
SUPERVISED ML



SUPERVISED ML

• Certainly the most successful branch of ML currently

• Training a computer program (algorithm) to learn through 
examples

• Tasks:
‣ Predict the weather, the climate
‣ Recognize objects/people in pictures
‣ Evaluate the risks of recidivism of a convict (don’t do that!)
‣ What else ?



SUPERVISED ML

• Two main objectives, with similar solutions

• Regression: predict a numerical value
‣ Temperature, cost, grade, etc.

• Classification: predict a class/label/category
‣ Success/Failure, Blue/Red/Yellow, which animal among 1000 possibles, etc.



SUPERVISED ML: DNN

• Many recent successes thanks to Deep Neural Networks

• This class: only “classic” methods

• DNN are just an evolution of methods presented in this class, 
all principles stay the same.



FICTIONAL EXAMPLE

• Let’s say we want to predict the price of apartments. We have 
a collection of examples, for now in comparable settings (same 
neighborhood of the same city…)

• We have access to some characteristics of apartments:
‣ Surface Area, # of rooms, # of windows, Elevator…

• This is typically a Regression problem.



EVALUATION/OBJECTIVE

• Before applying any method, set up an objective/a quality 
score/an error measure

• We want to be able to compare several prediction methods 
to see which one is the most efficient. But how to compare 
them ?

• Typical scores:
‣ MAE: Mean Absolute Error
‣ MSE, RMSE: (Root) Mean Square Error
‣ R2



MEAN ABSOLUTE ERROR

•

• Similarity with the MAD (Mean Absolute Deviation), 
comparing values with predictions instead of simple mean.

• Simple to interpret 
‣ lower the value, lower the error, better the prediction
‣ 0: perfect prediction
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MEAN SQUARED ERROR

•

• Similarity with the Variance

• Using squared errors give stronger importance to large errors

• , can be easier to interpret
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RMSE = MSE



 (R-SQUARED)R2

•

• Quantifies the fraction of the variance that is explained by the 
prediction
‣ Sometimes called coefficient of determination for linear regression

• 1=>Perfect prediction.
‣ Negative if the prediction is worst than taking the average (=Variance)

R2 = 1 −
∑i e2

i

∑i yi − ȳ
= 1 −

MSE
Var(y)



 (R-SQUARED)R2

Variance

RMSE

Mean

Prediction



EVALUATION/OBJECTIVE

• Which one should you use?
‣ Different literature have their favorite one. RMSE is probably the most popular.
‣ If your ML algorithm use the RMSE as objective (loss function), then you should 

probably use RMSE

• If you’re not writing a paper or playing a competition, use all of 
them
‣ More information can allow you to judge better.  There is no “truth”.



BASELINE
• Let’s define our baseline, our reference to improve on

• Let’s assume we only know the target variable values

• Using statistics, we know that the best “prediction” we can do 
for the price of a future apartment will be
‣ The average (for MSE) =>Variance
‣ The median (for MAE) => MAD

(Some imaginary values)



BASELINE

MSE 1105345073.7155044 
RMSE 33246.73027104326 
MAE 22740.967725747014 
R2 0.0

MSE 1179133659.4166086 
RMSE 34338.51568452848 
MAE 21658.66828240126 
R2 -0.06675615376207489

Using Mean=51676 Using Median=43086

MAE lowerRMSE lower



LINEAR REGRESSION
• Let’s assume that we know one apartment attribute: Surface 

area. We can plot the relation between Surface and Price

• There seems to be a linear relationship



LINEAR REGRESSION
• We will use linear regression method, and more 

specifically Ordinary Least Square. First, with a single 
variable:

• We assume that: 
‣ Target value=constant+(constant*feature)+normally distributed (random) 

errors
‣ i=>ith example in our dataset

• The objective of linear regression is to find parameters 

‣ Such as to minimize the MSE, 
‣ Considering that the prediction is: 

