors / Features and Saliency Maps ]



JSMA el
KDDE

S (x,t) = measure how a feature(x') is positively correlates with t, while also negatively
correlates with all other classes j#t

rejects input with a negative derivative or an overall positive derivative on other classes.
\ .
. 0, 1f6t()<00r2#tax(m)>0
(z,)[i] =

F, :
gmt ‘Z 4t 8:c (z)|, otherwise

Ll e

Modlfy salient pixels pair iteratively

(P q) & How much F (x) will increase and Fj(x) will decrease

& given a modification of the input feature i
=

lm//: g([l> = 8

=
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DeepFool it

KDDE
Compute a minimal norm adversarial perturbation for a given image in iterative manner,

to find the decision boundary closest to the normal sample
Perform steps by linearly approximate the decision function, according to the I, norm
Perturbation is small since gradient is orthogonal to the boundary

Original Image Adversarial Image

Pred: lionfish Pred: hen
with 12.6 confidence.

with 21.4 confidence. Difference

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]
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DeepFool for binary classifier s
KNDE
e Using a linear binary classifier, that the robustness of a model (f) for an input X, is equal to the
distance of x, to the hyperparameter plane (which separates the 2 classes)

e The minimal perturbation r*(x) to change the classifier’s decision must project the input image
of x, orthogonal to the hyperplane of classification

F.A\X)= x W
«(X) PRI -
sign inverted so the 2 Gradient
loss of the classifier f ™~
L, norm

is increased 2

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]



DeepFool . ..5,.;:
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IHIMisclassification is not guarantee since models are not linear in nature
o To alleviate this issue, the algorithm works iteratively and adds the previous perturbation to the
next perturbation, which is performed until the label changes or max iterations are reached

Algorithm 1 DeepFool for binary classifiers

W N

A 00 Ny W

input: Image @, classifier f.
output: Perturbation 7. 1. Start and continue loop while the true label and the label

Initialize &g < @, i < 0 / of the adversarially perturbed image is the same.
while sign(f(x;)) = sign(f(xq)) do

: f(=i)
T, < — IV F(z )”va($1)
Lit1 &+ T

i i+ 1. \
: 3. Add that perturbation to the image and test

end while
returnr = ) . 7;.

2. Calculate the projection of the input onto the closest
hyperplane (minimal perturbation)

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]



DeepFool for multiclass

Multiple binary classifiers

7 %

Closest hyperplane

\Z(wo) = arg min

k#k(zo0)

most probability after the true class true class

Q- O
.’....'.é.‘.‘...
KDDE
The minimum perturbation needed would be from
the closest hyperplane to x,.
Given there are multiple classes, the loss and
backpropagation would need to be computed for
each class label allowed by the function.
When finding the minimum perturbation, the
difference must be taken between the computed
values for each label and the computed values for

the label of the original prediction.

fr(@0) = fii(zy) (T0)

lwy, — w;;(mo)”Z
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DeepFool for multiclass :;...,.;'
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Multiple binary classifiers
e The minimum perturbation r,(x,) is the vector that project
T differences of the classifier output and the gradients of the
3?; 1 outputs, as well as taking the absolute value of the model
’ output.

fitao) (®0) = fi(ao) (®0)

2
||w[(m(,) = w;}(w(,)HQ

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]

*(m()) —

(Wi(ag) = Wi(ay))



DeepFool for multiclass e

Algorithm 2 DeepFool: multi-class case

I: input: Image x, classifier f.
2: output: Perturbation 7.

