
GRADIENT DESCENT



DEFINING OBJECTIVE

• Once we have define our loss function, the ML task to solve 
can simply be expressed as minimizing it over some 
parameters:
‣ E.g., for Linear Regression: 

- Detailed way: 

- Simplified way:  

- Generic way: 

arg min
β0,β1...,βn

n

∑
i

(yi − (β0 + β1x(i)
1 + β2x(i)

2 + . . . + βnx(i)
n ))2

arg min
β

n

∑
i

(yi − f(β, x))2

arg min
θ

L2( f(θ, x))



SOLVING MINIMIZATION

• Once we have expressed our task as a minimization problem, 
we just have to explore the parameter space to find a good 
solution
‣ Exhaustive search is usually impossible
‣ In the general case, no close form solution
‣ One could use any optimization method

- Genetic Algorithm
- Simulated Annealing
- EM…

‣ Most used in general case: Gradient descent



GRADIENT DESCENT
• Greedy approach

‣ Start from arbitrary point
‣ Search for the nearest local minimum

- If the problem is convex, find the global minimum, i.e., best possible solution 
- => linear regression
- Else, find one local minimum, without guarantee.

• What is a gradient?
‣ Generalization of a derivative to multiple dimension

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html



GRADIENT DESCENT

• The objective of gradient descent is to follow the gradient/
derivative in order to find a minimal point
‣ Example: linear regression. 

- The “altitude” is given by the loss function
- Each of the  is a “direction” in which we can move
- Gradient descent answers the question: “in which direction and by how much should I 

change the  so as to go “down” in the loss function, optimally

β

β



GRADIENT DESCENT
• In practice: 

‣ Update the parameters  of function , by subtracting its gradient  at point 
, multiplied by a parameter  to control the speed

-  
- Subtract because we want to descend the gradient, i.e. minimize the function.

• The gradient has a value for each parameter
‣ =>Compute the partial derivative, for each parameter

a F ∇F
an γ

an+1 = an − γ∇F(an)



GRADIENT DESCENT
• Reminder: Common derivative

‣ =0
‣ , 
‣  =>  
‣ …

• Common derivative rules
‣ Mult by constant: 
‣ Sum rule: 
‣ Chain rule:  <=> 
‣ …

• Boring? Use a solver like Wolfram alpha…

c′ 

x′ = 1 (ax)′ = a
(xa)′ = axa−1 (x2)′ = 2x

(cf )′ = cf′ 

( f + g)′ = f′ + g′ 

f(g(x))′ = f′ (g(x))g′ (x) ( f ∘ g)′ = ( f′ ∘ g)g′ 



GRADIENT DESCENT
• Consider a function 

‣

‣ x=4: Gradient= 8
‣ x=2: Gradient=4
‣ x=-1: Gradient=-2
‣ x=-0.01: Gradient = -0.02
‣ x=0: Gradient=0

• Start at random, x=4, 
‣ x=4-(0.25*8)=2
‣ x=2-1=1
‣ x=1-0.25=0.75
‣ x=0.75-0.18=0.56….
‣ => Converge to x=0

f(x) = x2 + 3
f′ (x) = 2x

α = 0.25



GRADIENT DESCENT
• Of course, the choice of  will affect the learning

‣ Strategies exist to adapt  dynamically

• We stop when reaching a fix point

α
α

https://medium.com/analytics-vidhya/neural-networks-part-3-understanding-back-propagation-learning-rates-3482a981a2f0



GRADIENT DESCENT

• Consider a function 
‣  =  

‣  =  

• x=4,y=-2, 
‣ x=4-2=2,    y=-2-(-0.5)=-1.5
‣ x=2-1=1,    y=-1.5-(-0.375)=-1.125
‣

f(x, y) = x2 + 0.5y2

∂f
∂x

2x + 0
∂f
∂y

0.5(2y) = y

α = 0.25



GRADIENT DESCENT

• Practical example for parameter exploration
‣ Apartments defined by surface
‣ Price = 

prices = 100+surface*8+np.random.normal(0, 50, len(surface))

