GRADIENT DESCENT

DEFINING OBJECTIVE

« Once we have define our loss function, the ML task to solve
can simply be expressed as minimizing it over some

parameters:
» E.g, for Linear Regression:

n
~ Detailed way: arg min Z (' — (By + ,lel(i) + ﬂzxz(i) + ...+ ﬁ,,lx,(l")))2
ﬂO’ﬂl‘"’ﬂn l

~ Simplified way: arg min Z G (PR
p i
~ Generic way: arg min L,(f(6, x))
0

SOLVING MINIMIZATION

» Once we have expressed our task as a minimization problem,
we Just have to explore the parameter space to find a good
solution

Exhaustive search is usually impossible
In the general case, no close form solution

One could use any optimization method
- Genetic Algorithm

v

A

v

- Simulated Annealing
=M

Most used in general case: Gradient descent

v

GRADIENT DESCENT

» Greedy approach

» Start from arbrtrary point

» Search for the nearest local minimum
- If the problem is convex, find the global minimum, i.e., best possible solution
- => linear regression
- Else, find one local minimum, without guarantee.

* What Is a gradient!

» Generalization of a derivative to multiple dimension

The slope of the
curve is the slope
of the line tangent
to the curve at
that point.
i

tangent
lines

The slope at —
a maximum or

T https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

GRADIENT DESCENT

* The objective of gradient descent Is to follow the gradient/
derivative in order to find a minimal point

» Example: linear regression.
- The"altitude” is given by the loss function
- Each of the f is a "direction” in which we can move

- Gradient descent answers the question:“in which direction and by how much should |
change the f# so as to go “down" in the loss function, optimally

i

LT 0

£ ,‘ol,;ll,ﬂ%;;:.,,w SN
TR S

e s

O
@‘ PSS
o S J /gﬁz

|

GRADIENT DESCENT

& practice:

» Update the parameters a of function F, by subtracting its gradient VF at point
a_, multiplied by a parameter y to control the speed
8,,, =a,—7VF@,)
- Subtract because we want to descend the gradient, I.e. minimize the function.

* [he gradient has a value for each parameter

» =>Compute the partial derivative, for each parameter

GRADIENT DESCENT

* Reminder: Common derivative
» ¢'=0
s e—lti(ax) =a
e =—ax® ! => (x%) =2

%

« Common derivative rules

life constant: (cf) = cf’
» Sumrule: (f+g) =f+ g’
» Chain rule: f(g(x))" = f(g(x))g'(x) <=> (feog)' = (f"°8)g’

AL i

» Boring? Use a solver like Wolfram alpha...

GRADIENT DESCENT

» Consider a function f(x) = x* + 3
W) = 2x
» x=4: Gradient= 8
» x=2: Gradient=4
» x=-|:Gradient=-2
» x=-0.01: Gradient = -0.02
» x=0: Gradient=0

i arrandom, x=4, a = 0.25
» x=4-(0.25%8)=2

===

P S =0.75

e -0.18=0.56. ...

4
»
>
>

=> Converge to x=0

GRADIENT DESCENT

» Of course, the choice of a will affect the learning

» Strategies exist to adapt a dynamically

* We stop when reaching a fix point

> 0

1
Start

a) too small

> 0

Stant

a) too big

https://medium.com/analytics-vidhya/neural-networks-part-3-understanding-back-propagation-learning-rates-3482a98 | a2f0

GRADIENT DESCENT

» Consider a function f(x,y) = x* 4+ 0.5y?

0
f—2x+0
ox

af _

ady

o+ x=4y=-2,a = 0.25
)~).(05)=-|5
0 =1 5-(0375)=-1.125

GRADIENT DESCENT

» Practical example for parameter exploration
» Apartments defined by surface

» Price =
1400 -
prices = 100+surface*8+np.random.normal(0, 50, len(surface))

» Define linear regression: =
. 1000 -
et

» Y = Py + DX a1y

1 & : a0

~argmin = Z (v; — (Po + f1x)) a0 -
ﬂO’ﬁl l 200 -

0.