3:

4: Initialize o <+ x, 1 < 0.

s: while k(x;) = k(z) do
P for IE 7;) I}(w () ((;()) 1. Store the difference between the original gradients and the
o o — gradients of each of classes (w,) and the difference between
" Wi, 4= VIr(@:) = Vi (ay)(®3) labels (f)
/ N . . . k
8 [r — fr(zi) fk(mo)(:c,,)
2 ?nd 0w _ A 2. Calculate the minimal vector that projects c on the closes
10: [ + arg My L¢ (2) Twl s — hyperplane
e i
l &
12: Tit1 — T; + 75
13: t1+—1+1
14: end while 3. Total perturbation is the sum over all calculated

A / .
15: return© = ) . 1; perturbation

[Moosavi-Dezfooli et al 2016 DeepFool: a simple and accurate method to fool deep neural networks]



DeepFool vs FGSM

Predict: turtle
DeepFool

Predict: turtle
FGSM

True label: whale



Carlini Wagner (CW) attack i

e Goal: find a small change n that make an image x misclassified but so that
the result is still a valid image/example
o All the other attacks were using constraints on perturbation (¢), here

the score is used as a penalizer, modulated by C.
e How close we are getting to being classified as t

f=[1-C(x+n) ]
C(x+n) =t is satisfied if f(x+n) = 0 is satisfied
\
Probability of x+n to be classified as t.

If the probability is low value of f is closer to 1 value of fis closer to 1 whereas when it is classified
ast, fis equal to 0.

[Carlini et al 2017 Towards Evaluating the Robustness of Neural Networks]



Carlini Wagner (CW) attack O

e How close we are getting to being classified as t

lower limit of loss, at last the value in -k
will always hold

f(x’) = max (max{Z(x’)i } - Z(x')t, -k/}
with i #t \ \

vector of
highest probabilities for
probabilities for target class
non target
classes

difference between “what the model thinks the current image most probably is” and “what we want it to
think/ misclassified target”. So when the model thinks that this image is what we want it to think, this value
is negative (the probability of target class is higher than any of the non target classes)

[Carlini et al 2017 Towards Evaluating the Robustness of Neural Networks]



Comparison S
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- AUBEHEOENaEAR
N U EEER
- AAREAENAEAER
- AAEAGOEABBE

[Sanglee et al 2020 On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image Classification]
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Evasion: black box o
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e Transferability based black-box attack :

O train a substitute model, and craft adversarial examples against the substitute,
and transfer them to a victim model

® |tis very likely that an adversarial example of one network can
fool another network

e Transferability depends on the type of attack
O e.g. examples built with FGSM are highly transferable



Evasion: Black box 8 e

Training a local model to substitute for the target DNN, using inputs synthetically
generated by an adversary and labeled by the target DNN.

—
\
/ ) =

Send queries /

Get labels ~ - ~
Surrogate — A Learn f \
training data ¥ surragate ()
ng classifier \
~

[Papernot et al. 2017 Practical Black-Box Attacks against Machine Learning]
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Evasion: black box o e
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KDDE
train a substitute network based on the input/output
pairs of the target network
build adversarial examples for the substitute network
attack the target network with the examples built for the
substitute network
due to transferability the attack is very likely to succeed



Adversarial transfera bhili;cy Tl
White box scenario: *. -
access to the model KDDE

Transferability captures the
ability of an attack against a

+.007 x machine-learning model to be
effective against a different,
R potentially unknown, model
x sign(VgJ (0, z,y)) esign(V::.j(O,m,y)) that was
“panda” “nematode” “gibbon” learned for the same problem
57.7% confidence 8.2% confidence 99.3 % confidence (thiS was observed in the
context of deep learning, as
well as for
other learning paradigms)
Adversarial >
sample Target model ————— gibbon

[Demontis et al 2019 Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks]
[Papernot et al 2016 Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples]



Defense Strategy

® Reactive defense
® Proactive defense

O TVEPERFORMED [ oo
RADVERSARIAL TRAINING mone:Sscamer amvessans srmcxs:
y 22

2 g




Reactive defense

e Timely detection of novel attack
e Frequent classifier retraining

e Verification of consistency of classifier against training data and

ground-truth label

aversary N

Classifier designer

1. Analyze classifier 4. Develop countermeasure

‘ (e.g., add features, retraining)
2. Devise attack - 3. Analyze attack |

Biggio et al. 2014 Security Evaluation of Pattern Classifiers under Attack




Proactive defense: simulating attack

e Gradient hiding
e Adversarial training

Classifier designer‘ Classifier designer

1. Model adversary 4. Develop countermeasure

L (if the attack has a relevant impact)
[ 2. Simulate attack ' \ 3. Evaluate attack’s impact