- Equivalently: 

yi = β0 + β1xi + ϵ

Θ = {β0, β1}

̂yi = β0 + β1xi
̂y = β0 + β1x



LINEAR REGRESSION

• We solve this problem, and obtain:
‣ =987
‣ =779

β0
β1

MSE 20668278.463901177 
RMSE 4546.237836266508 
MAE 3512.3861644882704 
R2 0.9813015148342528



LINEAR REGRESSION

• We solve this problem, and obtain:
‣ =987
‣ =779

β0
β1

MSE 20668278.463901177 
RMSE 4546.237836266508 
MAE 3512.3861644882704 
R2 0.9813015148342528

MSE 1105345073.7155044 
RMSE 33246.73027104326 
MAE 22740.967725747014 
R2 0.0

MSE 1179133659.4166086 
RMSE 34338.51568452848 
MAE 21658.66828240126 
R2 -0.06675615376207489

Using Mean Using Median Using 
Linear Regression



LINEAR REGRESSION

• Note: To generate the data, I used indeed a linear model, with 
parameters
‣ =987  0
‣ =779 1000

•

β0
β1

MSE 20668278.463901177 
RMSE 4546.237836266508 
MAE 3512.3861644882704 
R2 0.9813015148342528

Using 
Linear Regression

MSE 20863741.73315057 
RMSE 4567.68450455486 
MAE 3506.783422078361 
R2 0.9811246802204318

Using 
“Real” generative model



LINEAR REGRESSION

• In real life, we usually have more than 1 parameter
‣ New generator, prices depends on surface AND floor

Surface Floor



LINEAR REGRESSION

• General formulation with any number of attribute
‣

‣ Searching for the different coefficients
y = β0 + β1x1 + β2x2 + . . . + βnxn + ϵ

MSE 388200345.3991482 
RMSE 19702.800445600322 
MAE 16757.480694933285 
R2 0.7329146952183824

MSE 22157971.6387145 
RMSE 4707.225471412486 
MAE 3617.346073048316 
R2 0.9847551176123155

MSE 785600976.607142 
RMSE 28028.57428780747 
MAE 22165.777484397917 
R2 0.34222807880552575

Surfaces only Floor only All features

Generative Parameters
Found Parameters

‣ = 0 = 1 000,  =10 000β0 β1 β2

‣ = 579 = 994,  =9 821β0 β1 β2



LINEAR REGRESSION

• Linear regression works :)

• But what happens if relations are not linear?
‣ Assume that Price  log(surface)*100 000 ?≈

MSE 474131230.6072998 
RMSE 21774.554659218633 
MAE 16958.426496791166 
R2 0.8437196622358905

MSE 23408487.920127597 
RMSE 4838.231900201518 
MAE 4057.809620606243 
R2 0.9922842323758786

Linear regression

Real model



LINEAR REGRESSION

• Linear regression works if there are indeed linear relations
‣ But there is no particular reason for relations to be linear

• In many scientific domains (e.g., epidemiology, biology, 
econometrics, etc.), linear regression is still widely used. 
‣ Why ?



OLS STRENGTH
• OLS (Ordinary Least Square Linear regression) is simple to 

understand and flexible:
‣ If I know that a relation is log-linear, or other, I can transform my variables 

beforehand to fall back on a linear problem (but…)

• Linear regression is interpretable:
‣ The meaning of each coefficient  can be interpreted (positive/negative, 

strength, significance), and thus the relative strength of the corresponding 
features

‣ /!\ True only if strict conditions are respected: 
- No multicollinearity (correlations between variables)
- No endogeneity (correlation between variables and errors ( ))
- No heteroskedasticity (inhomogeneous distribution of errors)
- Etc.

β

ϵ



(OLS?)

• Common question: Is OLS machine learning or stat/
econometrics?

• In my opinion:
‣ Not a very meaningful question. Is tomato a vegetable or a fruit?
‣ If we focus mainly on the coefficients, and not on the prediction => not classic 

machine learning
‣ If we focus mainly on the prediction and compare with other models => Yes, a 

ML method like any other



OLS STRENGTH
• Analytical solution: 

‣ With X the feature matrix

• An analytical solution guarantees to find the optimal solution

• Possible to do before the generalization of computers

• If there are
‣ Many variables, matrix inversion becomes a bottleneck 
‣ Many observations, matrix multiplication goes 
‣ Solution=>Gradient descent, later during the class

̂β = (XT X)−1XTy

𝒪(v3)
𝒪(nv)



OLS STRENGTH
• Another strength of OLS is that it is equivalent to MLE 

• MLE (Maximum Likelihood Estimation) is a model-based 
approach
‣ IF we make the assumption that our data has been generated by a random 

model of the form: 
- And that variables are normally distributed and independent

‣ Then MLE finds the parameters of this model that generate the observed data 
with the highest probability (likelihood).