GRADIENT DESCENT

- Plotting the solution space:

| X
X P,y Pz = NZ(%— By + P1x))°

» (Here, exhaustive search: very costly)

GRADIENT DESCENT

» Computing gradients for linear regression with 2 parameters

1 N
By B =7), 0= (By+ By

B7 e
i 2, 20i= Bo+)=
ot 1 v
, 6_/30 =~ 2, =205 = (Bo + Bi)
|- ﬁo 2 ;= 1)

v

Prediction Is too low=> Increase f, (proportionally to error).

v

Too high=> Decrease f, If, decrease if too high

GRADIENT DESCENT

» Computing gradients for linear regression with 2 parameters

| &
£(Po, Pr) = N Z (y; — (P + ,513%))2

v

% = i i 2(y; — (P + P1x))(—x;)
R aﬁl N i] 0 1"V I

i Z — 2x,(y; — (Po + 1x)
’ @ﬁl

i

v

> ﬁl Z X — Vi)

D Esive— >|_ovver if too high, increase If too low.
x; negative=>Increase If too high, decrease If too low.

- If two items with equal absolute error of opposite sign, different | x;| => gradient correct
largest | x;| (increase the slope)

- If x; =0, the coefficient have no effect anyway

GRADIENT DESCENT

» Generic case: more than a single variable
1 N
R . — (b + wx))?
ALY Zi (el)

- Vecteur form: w: vector of weights, x;: vector of features
» Same derivation:
i sy R Y
—_— — xX(y; —V;
= aw N l I\J1 l
» Partial gradient for each feature (for each observation) Is proportional to the feature value
for this observation
» A same error for an observation can contribute differently for each coefficient:
- Increase or decrease (sign of the feature)

- Strong or weak effect (magnrtude of the feature)

REGULARIZATION

REGULARIZATION

* We have seen that a drawback of ML methods is that they
can overfit

B iERrine ML objective can be clearly expressed, thefenste

generic way to limit overfitting: regularization
» Two types of regularization:

- LI or Lasso regularization
- L2 or Ridge regularization

L2 REGULARIZATION

150" or R|dge Regulamzaﬂon
4
O(b,w) = Z(y —(b+ Z(wx M2+ 4 w?
j

, f(b,w>=NZ<yi—y,->2+szj
[J

P

g D 7

: Notation: E Wi = lwl|5
J

L2 REGULARIZATION

* Expressed as a general principle
1 N . P
LWy =— D O 55 b W) + 2)]
i j

- Some parameters are regularized, and some others might not be (intercept...)

* Inturtion: we force coefficients to be small.

» If A=0, normal regression

» If A->00, all coefficients tends towards O
» /\ The magnitude of coefficients depends on the magnitude of variables!

- |Important to normalize the variables, else you will constraint more the variables of lower
amplitude

L | REGULARIZATION

* LI or Lasso Regularization
» Lasso: Least Absolute Shrmkage and Selection Operator

O(bw) = — Z(yl (b+2(wxl])))2+/12|w|
(b, w) = Z(yl y>2+12|w|

: Notation: Z |w | = [|w]l;
il

REGULARIZATION

* Similar methods, different results:

» LI regularization tends to force some values to be O
» |2 regularization tends not to attribute O

* LI regularization thus performs variable selection

» Variables for which the coefficient is O can be discarded

REGULARIZATION

* Why different behaviors ¢

» VWe minimize the sum of error+constraints

» Red lines represent error (every point of a circle have same error)

» Similarly for blue.