Biggio et al. 2014 Security Evaluation of Pattern Classifiers under Attack




Proactive defense: gradient hiding g
KDDE
e Gradient masking:
o reduce the sensitivity of models to small changes by finding adversarial

direction using a substitute
o smooths the model’s decision surface in adversarial directions

o defensive distillation

(@) Defended model (b) Substitute model
+\ A
L Q=g [ees ;O <
S R . TR
@) |~ oot | —
: * o ' Xk >
r X r X
> >
T T

Papernot al. 2016 Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples
Papernot et al 2016 Towards the Science of Security and Privacy in Machine Learning
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Distillation vs Defensive distillation R
KDDE
e Distillation was first introduced by Hinton et al. in, where the goal was for a
small model to mimic a large, computationally expensive model.
o Teacher and student
e Defensive distillation has a different goal:
o two model that are the same but one model is trained to predict the
probabilities output by another model that was trained earlier
o smooths the model’s decision surface in adversarial directions exploited by
the adversary.
o The second distilled model is more robust to attacks such as the fast
gradient sign method or the Jacobian-based saliency map approach

[Papernot et al 2016- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks]
[Hinton at al 2014 Distilling the Knowledge in a Neural Network]


https://arxiv.org/abs/1511.04508

Defensive Distillation

PN v
: [ | : om \
| a1 Probability Vector Predictions F(X) : N b Probability Vector Predictions F*(X) :
: 02 : : s :
| |

| I
: T P | |
' = .
: DNN F trained at temperature T : : DNN £9(X) trained at temperature T
I ' ;
1 ! |
| T T ' s l T T
' | Probabiiities |
: | Knowledge :

|
: ! !
; ! :
| : )

|
|
|
|
|
|
I
) oz |
m TrainingDataX | |; Training Labels ¥ B raining Data x | [:Training Labels Fpg | a—
0 000 |
|
|
I
|

\ Initial Network ' Distilled Network

________________________________________________________________

[Papernot et al 2016- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks]

T Same
/ architecture



Defensive distillation is not robust "fi‘-'e-‘f-i"

e Carlini et al. (2016) prove that with a slight modification to the standard
adversarial attacks, distilled networks can be attacked
e Defensive distillation work on attacks that use gradient to approximate each
pixel’s importance to modify to create adversarial sample (e.g., JISMA)
e Carlini et al. propose attacks using the logits to create adversarial sample ( not
softmax)
o instead of taking the gradient of the inputs to the softmax, they take the
gradient of the actual output of the network
o For T =100, attacks had 96.4% success rate while only changing on average
36.4 pixels; works on all T from 1 to 100

[Carlini et al 2016- Defensive Distillation is not robust to Adversarial Examples]



Extending defensive distillation

o 0 Distilled

| Model
= ".;‘.\. (_,_\}
R ‘ G L o
'"/H\‘k’) : /_\k} ,#\)
P VN "\_ NP
F_(\ N/ AL
_'\,r(f"“"‘ (J
-

[Papernot et al 2017- Extending Defensive Distillation]
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Proactive defense: adversarial training s
KDDE

® |ntroduce adversarial samples in training set to improve the
robustness of the target model

O [Szegedy et al 2013 - Intriguing properties of neural networks: inject adversarial samples and modified its labels]
o  Malik

® Punish misclassified adversarial image

o  [Huangetal 2016 - Learning with a Strong Adversary]



Adversarial training: data augmentation

® GAN (generative adversarial network)
® Adversarial autoencoder



G A N 0.0’ °

@ i ;:.
.....‘0.....
Real KDDE
Samples
FFU
U | }— Learn how to tell apart
Latent \ : fake data from true data
Space
- Learn data
distribution 1 D o7 IsD
; ‘. Correct?
" | : Discriminato ¥ J
A
— —— > :
Generated '
Fake
x Samples
- i FineTune Training

[Goodfellow et al 2014- Generative Adversarial Networks]



Painting above was made by a GAN and sold for
$432 thousand

https://time.com/5435683/artificial-intelligence-painting-christies/



https://time.com/5435683/artificial-intelligence-painting-christies/

Adversarial autoencoder

Encoder Decoder
qlzlx) plxlz)

x I
Draw samples
from p(z)

Discriminator

Latent |
!