• It’s a less “intuitive”, more “scientifically grounded” way to 
arrive at the same method

y = β0 + β1x1 + β2x2 + . . . + βnxn + ϵ



OLS STRENGTH
• Intuitive reason to use MSE instead of MAE

‣ Single, “intuitive” solution (blue)
‣ MSE: all the green line fits equally (a1+a2, b1+b2, c1+c2=constant)

a1

a2

b1

b2

c1

c2



OLS KNOWN WEAKNESS

• MSE is known to be sensitive to outliers



NON-LINEAR REGRESSION:
DECISION TREE REGRESSION



DECISION TREE

• Decision tree is a simple yet powerful way to do machine 
learning.

• Meta-algorithm: 
‣ Recursively split the data in 2 groups of items, based on a chosen attribute, so 

that elements in the same group have as close target values as possible
‣ Predict that the value of a new item is the same as those of the group it 

belongs to.



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 1 Level of splitting

MSE 1106922922.7787206 
RMSE 33270.45119589935 
MAE 27836.40899704275 
R2 0.6351425995939648



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 2 Level of splitting

MSE 299670892.805488 
RMSE 17311.00496232059 
MAE 13262.652619929546 
R2 0.9012242490634346



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 3 Level of splitting

MSE 90552465.56733872 
RMSE 9515.905924678886 
MAE 7434.910779663157 
R2 0.9701526307682573



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 10 Level of splitting

MSE 0.0 
RMSE 0.0 
MAE 0.0 
R2 1.0



MACHINE LEARNING: SOLVED



OR IS IT ?
OVERFITTING…



AVOIDING OVERFIT

• The most important rule of machine learning
‣ And essential part of the scientific process

• Predicting what you already know is cheating
‣ Even if you genuinely try not to cheat, you can cheat unintentionally
‣ Experimental scientific experiments are done in double blind:

- Neither the tested subject nor the experimenter know the placebo from real pill

• You must hide a test set, that you will never use when 
learning, and that you will only use once, for evaluating.



AVOIDING OVERFIT

• When your data is ready, before any learning, split your data 
into:
‣ A training set
‣ A test set

• You can train as many method with as many parameters as 
you want on the training set.

• Only when all your models are trained, you can evaluate it on 
the test set
‣ You can never, ever reuse that (exactly same) test set.



AVOIDING OVERFIT

Decision Tree, levels=10 Decision Tree, levels=5
MSE 0.0 
RMSE 0.0 
MAE 0.0 
R2 1.0

MSE 9675372.95170697 
RMSE 3110.5261535159884 
MAE 2364.5552169188454 
R2 0.9968108606746918

MSE 47482936.48734139 
RMSE 6890.786347532579 
MAE 5748.307144423111 
R2 0.9756671526915104

MSE 60522590.58807978 
RMSE 7779.626635519199 
MAE 6427.594619486819 
R2 0.9689849224913336

Scores on 
Train Set

Scores on 
Test Set



TRAIN/EVALUATION/TEST
• In some cases, you need to see the results on the test set to 

know how to improve your prediction
‣ Ex: how many levels in my decision tree? The right level is the one with the best 

results on the test set.
‣ More generally: hyperparameter tuning. 

- If my learning method has parameters, how to fix those parameters? (Coefficient of learning, 
number of layers in deep NN, etc.)

• => Solution: 
‣ Use an evaluation set for intermediary steps (hidden like test set, but not for 

final evaluation)
- You can do whatever you want with your evaluation set, it’s part of your training process

‣ Keep a test set, that you will use only once at the end



TRAIN/TEST SPLIT

• What size should your test set have?
‣ No good answer. 66% Train, 33% Test is often a default choice

• Rule of thumb:
‣ You need enough data for training. If your problem is simple (few features…) 

and you have many examples, then a random sample of 5% of it can be enough
- e.g.: predict weight of a Tomato based on its species…

• Problem is if data is scarce
‣ =>Cross validation



CROSS VALIDATION

• Golden rule: One test set must be used only once

• But from a single dataset, you can create multiple test sets
‣ If you just want to restart you training differently, make a new 66/33 split

• If you have too few data to put 33% aside for training:
‣ Use only, e.g., 10% for the test set
‣ But creates 10 train/test sets, each with different test sets

- Then, compute the average scores over the 10 sets



CROSS VALIDATION



CROSS VALIDATION



CROSS VALIDATION



CROSS VALIDATION

• Do you need Cross validation and which one?