» Intersection is the optimal solution (for that error, minimize constraint)

* == For a same error, L| favors O

https://online.stat.psu.edu/stat508/book/export/html/ /749

REGULARIZATION

* Bayesian interpretation
» Different priors on the coefficients

6.2 Shrinkage Methods 227

N N
o o
© © _|
o 7 o
v _ v _
o o
/-\":_ Aﬂ:_
S o > ©
2 2
> 3 - > 3 -
I «
o | o |
5 5
o | o |
e I I I [I I I e I I I [I | I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
B3, Bj

FIGURE 6.11. Left: Ridge regression s the posterior mode for 8 under a Gaus-
stan prior. Right: The lasso is the posterior mode for B under a double-exponential
prior.

https://ekamperi.github.io/mathematics/2020/08/02/bayesian-connection-to-lasso-and-ridge-regression.ntml

BRGS0 TN,

» Best of both worlds :)

[% P P
b w) =2 2 0i=)+ A) il + 2) v
l] j

ENSEMBLE LEARNING

ENSEMBLE LEARNING

* Ensemble learning Is a general principle:

» All models have strengths and weaknesses

- e.g, linear models struggle with non-linearities but are good at extrapolation

- Decision trees are good at capturing non-linearities, but struggle with extrapolation
» Could we combine the strengths of various models?

- Direct application: Stacking

- Using multiple times the same model: Bagging

- Training models specifically to solve other weaknesses: Boosting

ENSEMBLE LEARNING

o T\
It’s a\\ [t’s
Spear! / ?
P ar,/ \Rope!/i
/% o =
| ¥ \ s -
» | ¢ o -

a Snake!

S TACKING

* In the simplest approach, various models (different approaches,
same approach with different parameters) are trained on the

same dataset

* [heir predictions are then combined:
» Regression: averaging. Average values of the classifiers (possibly weighted)

» Classification:
- Voting: class with the most vote
- Soft / Averaging: average of probabilities yielded by the classifier

- Weaknesses:
» What If several models make the same mistake? (Correlation of errors...)

» What if we merge good models and poor models?

S TACKING

* A possible solution to stacking Is to use a meta-model.

» The prediction made by each individual model i1s considered as a feature for
the meta-model

» The meta-model is trained as any ML model with the original target, but using
sub-models outputs as features.

» Any model can be used as meta-model

* Famous for winning the $1M prize of the 2009 Netflix prize.

» |00+ individual predictors

BAGGING

* Bagging Is an ensemble methods, but differ from stacking In

two main ways:

» The various individual predictors are made of the same algorithm

» Each algorithm s trained on a subset of the original data
- Different subsets on all variables
- And/Or trained only on some variables
- =>Various strategies exist.

» Advantages over stacking:

» All models are comparable, less chances to average “good’ and “bad” models

» Can be understood as “lower the Variance’, I.e., prevent overfit.

- Remember the Bias/Variance tradeoff ! Expressive models overfits => high variance.
- The definition of variance is high variation over the “average” of multiple models...

Biasp[f(x; D)| = Ep|f(x; D)] = f(x) D: subsets

Varp|[f(x; D)| = Bp[(EpLi(x; D)] - f(x; D). X:all elements in all subsets

BAGGING: RANDOM FOREST

* Random forest Is the most famous bagging algorithm

» [t 1s based on decision trees (thus the name forest...)
» A direct application of bagging

- Innovations to bagging came from random forests

* [rees are good candidates for bagging because overfit Is their
main problem

» What is similar between trees will stay, and when they disagree, taking the
average of all the errors should get close to right answer.
- Similar to “Wisdom of the crowds”

RANDOM FOREST

* Set

» Parameters of individual trees (not too simple, not too large...)
» Averaging function
» Htrees

* What Is specific I1s the subsamble strategy

» What is key Is to avoid correlation between trees, I.e., train on different data
» Subsample observations: With replacement. Sample n at random among n
items

- Variants: m among n. Or without replacement: random samples, or “folds’” (each observation
used In a single tree, but requires lot of data)...

» Specific to trees: subsample of variables at each node: to chose the best split,
restrain to a random fraction of variables.