A
A ' + Input —>@

@vmirly

[Makhzani et al 2016-
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KDDE

Adversarial autoencoders]



Adversarial training: feature robustness R

Training set New training set

Restrict to features
of robust model

“Robustified” frog

[llyas et al 2019- Adversarial Examples Are Not Bugs, They Are Features]



Adversarial training: feature robustness -.'-‘f-a:j-'.'

® Goal: robust ML as humans classification

e Classifiers tend to use any available signal
to do so, even those that look
incomprehensible to humans to generalize

® Adversarial examples can be attributed to
the presence of non-robust features:
o highly predictive
o incomprehensible to humans.

[llyas et al 2019- Adversarial Examples Are Not Bugs, They Are Features]
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Adversarial training: feature robustness ey
KDDE

Standard training: use all of features, maximize accuracy
Adversarial training: use only single robust features (at the expense of accuracy)

Under adversarial perturbation

Robust features Non-robust features
Correlated with label Correlated with label on average,
even with adversary  but can be flipped within, e.g., £, ball

[llyas et al 2019- Adversarial Examples Are Not Bugs, They Are Features]



XAl for feature robustness Shre

® Al-based systems (e.g., Deep Learning-based systems ) are
accurate, but they usually learn black-box models

e Unjustifiable and misleading predictions may make systems
vulnerable to attacks
o by leading to unsecured critical systems

e Explainable and interpretative results make Al solutions more
robust and trustworthy

o Transparency of model decisions is mandatory to:
m provide justifiable decision making

m produce accurate explanations of decision models’ behavior
m help to design effective countermeasures



XAl taxonomy

XAl taxonomy

4

Does it explain only one
sample or the entire model?

Can it explain
more models?

1

Model-specific Global Local

When is it used?

]

Post-hoc Intrinsic
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Explanation ST

Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, |EEE International Conference on Computer Vision (ICCV), 2017



Explanation of network flow attacks

NSL-KDD dataset

dst_host_rerror_rate  same_srv_rate service_time same_srv_rate

9.96e-14 9.96e-14 0.65 0.99
82 83
24 i
o™ e
o' o
L )
< @
b 2
gI
Top-1 Grad-CAM Top-2 Grad-CAM
(attack) (attack)

Caforio et al., Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems. DS 2021, 2021
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(moDel Agnostic Language for Exploration and eXplanation) 5

o and post-hoc technique

e To understand both the global and local structure of black box models
e To explain the behavior of models by measuring the global relevance of

features on decisions

o It uses permutation-based feature-importance
m [t permutes the value of each feature
m |t computes a loss function before and after the permutation
m [f the lossincreases then the feature is important

Przemyslaw B. DALEX: Explainers for complex predictive models in R, Journal of Machine Learning, 2018




Robust feature selection with XAl S

e Adversarial training to learn robust deep neural models

e Post-hoc global explanations with DALEX
o To perform feature selection by extracting the top-k features ranked by DALEX on
the training set

______

T : '
; . v
Vo L
& . 1 XAl
-—> (45) —* ™ 1 Explanation

=3
=
©
0
]
@
o
3
©
©
w

| —
| —
1
Adversarial generator

i : /)
N
’ -—
|

______

S1 S2 S3 S4

Al- Essa et al, XAl to explore robustness of features in adversarial training for cybersecurity . Accepted to 26th International Symposium on methodologies for Intelligent System (ISMIS) 2022



Robust feature selection with DALEX

Fs Access(create write)
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Al- Essa et al, XAl to explore robustness of features in adversarial training for cybersecurity . Accepted to 26th International Symposium on methodologies for Intelligent System (ISMIS) 2022