‣ Define linear regression: 
‣

‣

yi = β0 + β1xi

arg min
β0,β1

1
N

N

∑
i

(yi − (β0 + β1xi))2



GRADIENT DESCENT
• Plotting the solution space:

‣

‣ (Here, exhaustive search: very costly)

x : β0, y : β1, z =
1
N

N

∑
i

(yi − (β0 + β1xi))2



GRADIENT DESCENT
• Computing gradients for linear regression with 2 parameters

‣

‣

‣

‣

‣ Prediction is too low=> Increase  (proportionally to error).
‣ Too high=> Decrease  if, decrease if too high

ℓ(β0, β1) =
1
N

N

∑
i

(yi − (β0 + β1xi))2

∂ℓ
∂β0

=
1
N

N

∑
i

2(yi − (β0 + β1xi))(−1)

∂ℓ
∂β0

=
1
N

N

∑
i

− 2(yi − (β0 + β1xi))

∂ℓ
∂β0

=
−2
N

N

∑
i

(yi − ̂yi)

β0
β0



GRADIENT DESCENT
• Computing gradients for linear regression with 2 parameters

‣

‣

‣

‣

•  positive=>Lower if too high, increase if too low.
•  negative=>Increase if too high, decrease if too low.
• If two items with equal absolute error of opposite sign, different => gradient correct 

largest  (increase the slope)
• If  =0, the coefficient have no effect anyway

ℓ(β0, β1) =
1
N

N

∑
i

(yi − (β0 + β1xi))2

∂ℓ
∂β1

=
1
N

N

∑
i

2(yi − (β0 + β1xi))(−xi)

∂ℓ
∂β1

=
1
N

N

∑
i

− 2xi(yi − (β0 + β1xi))

∂ℓ
∂β1

=
−2
N

N

∑
i

xi(yi − ̂yi)

xi
xi

|xi |
|xi |

xi



GRADIENT DESCENT

• Generic case: more than a single variable

‣

- Vecteur form: : vector of weights, : vector of features
‣ Same derivation:

-

• Partial gradient for each feature (for each observation) is proportional to the feature value 
for this observation
‣ A same error for an observation can contribute differently for each coefficient:

- Increase or decrease (sign of the feature)
- Strong or weak effect (magnitude of the feature) 

ℓ(b, w) =
1
N

N

∑
i

(yi − (b + wxi))2

w xi

∂ℓ
∂w

=
−2
N

N

∑
i

xi(yi − ̂yi)



REGULARIZATION



REGULARIZATION

• We have seen that a drawback of ML methods is that they 
can overfit

• When the ML objective can be clearly expressed, there is a 
generic way to limit overfitting: regularization
‣ Two types of regularization:

- L1 or Lasso regularization
- L2 or Ridge regularization



L2 REGULARIZATION

• L2 or Ridge Regularization 

‣

‣

‣
Notation: 

ℓ(b, w) =
1
N

N

∑
i

(yi − (b +
p

∑
j

(wjxij)))2 + λ
p

∑
j

w2
j

ℓ(b, w) =
1
N

N

∑
i

(yi − ̂yi)2 + λ
p

∑
j

w2
j

p

∑
j

w2
j = ∥w∥2

2



L2 REGULARIZATION

• Expressed as a general principle

‣

- Some parameters are regularized, and some others might not be (intercept…)

• Intuition: we force coefficients to be small.
‣ If =0, normal regression
‣ If -> , all coefficients tends towards 0
‣ /!\ The magnitude of coefficients depends on the magnitude of variables!