• In my opinion:
‣ If your data is very scarce, you need it from the beginning
‣ If you are at a point in which every fraction of a % of accuracy count.

• A simple train/test is enough for most cases.



FIGHTING OVERFIT
BACK TO THE METHOD



FIGHTING OVERFIT
• Implicit limit to overfit:

‣ Because a method has a limited power of expression, it cannot overfit “too 
much”.
- Trivial solution: each point has its own prediction. No generalization

‣ =>A linear regression method cannot overfit to the trivial solution, unlike 
decision tree
- Unless there are enough variables…

• Explicit limit to overfit:
‣ The method is not limited in its power of expression, but contains a safeguard 

against overfit

• Not necessarily a clear boundary between the 2



FIGHTING OVERFIT

MSE 474131230.6072998 
RMSE 21774.554659218633 
MAE 16958.426496791166 
R2 0.8437196622358905

MSE 297361867.9984524 
RMSE 17244.18359907051 
MAE 14666.202886910516 
R2 0.8476155548782759

MSE 9675372.95170697 
RMSE 3110.5261535159884 
MAE 2364.5552169188454 
R2 0.9968108606746918

MSE 47482936.48734139 
RMSE 6890.786347532579 
MAE 5748.307144423111 
R2 0.9756671526915104

Train

Test



FIGHTING OVERFIT

• Avoiding overfit in decision trees: Pruning strategies
‣ One way to see: Artificially limit the expressivity of the model
‣ 1)Limit the number of levels (Simple but naive)
‣ 2) Limit the number of leaves

- =>Split nodes in priority where it improves the most
‣ 3) Limit the size of leaves

- => Explicitly forbids the naive solutioN

• Hyperparameter tuning/optimization
‣ Typical approach: Grid search.
‣ Fix a set of possible parameters. Test all possibilities on a validation test



GRID SEARCH

More clever methods exist: Bayesian optimization, etc.



NOTE: GENERALIZATION

• A very important notion in machine learning is Generalization
‣ Can we extract generic principles underlying our data?
‣ Can we generalize our observations to unseen cases?

• Linear regression can predict an unseen value, while decision 
tree cannot.
‣ What the weather be like in 5 years ? Extrapolation from current condition…



OVERFIT/UNDERFIT, HIGH BIAS 
HIGH VARIANCE

Overfit

Underfit

BiasD[ ̂f (x; D)] = ED[ ̂f (x; D)] − f (x)

VarD[ ̂f (x; D)] = ED[(ED[ ̂f (x; D)] − ̂f (x; D))2] .

D: subsets.
X: all elements in all subsets



CLASSIFICATION



CLASSIFICATION

• Objective: predict the class of an item

• Methods for regression can be reused with some adaptations
‣ Binary Classification is usually simple
‣ Multiclass Classification might require more changes

• Evaluation methods change

• Imbalanced datasets might become a problem



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface

Classified as 1Classified as 0

MSE 0.06361520558572538 
RMSE 0.2522205494913636 
MAE 0.20506852857512292 
R2 0.7455391776570985



LINEAR CLASSIFICATION
• Weaknesses: Outliers



LINEAR CLASSIFICATION
• Weaknesses: Class imbalance



LINEAR CLASSIFICATION
• More generally, inadapted objective: 

‣ The relation is not linear
‣ We minimize a cost function (MSE) which is not meaningful: 

- Some predictions go beyond possible values (prediction less than 0 or more than 1 adding 
error



SIGMOID FUNCTION

lim
t→+∞

sig(t) = 1lim
t→−∞

sig(t) = 0 sig(0) = 0.5



LOGISTIC REGRESSION

̂y = β0 + β1xi + β2x2 + . . . + βnxn

P(y = 1) = Sig(β0 + β1xi + β2x2 + . . . + βnxn)