Robust feature selection with DALEX -

e B: which discards both adversarial training and XAl-based feature seleélon

* T+A: which discards XAl-based feature selection

e T+A+XAIFS (n): which implements both adversarial training and XAl-based
feature selection (with n number of feature selected)
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o o 2
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o o
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Al- Essa et al, XAl to explore robustness of features in adversarial training for cybersecurity . Accepted to 26th International Symposium on methodologies for Intelligent System (ISMIS) 2022
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SHAP S

(SHapley Additive exPlanation) °.0
KDDE
o and post-hoc technique

e |t produces local explanations of decisions for single samples

e Based on the game theory, Shapley Values

o SHAP values measure the average contribution of each feature on a decision
and show whether a feature has a positive or negative effect on a decision

Output=04 Output =0.4
T
Age =65 —| +04 <— Age =65
Sex=F — =
Explanation = — Sex=F
BP =180 —» — BP =180
BMI =40 —| — BMI =40
T
Base rate =0.1 Base rate =0.1

Lundberg et al., A unified approach to interpreting model predictions, in Advances, Neural Information Processing Systems, 2017
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Improving accuracy with SHAP S
KDDE
e Combination of Adversarial Training and XAl

o Adversarial training with FGSM to create a new deep neural model robust to
adversarial samples

o SHAP to extract the local feature importance for each training sample
o Fine-tuning of the the deep neural model driven by XAl values

JrE— =y = 1--.
T 4 N
o ¥ \
g 5, . 1

l

A 1
1

Flne tunin, g Fine- tumng :

—-> 1

1

1

Trar ® AAAZ ! Kol

1
My, My
1

<«
>
\1
@
™

————
) —
1
!
FGSM

v

S1 S2 S3 S4 S5
Al-Essa et al.(B) , An XAl-based adversarial training approach for cyber-threat detection. Accepted in IEEE CyberSciTech/ PICom/ DASC/ CDBCom, 2022



Improving accuracy with SHAP

KDDE

e Analysis of SHAP explanations for the class Banking (testing samples) on

Maldroid20 dataset

o A decision yielded with a model trained using Adversarial training and XAl-based
fine-tuning is better separated from a decision yielded with a model trained without

fine tuning
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Al-Essa et al. , An XAl-based adversarial training approach for cyber-threat detection. Accepted in |EEE CyberSciTech/ PICom/ DASC/ CDBCom, 2022



XAl to detect adversarial samples ST

KDDE

e Fidel et al. (2019) use SHAP to extract the heatmaps of both genuine

and adversarial samples

o The heatmaps are used as signatures to detect adversarial samples

adversarial example
(target = cat)

XAl signature

original example
(car)

T

XAl signature

normal examples
(car

XAl signature

Fidel G. et al ., When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures. ArXiv 2019



XAl to create adversarial samples T
KDDE
® Kuppaetal (2021) propose a method to create adversarial sample with

XAl
o Identify robust features that influence the class decision boundaries of the classifier
o Perturbate robust features to create adversarial sample

™1 Model
== NN
o | == GBM

8

]

]

Accuracy Drop

8

=
s

12 14 16 18 20
Poison Percentage

Kuppa et al., Adversarial XAl Methods in Cybersecurity, .|EEE Transactions on Information Forensics and Security, 2021
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Conclusion Vs

KDDE
Why Machine learning is vulnerable to adversarial attacks?

e Deep Neural network is data hungry

o  [Simon-Gabriel et al 2018 -Adversarial Vulnerability of Neural Networks Increases with Input Dimension]

® Nonlinearity of deep learning models
o Overfitting of training data

o Insufficient generalization ability to predict unknown data

e Adversarial vulnerability is a direct result of our models’
sensitivity to well-generalizing features in the data:

o Classifiers tend to use any available signal to do so, even those that look
incomprehensible to humans
o Different classifiers tend to find the same set of relevant features
m thatis why attacks can transfer across models!
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Conclusion e

KDDE

e Defensive strategy:

O

Know your enemy
m Attackers’ goal and capability

Build machine learning model able to detect zero-days
attacks
m Reducing overfitting: defensive distillation, dropout

Design for attacks

m Adversarial training
m Feature robustness (e.g., XAl)



Classify this: is a cat or a dog?
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