- |Impose diversity in the trees

BOOSTING

BOOSTING

* Again, a general principle

* We train various models in sequence

» First, train a normal, first model

Usually, this model will be tuned to be relatively simple, and thus underfit=>Weak learners

» Then, extract the errors of the model (incorrect classes/residuals).

» Train a second model, focusing on predicting the errors missed by the first model
» Update the main model and recompute the errors
» Repeat until we cannot improve anymore

* Final prediction Is the sum of all weak learners (not average: each
method corrects, complement previous ones)

T
Fr(x) =) f(x)
=il

ADABOOST

* First boosting method to reach wide recognition
» Method for classification

* Weak learners are decision stumps

» Choose only one variable. Split it only once

no yes

‘ Iris versicolor ‘ Iris virginica

L — T

ADABOOST

SV wr(f, () #)
> wm

Error to minimize at each step m: ¢,

- I(true)=1, I(false)=0
- w weight of element i at step m

- Interpretation: fraction of weights w;" for misclassified elements

- Weights are inrtialized at |: first, minimize fraction of errors

WL = (i)
l

» Updates weights of misclassified items(e” = 1) by a coefficient proportional to
e Elhiel

L=t
. With am=1n< >
€m

et e orrect / Incorrect =>

- Sum of Weights of correct pts: correct *(w=1)=correct

- Sum of Weigths of incorrect pts: incorrect *(w=correct/incorrect) =correct
- Incorrectly classified now weights equal to correctly classified.

ADABOOST

0.7/0.3=2.33

Weight Incorrect=3*2.35=7/
Weight correct=7*|=7/

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

ADABOOST

W05 =).55

Weight incorrect=3*3.66=1 |
eight correct=4* | +3*2.35=1 |

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

ADABOOST

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

ADABOOST

* Finally, we need to combine our various weak learners into a
single prediction
F () = F (0 + 0,1, (0) =) a1, (%)

- The new set of rules at step m is the previous set of rules to which we add the new rule

| , L=z
weighted by coefficient a,, = In

Em

- In(Correct /errors): O if as many correct as error (ignore if rangom...), the more we have
correct results, the higher the value. (Infinite with perfect solution...)

ADABOOST

1st iteration's weight = In(7/3) = 0.85 J2nd iteration's weight =In(11/3) = 1.30 | 3rd iteration's weight=1n(19/3) = 1.85

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

ADABOOST

* Why does 1t work?

»Inturtively:
- We force the latest weak |learner to focus on what was missed by others.
- The weights of models are stronger when we solve errors found in many other models
- “"ADA: adaptative (weights adapt based on previous step)”

» Theoretically:

- It can be shown that Adaboost minimizes the Exponential loss, which Is a way to estimate
the probability of having a given class given the data

. g 1 Ee=1l8DaE)
_ argminkyye Yf(X):Elog R
fX) W= =P

- (A posteriori improvement and explanations, everything not fully clear IMO...)

XGBOOST

XGROOST

* As of today, certainly the most popular method among those
not using neural networks

» Used in winning solution in countless ML challenges
» And at Google, Amazon, Uber. ..

* Both :

» A method described in a scientific paper

» A library developed and improved by a community
- Changes in the ML scientific culture...

XGROOST

* In a few words:

» A tree boosting methods
- (Can be used for classification and regression

» Weak learners not as weak as in AdaBoost
- Default to 3 or 6 levels max

» Introduces Regularization
- Each new leaf add some regularization cost

» Gradient Boosting method:

- Explicitly do a gradient-descent like approach

GRADIENT BOOSTING

» Gradient boosting Is the application of boosting to explicit
oradient descent

GRADIENT BOOSTING

» dataset ve predictions (1st iteration) residuals for target and predictions (1st iteration)
- a ..
e " a0 4
=l
e®
U eoe o
o =] ...
) . u i 0 n ...
5 o .. a
4 60+ _ a [a
- o* —/ p o®
. o ‘i c "
;:; 40 4 =3 ® ®
. ee e o
20 en®e
20
a L a
N ... ® ... o
"3 s 10 15 20 25 » 0 5 10 19 20 21 10