- Important to normalize the variables, else you will constraint more the variables of lower 
amplitude

ℓ(b, w) =
1
N

N

∑
i

f(yi, ̂yi, b, w) + λ
p

∑
j

w2
j

λ
λ ∞



L1 REGULARIZATION

• L1 or Lasso Regularization 
‣ Lasso: Least Absolute Shrinkage and Selection Operator

‣

‣

‣
Notation: 

ℓ(b, w) =
1
N

N

∑
i

(yi − (b +
p

∑
j

(wjxij)))2 + λ
p

∑
j

|wj |

ℓ(b, w) =
1
N

N

∑
i

(yi − ̂yi)2 + λ
p

∑
j

|wj |

p

∑
j

|wj | = ∥w∥1



REGULARIZATION

• Similar methods, different results:
‣ L1 regularization tends to force some values to be 0
‣ L2 regularization tends not to attribute 0

• L1 regularization thus performs variable selection
‣ Variables for which the coefficient is 0 can be discarded



REGULARIZATION
• Why different behaviors ?

‣ We minimize the sum of error+constraints
‣ Red lines represent error (every point of a circle have same error)
‣ Similarly for blue.
‣ Intersection is the optimal solution (for that error, minimize constraint)

• => For a same error, L1 favors 0

https://online.stat.psu.edu/stat508/book/export/html/749



REGULARIZATION
• Bayesian interpretation

‣ Different priors on the coefficients

https://ekamperi.github.io/mathematics/2020/08/02/bayesian-connection-to-lasso-and-ridge-regression.html



ELASTIC NET

• Best of both worlds :)

• ℓ(b, w) =
1
N

N

∑
i

(yi − ̂yi) + λ1

p

∑
j

|wj | + λ2

p

∑
j

w2
j



ENSEMBLE LEARNING



ENSEMBLE LEARNING

• Ensemble learning is a general principle:
‣ All models have strengths and weaknesses

- e.g., linear models struggle with non-linearities but are good at extrapolation
- Decision trees are good at capturing non-linearities, but struggle with extrapolation

‣ Could we combine the strengths of various models?
- Direct application: Stacking
- Using multiple times the same model: Bagging
- Training models specifically to solve other weaknesses: Boosting



ENSEMBLE LEARNING



STACKING
• In the simplest approach, various models (different approaches, 

same approach with different parameters) are trained on the 
same dataset

• Their predictions are then combined:
‣ Regression: averaging. Average values of the classifiers (possibly weighted)
‣ Classification: 

- Voting: class with the most vote
- Soft / Averaging: average of probabilities yielded by the classifier

• Weaknesses:
‣ What if several models make the same mistake? (Correlation of errors…)
‣ What if we merge good models and poor models?



STACKING

• A possible solution to stacking is to use a meta-model:
‣ The prediction made by each individual model is considered as a feature for 

the meta-model
‣ The meta-model is trained as any ML model with the original target, but using 

sub-models outputs as features.

• Any model can be used as meta-model

• Famous for winning the $1M prize of the 2009 Netflix prize.
‣ 100+ individual predictors 



BAGGING
• Bagging is an ensemble methods, but differ from stacking in 

two main ways:
‣ The various individual predictors are made of the same algorithm
‣ Each algorithm is trained on a subset of the original data

- Different subsets on all variables
- And/Or trained only on some variables
- => Various strategies exist.

• Advantages over stacking:
‣ All models are comparable, less chances to average “good” and “bad” models
‣ Can be understood as “lower the Variance”, i.e., prevent overfit.

- Remember the Bias/Variance tradeoff ? Expressive models overfits => high variance.
- The definition of variance is high variation over the “average” of multiple models…

BiasD[ ̂f (x; D)] = ED[ ̂f (x; D)] − f (x)

VarD[ ̂f (x; D)] = ED[(ED[ ̂f (x; D)] − ̂f (x; D))2] .

