DEFINING OBJECTIVE

- Once we have define our loss function, the ML task to solve can simply be expressed as minimizing it over some parameters:
 - E.g., for Linear Regression: Detailed way: $\underset{\beta_0,\beta_1,...,\beta_n}{\operatorname{reg}} \sum_{i}^{n} (y^i - (\beta_0 + \beta_1 x_1^{(i)} + \beta_2 x_2^{(i)} + ... + \beta_n x_n^{(i)}))^2$ Simplified way: $\underset{\beta}{\operatorname{reg}} \underset{i}{\operatorname{reg}} \sum_{i}^{n} (y^i - f(\beta, x))^2$ Generic way: $\underset{\theta}{\operatorname{reg}} \underset{i}{\operatorname{reg}} \underset{i}{\operatorname{reg}} L_2(f(\theta, x))$

SOLVING MINIMIZATION

- Once we have expressed our task as a minimization problem, we just have to explore the parameter space to find a good solution
 - Exhaustive search is usually impossible
 - In the general case, no close form solution
 - One could use any optimization method
 - Genetic Algorithm
 - Simulated Annealing
 - EM...
 - Most used in general case: Gradient descent

Greedy approach

- Start from arbitrary point
- Search for the nearest local minimum
 - If the problem is convex, find the global minimum, i.e., best possible solution
 - => linear regression
 - Else, find one local minimum, without guarantee.

• What is a gradient?

Generalization of a derivative to multiple dimension

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

- The objective of gradient descent is to follow the gradient/ derivative in order to find a minimal point
 - Example: linear regression.
 - The "altitude" is given by the loss function
 - Each of the β is a ''direction'' in which we can move
 - Gradient descent answers the question: ''in which direction and by how much should I change the β so as to go ''down'' in the loss function, optimally

- In practice:
 - Update the parameters **a** of function *F*, by subtracting its gradient ∇F at point \mathbf{a}_n , multiplied by a parameter γ to control the speed
 - $\mathbf{a}_{n+1} = \mathbf{a}_n \gamma \nabla F(\mathbf{a}_n)$
 - Subtract because we want to descend the gradient, i.e. minimize the function.
- The gradient has a value for each parameter
 - =>Compute the partial derivative, for each parameter

- Reminder: Common derivative
 - ▶ c'=0
 - x' = 1, (ax)' = a
 - $(x^a)' = ax^{a-1} => (x^2)' = 2x$
 - ► ...

· . . .

- Common derivative rules
 - Mult by constant: (cf)' = cf'
 - Sum rule: (f + g)' = f' + g'
 - Chain rule: $f(g(x))' = f'(g(x))g'(x) \le (f \circ g)' = (f' \circ g)g'$
- Boring? Use a solver like Wolfram alpha...

- Consider a function $f(x) = x^2 + 3$
 - f'(x) = 2x
 - x=4: Gradient= 8
 - x=2: Gradient=4
 - x=-1: Gradient=-2
 - x=-0.01: Gradient = -0.02
 - x=0: Gradient=0
- Start at random, x=4, $\alpha = 0.25$
 - ► ×=4-(0.25*8)=2
 - x=2-|=|
 - ► x=1-0.25=0.75
 - ► ×=0.75-0.18=0.56....
 - => Converge to x=0

- Of course, the choice of α will affect the learning
 - Strategies exist to adapt α dynamically
- We stop when reaching a fix point

- Consider a function $f(x, y) = x^2 + 0.5y^2$
 - $\frac{\partial f}{\partial x} = 2x + 0$ $\frac{\partial f}{\partial y} = 0.5(2y) = y$
- x=4,y=-2, α = 0.25
 x=4-2=2, y=-2-(-0.5)=-1.5
 x=2-1=1, y=-1.5-(-0.375)=-1.125

- Practical example for parameter exploration
 - Apartments defined by surface
 - Price =

prices = 100+surface*8+np.random.normal(0, 50, len(surface))

- Define linear regression:
- $y^{i} = \beta_{0} + \beta_{1}x_{i}$ • $\arg \min_{\beta_{0},\beta_{1}} \frac{1}{N} \sum_{i}^{N} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}$

• Plotting the solution space:

,
$$x : \beta_0, y : \beta_1, z = \frac{1}{N} \sum_{i}^{N} (y_i - (\beta_0 + \beta_1 x_i))^2$$