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

GRADIENT BOOSTING

,dataset ve predictions (10th iteration) residuals for target and predictions (10th iteration)

o ..
=l
® a0
-~
¥ oo e e_0 Bl
.. o ® } 20
i)
S \ S
g 60 —s \ e * o0 Ll
a 5]
§ ?® \ / 3 ®e "
g * \ 3 0.
a »
'3 N l) o* ®ee®e
& 40 o \)
2 ee®e E ‘o
\ -20 eo®
\ |
20
o au
...)
oLy .
0 10 1 0 25 » 0 3 10 1 20 2 »n
x x
e —— W

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

GRADIENT BOOSTING

,_dataset ve predictions (25th iteration) residuals for target and predictions (25th iteration)

a ..
b - 40 1

20

progiction
c
A
1=}

§ g \ e \ {

residdusd
[

arget an
&
o
=)
a
=

20

‘—.—' a0

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

GRADIENT BOOSTING

dataset ve predictions (50th iteration) residuals for target and predictions (50th iteration)

ov' N

.\ /L.,.' o? .
60 1 \\/““ \\

residusd
[-

® o_° a
{ &8

Target and prodiction

20 \

4u

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c/34aca4c

XGBOOST INA NUTSHELL

obj” = Y 1y, 5D +) w(f)
= =i |
= D) 10,3V +£060) +) ()
7=l Pl

* In our loss for the tree, we decompose the prediction y as

» Prediction given by previous tree + prediction of new tree.
» @ regularization, explained later

XGBOOST INA NUTSHELL

G,
e =
y H;+ A

» W; 1 score of a leaf (like AdaBoost)

BEEIRCRRIMSE as objective:

» G Sum of errors (to residuals)
» H; Number of items in the leaf

» A: Regularization parameter

GAIN ON A SPLIT

Bt G Gp (G; + Gp)?
i 1) H,+) H +H, 1}

~Gain = %

» L, R=> Left and Right children

* Sum of regularized averaged error of the children squared,
minus that of parent, minus regularization y

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

XGBOOST INA NUTSHELL

* For First tree:

» For each leaf

- We compute the gain to find the best possible split,
- If regularization makes the gain negative, do nothing
- If we reach the maximal tree depth, do nothing

- Compute the final score of the leaf : signed error. To add to the final prediction

Next tree: same process, but compute error relatively to
brevious tree (residuals)

* When finished, for each prediction, sum the (signed)
prediction of each tree (weighted by learning rate n)

[EARNING RATE

* As In most gradient descent methods, there Is a learning rate
1 (eta) parameter, allowing to tune how fast we converge

» To avoid the “ping-pong’ effect around global minimum
» In practice, the prediction of the previous tree Is shrinked by #

5 =D + fix)

XGBOOS T EXAMPLE

500000
° of
0000000 o
3:00
an o
o So

400000 35?
oooooo | &

&
300000 - f

25

50 75 100 125 150 175 200

objective="reg:squarederror’,
learning_rate=0.3,
base_score=np.mean(Ytrain),
max_depth=2