Sig(x) =
1

1 + e−x

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

Linear regression:

Logistic 
Regression:

Logisitic (Sigmoid) function:



LOGISTIC REGRESSION

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

1
P(y = 1)

= 1 + e−β0+β1xi+β2x2+...+βnxn

1 − P(y = 1)
P(y = 1)

= e−β0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn



LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2( . . . )eβnxn

ln(
P(y = 1)

1 − P(y = 1)
) = β0 + β1xi + β2x2 + . . . + βnxn



LOGISTIC REGRESSION
ln(

P(y = 1)
1 − P(y = 1)

) = β0 + β1xi + β2x2 + . . . + βnxn

Problem to solve similar to a linear regression.
We minimize the error between true  

and estimated probability of being 
y ∈ {0,1}

1



LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2( . . . )eβnxn

/!\ log transform of the target variable => multiplicative relation between 
variables

Interpretation as odd ratios: 
in  =>prediction multiplied by +1 xi eβi

https://christophm.github.io/interpretable-ml-book/logistic.html



MULTICLASS
LOGISTIC REGRESSION

• In many cases, we have more than 2 classes
‣ e.g.: {house, apartment, office, industrial}. {cat,dog,horse,…}
‣ Categories are unordered=> conversion to numeric would be catastrophic

• Simple solution (often used): one VS all
‣ Train a logistic classifier on one class VS all other classes.
‣ Attribute the class with the largest confidence

- e.g.: house: 20%. Apartment: 30%. Office: 70%. Industrial: 80%=>Industrial.
‣ Rather a heuristic than principled method.

• Alternative approach: softmax regression
‣ Later in class



DECISION TREE

• Trees can be easily adapted to the classification task
‣ It is even more natural than for regression

• The principle is to divide observations in term of class 
homogeneity
‣ We want items in the same branch/leaf to belong to the same class



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Gini Coefficient: 

‣
Entropy: 

pi i
1 − ∑

j

p2
j

−∑
j

pj ⋅ log2pj



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Gini Coefficient: 

- Min: 0: 1 class only
- Max: 0.5: (2 classes), 0.66(3classes), 0.75 (4classes), 0.875(8classes)

‣ Interpretation:
- If we classify by taking an element at random, probability to be wrong.

pi i
1 − ∑

j

p2
j



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Entropy: 

- Min: 0: 1 class only
- Max: 1(2 classes), 1.584(3 classes), 2 (4 classes), 3 (8 classes), etc.

‣ Interpretation: average # of bits required to encode the information of the 
class of each item

pi i

−∑
j

pj ⋅ log2pj



DECISION TREE



CLASSIFICATION:
EVALUATION



CLASSIFICATION:
EVALUATION

• Precision=
‣ Among those predicted as True, fraction of really 

True

• Recall= 
‣ Among those really true, what fraction did we 

identity correctly

TP
TP + FP

TP
TP + FN



ACCURACY

• Accuracy: 

• Fraction of correct prediction, among all predictions
‣ Simple to interpret

• Main drawback: class imbalance
‣ Test whole city, 1 000 people, for Covid

- 95% don’t have covid, i.e., 50 people have covid, 950 don’t have it
‣ Our test (ML algorithm) is pretty good: TP: 45 - FN: 5 - TN: 900 -FP: 50

- Accuracy= (45+900)/1 000=0.945
‣ Dumb classifier : Always answer: not covid

- Accuracy: (0+950)/1 000 = 0.95

TP + TN
P + N



F1 SCORE
• F1 score: 

‣ Harmonic mean between precision and recall
- Harmonic mean more adapted for rates.
- Gives more importance to the lower value

• Scores for the covid predictor :
- Precision=45/95=0.47
- Recall = 45/50=0.9

‣ F1=0.65

• Score for the naive predictor impossible to compute…
‣ You need at least some TP !
‣ Assuming 1 “free” TP (Precision=1, Recall=1/50)

- => F1=0.04

F1 = 2
precision * recall
precision + recall



AUC

• Method adapted for strong class imbalance
‣ Typical example: recommendation. Will user X buy product Z?
‣ We are not really interested in having a correct classification, but of ranking 

correctly items
- Top k strategy: Accuracy among the top-k items with higher score/probability?

• Will see in link prediction class