(Here, exhaustive search: very costly)

 Computing gradients for linear regression with 2 parameters $\ell(\beta_0, \beta_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 x_i))^2$ $\frac{\partial \ell}{\partial \beta_0} = \frac{1}{N} \sum_{i=1}^{N} 2(y_i - (\beta_0 + \beta_1 x_i))(-1)$ $\frac{\partial \ell}{\partial \beta_0} = \frac{1}{N} \sum_{i=1}^{N} -2(y_i - (\beta_0 + \beta_1 x_i))$ $\frac{\partial \ell}{\partial \beta_0} = \frac{-2}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)$

• Prediction is too low=> Increase β_0 (proportionally to error).

• Too high=> Decrease β_0 if, decrease if too high

• Computing gradients for linear regression with 2 parameters

$$\mathcal{\ell}(\beta_0, \beta_1) = \frac{1}{N} \sum_{i}^{N} (y_i - (\beta_0 + \beta_1 x_i))^2$$

$$\frac{\partial \ell}{\partial \beta_1} = \frac{1}{N} \sum_{i}^{N} 2(y_i - (\beta_0 + \beta_1 x_i))(-x_i)$$

$$\frac{\partial \ell}{\partial \beta_1} = \frac{1}{N} \sum_{i}^{N} - 2x_i(y_i - (\beta_0 + \beta_1 x_i))$$

$$\frac{\partial \ell}{\partial \beta_1} = \frac{-2}{N} \sum_{i}^{N} x_i(y_i - \hat{y}_i)$$

- x_i positive=>Lower if too high, increase if too low.
- x_i negative=>Increase if too high, decrease if too low.
- If two items with equal absolute error of opposite sign, different $|x_i| =>$ gradient correct largest $|x_i|$ (increase the slope)
- If $x_i = 0$, the coefficient have no effect anyway

• Generic case: more than a single variable

$$\ell(b, w) = \frac{1}{N} \sum_{i}^{N} (y_i - (b + wx_i))^2$$

- Vecteur form: w: vector of weights, x_i : vector of features
- Same derivation:

$$\frac{\partial \ell}{\partial w} = \frac{-2}{N} \sum_{i}^{N} x_i (y_i - \hat{y}_i)$$

- Partial gradient for each feature (for each observation) is proportional to the feature value for this observation
 - A same error for an observation can contribute differently for each coefficient:
 - Increase or decrease (sign of the feature)
 - Strong or weak effect (magnitude of the feature)

- We have seen that a drawback of ML methods is that they can overfit
- When the ML objective can be clearly expressed, there is a generic way to limit overfitting: regularization
 - Two types of regularization:
 - LI or Lasso regularization
 - L2 or Ridge regularization

• Expressed as a general principle $\ell(b, w) = \frac{1}{N} \sum_{i}^{N} f(y_i, \hat{y}_i, b, w) + \lambda \sum_{j}^{p} w_j^2$

- Some parameters are regularized, and some others might not be (intercept...)

- Intuition: we force coefficients to be small.
 - If $\lambda = 0$, normal regression
 - If $\lambda \rightarrow \infty$, all coefficients tends towards 0
 - /!\The magnitude of coefficients depends on the magnitude of variables!
 - Important to normalize the variables, else you will constraint more the variables of lower amplitude

- LI or Lasso Regularization
 - Lasso: Least Absolute Shrinkage and Selection Operator $\ell(b,w) = \frac{1}{N} \sum_{i}^{N} (y_i - (b + \sum_{j}^{p} (w_j x_{ij})))^2 + \lambda \sum_{j}^{p} |w_j|$ $\ell(b,w) = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2 + \lambda \sum_{j}^{p} |w_j|$ Notation: $\sum_{j}^{p} |w_j| = ||w||_1$

- Similar methods, different results:
 - L1 regularization tends to force some values to be 0
 - L2 regularization tends not to attribute 0
- LI regularization thus performs variable selection
 - Variables for which the coefficient is 0 can be discarded

- Why different behaviors ?
 - We minimize the sum of error+constraints
 - Red lines represent error (every point of a circle have same error)
 - Similarly for blue.
 - Intersection is the optimal solution (for that error, minimize constraint)
- => For a same error, LI favors 0

https://online.stat.psu.edu/stat508/book/export/html/749

- Bayesian interpretation
 - Different priors on the coefficients

FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaussian prior. Right: The lasso is the posterior mode for β under a double-exponential prior.