XGBOOS T EXAMPLE

500000 -

450000 -

400000 -

350000 -

300000 - f‘

First tree

T

25

50 75 100 125 150 175 200

f0<50.3417969

yes, missing \ no

f0<32.1076431 f0<86.9219513

yes, missing no yes, missing no

leaf=-17795.7598 leaf=-5294.44824 leaf=10075.7393 leaf=25363.4746

XGBOOS T EXAMPLE

f0<50.3417969

yes, missing

no

f0<32.1076431 f0<86.9219513

yes, missing [no

yes, missing

leaf=-17795.7598 leaf=-5294.44824 leaf=10075.7393 leaf=25363.4746

500000 -

450000 -

400000 -

350000 -

300000 -

pxl
‘.
A
aee
we
’.o; 2
| g,ﬁ'
0 50 100 150 200

| single

tree for prediction:
Learni

Ng raictelicEEm

500000 -

450000 -

400000 -

350000 A

300000 -

XGBOOS T EXAMPLE

150

200

500000 A

450000 -

400000 -

350000 -

300000 A

150

200

50

ba)
500000 - .
‘.
oes *
450000 e
e ,.
we | '
400000 - ;ii'
-
,-O
350000 - gf
300000 -
50 100 150 200
500000 - .
%
-
'Y B
450000 - N e
fa’®
l“‘
&4
400000 - ,'g-'-"'
H
3;.#
»
j .
350000 - o
e
'
300000 { ——g
50 100 150 200

leaf=-17795.7598

leaf=-7048.08936

f0<32.1076431

yes, missing [no

leaf=-5294.44824

f0<50.3417969

yes, missing

no

f0<86.9219513

yes, missing

leaf=10075.7393

no
leaf=25363.4746

leaf=5.41875029

f0<63.5438538

yes, missing

leaf=11945.2793

leaf=22616.0254

f0<22.4746075

yes, missing |no

leaf=-369.418762

f0<25.8329716

yes, missing

leaf=301.320007

no

leaf=-6.91399288

DETAILS ONWHY

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

REGULARIZATION TERM

XGB: REGULARIZATION

» I number of leaves
» A: parameter for the strength of the regularization
» ¥: gain threshold below which we choose not to split a leaf

» W, “score” of leaf J, next slide

=>Chosen to simplify computations

DEFINITION USING ANY LOSS
FUNCTION

GRADIENT BOOSTING

obj” = Y 1y, 5D +) w(f)
= =i |
=) 10,3V +£x)) + o(f)
=il

* In our loss for the tree, we decompose the prediction y as

» Prediction given by previous tree + prediction of new tree.
» @ regularization, explained later

GRADIENT BOOSTING

D 10370 + £6) + o(f)
=l

Instead of classic gradient descent, uses laylor series
to compute an approximation, allowing any error function

| - T 1
obj? = Z [{(y;, yl(.t MY+ g.f(x) + Ehi f(x)] + o(f) + constant
=l

8; = Oye-vl(y;, e

Withg;, h; first and second derivatives) e
hi 5 aj\}(_t—l)l(yi’ Y)

FEAF AND | REE SCORKES

After development:
(.

w¥ = J The score of a leaf
e . (What we will sum to make the prediction)
H;+)
ObJ o Z : yT [mefseereroii R
o " I_Ij"'/l T: leaves
J:

With — G=Y g H=Yh

e i’ Scere of Ieaflj, sum for items inside it
lEJ- lEJ-

PO GENERIC 1O ¥

SCORES WITH MSE

G, |
D J | ooks complicated.. .
J [—]J 4+ A In practice, meaning for squared loss?

g = Oge-vl(y, 3UV) g ds0i= 5N =205 = S H-D 26

h; = ()%H)l(yi, ??‘1))

(= 57 = 02607 -) «2)

o
& I‘I] o * X avg (signed) error

CLASSIC MLVS DNN

» Until now, | have presented “classic’” methods.

* In the news, we hear often about Neural networks methods

when talking about |A. Are classic obsolete?
» DNN are mostly “chained” classic methods. Nothing different in the theory

» DNN are good for problems with

- Huge quantity of data
- Huge quantity of attributes
- Attributes being semantically related to each other (adjacent pixels, following words...)
- Attributes are of the same nature
- => Currently, extremely specialized for tasks on images, text, audio, etc.
» If imrted data, set of unrelated, loosely known features: XGboost & Co. are the

most used and usually most efficient methods