D: subsets.
X: all elements in all subsets



BAGGING: RANDOM FOREST

• Random forest is the most famous bagging algorithm
‣ It is based on decision trees (thus the name forest…)
‣ A direct application of bagging 

- innovations to bagging came from random forests

• Trees are good candidates for bagging because overfit is their 
main problem
‣ What is similar between trees will stay, and when they disagree, taking the 

average of all the errors should get close to right answer.
- Similar to “Wisdom of the crowds”



RANDOM FOREST
• Set 

‣ Parameters of individual trees (not too simple, not too large…)
‣ Averaging function
‣ #trees

• What is specific is the subsamble strategy
‣ What is key is to avoid correlation between trees, i.e., train on different data
‣ Subsample observations: With replacement. Sample n at random among n 

items
- Variants: m among n. Or without replacement: random samples, or “folds” (each observation 

used in a single tree, but requires lot of data)…
‣ Specific to trees: subsample of variables at each node: to chose the best split, 

restrain to a random fraction of variables.
- Impose diversity in the trees



BOOSTING



BOOSTING
• Again, a general principle

• We train various models in sequence
‣ First, train a normal, first model

- Usually, this model will be tuned to be relatively simple, and thus underfit=>Weak learners
‣ Then, extract the errors of the model (incorrect classes/residuals). 
‣ Train a second model, focusing on predicting the errors missed by the first model
‣ Update the main model and recompute the errors
‣ Repeat until we cannot improve anymore

• Final prediction is the sum of all weak learners (not average: each 
method corrects, complement previous ones) 

FT(x) =
T

∑
t=1

ft(x)



ADABOOST

• First boosting method to reach wide recognition

• Method for classification

• Weak learners are decision stumps
‣ Choose only one variable. Split it only once



ADABOOST
• Error to minimize at each step m: 

- (true)=1, (false)=0
- : weight of element  at step 
- Interpretation: fraction of weights  for misclassified elements
- Weights are initialized at 1: first, minimize fraction of errors

•
‣ Updates weights of misclassified items( ) by a coefficient proportional to 

the error

‣ With 

‣ : correct / incorrect =>
- Sum of Weights of correct pts: correct *(w=1)=correct
- Sum of Weigths of incorrect pts: incorrect *(w=correct/incorrect) =correct
- Incorrectly classified now weights equal to correctly classified.

ϵm =
∑N

i wm
i I( fm(xi) ≠ yi)

∑N
i wm

i

I I
wm

i i m
wm

i

wm+1
i = wm

i eαmI( fm(xi)≠yi)

e0 = 1

αm = ln ( 1 − ϵm

ϵm )
eαm



ADABOOST

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c

0.7/0.3=2.33

Weight  incorrect=3*2.33=7
Weight correct=7*1=7



ADABOOST

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c

11
14

/
3
14

= 3.66

0.7/0.3=2.33

Weight  incorrect=3*3.66=11
Weight correct=4*1+3*2.33=11



ADABOOST

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c

11
14

/
3
14

= 3.66

19
22

/
3
22

= 6.33



ADABOOST

• Finally, we need to combine our various weak learners into a 
single prediction
‣

- The new set of rules at step m is the previous set of rules to which we add the new rule 

weighted by coefficient 

- ln(Correct /errors): 0 if as many correct as error (ignore if rangom…), the more we have 
correct results, the higher the value. (Infinite with perfect solution…)

Fm(x) = Fm−1(x) + αmhm(x) = ∑
m

αmhm(x)

αm = ln ( 1 − ϵm

ϵm )



ADABOOST

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



ADABOOST

• Why does it work?
‣ Intuitively:

- We force the latest weak learner to focus on what was missed by others. 
- The weights of models are stronger when we solve errors found in many other models
- “ADA: adaptative (weights adapt based on previous step)”

‣ Theoretically:
- It can be shown that Adaboost minimizes the Exponential loss, which is a way to estimate 

the probability of having a given class given the data

-

- (A posteriori improvement and explanations, everything not fully clear IMO…)

argmin
f(X)

𝔼Y|Xe−Yf(X) =
1
2

log
ℙ(Y = 1 |X)

ℙ(Y = − 1 |X)
,



XGBOOST



XGBOOST

• As of today, certainly the most popular method among those 
not using neural networks

• Used in winning solution in countless ML challenges
‣ And at Google, Amazon, Uber…

• Both : 
‣ A method described in a scientific paper
‣ A library developed and improved by a community