https://ekamperi.github.io/mathematics/2020/08/02/bayesian-connection-to-lasso-and-ridge-regression.html

ELASTIC NET

• Best of both worlds :)

$$\ell(b, w) = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i) + \lambda_1 \sum_{j}^{p} |w_j| + \lambda_2 \sum_{j}^{p} w_j^2$$

ENSEMBLE LEARNING

ENSEMBLE LEARNING

- Ensemble learning is a general principle:
 - All models have strengths and weaknesses
 - e.g., linear models struggle with non-linearities but are good at extrapolation
 - Decision trees are good at capturing non-linearities, but struggle with extrapolation
 - Could we combine the strengths of various models?
 - Direct application: Stacking
 - Using multiple times the same model: **Bagging**
 - Training models specifically to solve other weaknesses: Boosting

ENSEMBLE LEARNING

STACKING

- In the simplest approach, various models (different approaches, same approach with different parameters) are trained on the same dataset
- Their predictions are then combined:
 - Regression: <u>averaging</u>. Average values of the classifiers (possibly weighted)
 - Classification:
 - Voting: class with the most vote
 - Soft / Averaging: average of probabilities yielded by the classifier
- Weaknesses:
 - What if several models make the same mistake? (Correlation of errors...)
 - What if we merge good models and poor models?

STACKING

- A possible solution to stacking is to use a meta-model:
 - The prediction made by each individual model is considered as a feature for the meta-model
 - The meta-model is trained as any ML model with the original target, but using sub-models outputs as features.
- Any model can be used as meta-model
- Famous for winning the \$1M prize of the 2009 Netflix prize.
 - 100+ individual predictors

BAGGING

- Bagging is an ensemble methods, but differ from stacking in two main ways:
 - The various individual predictors are made of the same algorithm
 - Each algorithm is trained on a subset of the original data
 - Different subsets on all variables
 - And/Or trained only on some variables
 - => Various strategies exist.
- Advantages over stacking:
 - All models are comparable, less chances to average "good" and "bad" models
 - Can be understood as "lower the Variance", i.e., prevent overfit.
 - Remember the Bias/Variance tradeoff ? Expressive models overfits => high variance.
 - The definition of variance is high variation over the "average" of multiple models...

 $Bias_D[\hat{f}(x;D)] = E_D[\hat{f}(x;D)] - f(x)$ $Var_D[\hat{f}(x;D)] = E_D[(E_D[\hat{f}(x;D)] - \hat{f}(x;D))^2].$ X: all elements in all subsets

BAGGING: RANDOM FOREST

- Random forest is the most famous bagging algorithm
 - It is based on decision trees (thus the name forest...)
 - A direct application of bagging
 - innovations to bagging came from random forests
- Trees are good candidates for bagging because overfit is their main problem
 - What is similar between trees will stay, and when they disagree, taking the average of all the errors should get close to right answer.
 - Similar to "Wisdom of the crowds"

RANDOM FOREST

- Set
 - Parameters of individual trees (not too simple, not too large...)
 - Averaging function
 - #trees
- What is specific is the subsamble strategy
 - What is key is to avoid correlation between trees, i.e., train on different data
 - Subsample observations: With replacement. Sample n at random among n items
 - Variants: m among n. Or without replacement: random samples, or "folds" (each observation used in a single tree, but requires lot of data)...
 - Specific to trees: subsample of variables at each node: to chose the best split, restrain to a random fraction of variables.
 - Impose diversity in the trees

BOOSTING

BOOSTING

- Again, a general principle
- We train various models in sequence
 - First, train a normal, first model
 - Usually, this model will be tuned to be relatively simple, and thus underfit=><u>Weak learners</u>
 - Then, extract the errors of the model (incorrect classes/residuals).
 - Train a second model, focusing on predicting the errors missed by the first model
 - Update the main model and recompute the errors
 - Repeat until we cannot improve anymore
- Final prediction is the sum of all weak learners (not average: each method *corrects, complement* previous ones)

$$F_T(x) = \sum_{t=1}^{I} f_t(x)$$

- First boosting method to reach wide recognition
- Method for classification
- Weak learners are decision stumps
 - Choose only one variable. Split it only once

$$\begin{array}{l} \text{ADABOOST} \\ \text{Error to minimize at each step m: } \epsilon_m = \frac{\sum_{i}^{N} w_i^m I(f_m(x_i) \neq y_i)}{\sum_{i}^{N} w_i^m} \end{array}$$

- I(true) = I, I(false) = 0
- w_i^m : weight of element *i* at step *m*
- Interpretation: fraction of weights w_i^m for misclassified elements
- Weights are initialized at 1: first, minimize fraction of errors

•
$$w_i^{m+1} = w_i^m e^{\alpha_m I(fm(x_i) \neq y_i)}$$

• Updates weights of misclassified items ($e^0 = 1$) by a coefficient proportional to the error

With
$$\alpha_m = \ln\left(\frac{1-\epsilon_m}{\epsilon_m}\right)$$

- e^{α_m} : correct / incorrect =>
 - Sum of Weights of correct pts: correct *(w=1)=correct
 - Sum of Weigths of incorrect pts: incorrect *(w=correct/incorrect) =correct
 - Incorrectly classified now weights equal to correctly classified.

0.7/0.3=2.33

Weight incorrect=3*2.33=7 Weight correct=7*1=7

0.7/0.3=2.33

Weight incorrect=3*3.66=11 Weight correct=4*1+3*2.33=11

 $\frac{11}{14} / \frac{3}{14} = 3.66$ $\frac{19}{22} / \frac{3}{22} = 6.33$

Finally, we need to combine our various weak learners into a single prediction

$$F_m(x) = F_{m-1}(x) + \alpha_m h_m(x) = \sum_m \alpha_m h_m(x)$$

- The new set of rules at step m is the previous set of rules to which we add the new rule weighted by coefficient $\alpha_m = \ln\left(\frac{1-\epsilon_m}{\epsilon_m}\right)$
- In(Correct /errors): 0 if as many correct as error (ignore if rangom...), the more we have correct results, the higher the value. (Infinite with perfect solution...)

's weight = $\ln(7/3) = 0.85$ 2nd iteration's weight = $\ln(11/3) = 1.30$ 3rd iteration's weight = $\ln(19/3) = 1.85$

-0.85 +1.30 +1.85	-0.85 +1.30 -1.85
2.30	-1.40
-0.85	-0.85
-1.30	-1.30
+1.85	-1.85
-0.30	-4.00
	-0.85 +1.30 +1.85 2.30 -0.85 -1.30 +1.85 -0.30

• Why does it work?

- Intuitively:
 - We force the latest weak learner to focus on what was missed by others.
 - The weights of models are stronger when we solve errors found in many other models
 - "ADA: adaptative (weights adapt based on previous step)"
- Theoretically:
 - It can be shown that Adaboost minimizes the Exponential loss, which is a way to estimate the probability of having a given class given the data

$$\underset{f(X)}{\operatorname{argmin}} \mathbb{E}_{Y|X} e^{-Yf(X)} = \frac{1}{2} \log \frac{\mathbb{P}(Y=1 \mid X)}{\mathbb{P}(Y=-1 \mid X)},$$

- (A posteriori improvement and explanations, everything not fully clear IMO...)

XGBOOST

XGBOOST

- As of today, certainly the most popular method among those not using neural networks
- Used in winning solution in countless ML challenges
 - And at Google, Amazon, Uber...
- Both :
 - A method described in a scientific paper
 - A library developed and improved by a community
 - Changes in the ML scientific culture...

XGBOOST

In a few words:

- A tree boosting methods
 - Can be used for classification and regression
- Weak learners not as weak as in AdaBoost
 - Default to 3 or 6 levels max
- Introduces Regularization
 - Each new leaf add some regularization cost
- Gradient Boosting method:
 - Explicitly do a gradient-descent like approach

Gradient boosting is the application of boosting to explicit gradient descent

XGBOOST IN A NUTSHELL

• In our loss for the tree, we decompose the prediction \hat{y} as

- Prediction given by previous tree + prediction of new tree.
- ω regularization, explained later

XGBOOST IN A NUTSHELL

$$w_j = -\frac{G_j}{H_j + \lambda}$$

- w_j : score of a leaf (like AdaBoost)
- Using RMSE as objective:
 - G_i : Sum of errors (to residuals)
 - H_i : Number of items in the leaf
 - λ : Regularization parameter

GAIN ON A SPLIT

$$Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$$

• L, R = > Left and Right children

• Sum of regularized averaged error of the children squared, minus that of parent, minus regularization γ

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

XGBOOST IN A NUTSHELL

- For First tree:
 - For each leaf
 - We compute the gain to find the best possible split,
 - If regularization makes the gain negative, do nothing
 - If we reach the maximal tree depth, do nothing
 - Compute the final score of the leaf : signed error. To add to the final prediction
- Next tree: same process, but compute error relatively to previous tree (residuals)
- When finished, for each prediction, sum the (signed) prediction of each tree (weighted by learning rate η)

LEARNING RATE

- As in most gradient descent methods, there is a learning rate η (eta) parameter, allowing to tune how fast we converge
 - To avoid the "ping-pong" effect around global minimum
 - In practice, the prediction of the previous tree is shrinked by η
- $\cdot \hat{y} = \eta \hat{y}_i^{(t-1)} + f_t(x_i)$

I single tree for prediction: Learning rate effect...

DETAILS ON WHY

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

REGULARIZATION TERM

XGB: REGULARIZATION

$$obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \omega(f_i)$$
$$\omega(f) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

- T: number of leaves
- λ : parameter for the strength of the regularization
- γ : gain threshold below which we choose not to split a leaf
- w_j "score" of leaf *j*, next slide

=>Chosen to simplify computations

DEFINITION USING ANY LOSS FUNCTION

$$obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \omega(f_i)$$
$$= \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \omega(f_t)$$

• In our loss for the tree, we decompose the prediction \hat{y} as

- Prediction given by previous tree + prediction of new tree.
- ω regularization, explained later

$$\sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \omega(f_t)$$

Instead of classic gradient descent, uses Taylor series to compute an approximation, allowing any error function

$$obj^{(t)} = \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \omega(f_t) + \text{constant}$$

With g_i , h_i first and second derivatives

$$g_{i} = \partial_{\hat{y}_{i}^{(t-1)}} l(y_{i}, \hat{y}_{i}^{(t-1)})$$
$$h_{i} = \partial_{\hat{y}_{i}^{(t-1)}}^{2} l(y_{i}, \hat{y}_{i}^{(t-1)})$$

LEAF AND TREE SCORES

After development:

With $G_j = \sum_{i \in I_j} g_i$ $H_j = \sum_{i \in I_j} h_i$ Score of leaf I_j , sum for items inside it

FROM GENERIC TO MSE

SCORES WITH MSE

$$w_j = -\frac{G_j}{H_j + \lambda}$$

Looks complicated... In practice, meaning for squared loss?

$$g_{i} = \partial_{\hat{y}_{i}^{(t-1)}} l(y_{i}, \hat{y}_{i}^{(t-1)})$$

$$h_{i} = \partial_{\hat{y}_{i}^{(t-1)}}^{2} l(y_{i}, \hat{y}_{i}^{(t-1)})$$

$$\partial_{\hat{y}_{i}^{t-1}}(y_{i} - \hat{y}_{i}^{t-1})^{2} = 2(y_{i} - \hat{y}_{i}^{t-1})(-1) = 2(\hat{y}_{i}^{t-1} - y_{i})$$

$$\partial_{\hat{y}_{i}^{t-1}}(y_{i} - \hat{y}_{i}^{t-1})^{2} = \partial_{\hat{y}_{i}^{t-1}}2(\hat{y}_{i}^{t-1} - y_{i}) = 2$$

 $w_j = -\frac{G_j}{H_j + \lambda}$

pprox avg (signed) error

CLASSIC MLVS DNN

- Until now, I have presented "classic" methods.
- In the news, we hear often about Neural networks methods when talking about IA. Are classic obsolete?
 - DNN are mostly "chained" classic methods. Nothing different in the theory
 - DNN are good for problems with
 - Huge quantity of data
 - Huge quantity of attributes
 - Attributes being semantically related to each other (adjacent pixels, following words...)
 - Attributes are of the same nature
 - => Currently, extremely specialized for tasks on images, text, audio, etc.
 - If limited data, set of unrelated, loosely known features: XGboost & Co. are the most used and usually most efficient methods