- Changes in the ML scientific culture…



XGBOOST

• In a few words:
‣ A tree boosting methods

- Can be used for classification and regression
‣ Weak learners not as weak as in AdaBoost

- Default to 3 or 6 levels max
‣ Introduces Regularization

- Each new leaf add some regularization cost
‣ Gradient Boosting method: 

- Explicitly do a gradient-descent like approach 



GRADIENT BOOSTING

• Gradient boosting is the application of boosting to explicit 
gradient descent



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



XGBOOST IN A NUTSHELL

• In our loss for the tree, we decompose the prediction  as
‣ Prediction given by previous tree + prediction of new tree.
‣  regularization, explained later

̂y

ω

obj(t) =
n

∑
i=1

l(yi, ̂y(t)
i ) +

t

∑
i=1

ω( fi)

=
n

∑
i=1

l(yi, ̂y(t−1)
i + ft(xi)) +

t

∑
i=1

ω( fi)



XGBOOST IN A NUTSHELL

•  : score of a leaf (like AdaBoost)

• Using RMSE as objective:
‣ : Sum of errors (to residuals)
‣ : Number of items in the leaf
‣ : Regularization parameter

wj

Gj

Hj

λ

wj = −
Gj

Hj + λ



GAIN ON A SPLIT

•

• => Left and Right children

• Sum of regularized averaged error of the children squared, 
minus that of parent, minus regularization 

Gain =
1
2 [ G2

L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ ] − γ

L, R

γ

https://xgboost.readthedocs.io/en/stable/tutorials/model.html



XGBOOST IN A NUTSHELL
• For First tree:

‣ For each leaf
- We compute the gain to find the best possible split,
- If regularization makes the gain negative, do nothing
- If we reach the maximal tree depth, do nothing
- Compute the final score of the leaf : signed error. To add to the final prediction

• Next tree: same process, but compute error relatively to 
previous tree (residuals)

• When finished, for each prediction, sum the (signed) 
prediction of each tree (weighted by learning rate )η



LEARNING RATE

• As in most gradient descent methods, there is a learning rate 
 (eta) parameter, allowing to tune how fast we converge
‣ To avoid the “ping-pong” effect around global minimum
‣ In practice, the prediction of the previous tree is shrinked by 

•

η

η

̂y = η ̂y(t−1)
i + ft(xi)



XGBOOST: EXAMPLE

objective=“reg:squarederror",
learning_rate=0.3,
base_score=np.mean(Ytrain),
max_depth=2



XGBOOST: EXAMPLE

First tree



XGBOOST: EXAMPLE

1 single tree for prediction:
Learning rate effect…



XGBOOST: EXAMPLE

1 2

5 50



1

2

5

50



DETAILS ON WHY

https://xgboost.readthedocs.io/en/stable/tutorials/model.html



REGULARIZATION TERM



XGB: REGULARIZATION

•

‣ : number of leaves
‣ : parameter for the strength of the regularization
‣ : gain threshold below which we choose not to split a leaf
‣  “score” of leaf , next slide

ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j

T
λ
γ
wj j

obj =
n

∑
i=1

l(yi, ̂y(t)
i ) +

t

∑
i=1

ω( fi)

=>Chosen to simplify computations



DEFINITION USING ANY LOSS 
FUNCTION



GRADIENT BOOSTING

• In our loss for the tree, we decompose the prediction  as
‣ Prediction given by previous tree + prediction of new tree.
‣  regularization, explained later

̂y

ω

obj(t) =
n

∑
i=1

l(yi, ̂y(t)
i ) +

t

∑
i=1

ω( fi)

=
n

∑
i=1

l(yi, ̂y(t−1)
i + ft(xi)) + ω( ft)



GRADIENT BOOSTING
n

∑
i=1

l(yi, ̂y(t−1)
i + ft(xi)) + ω( ft)

obj(t) =
n

∑
i=1

[l(yi, ̂y(t−1)
i ) + gi ft(xi) +

1
2

hi f 2
t (xi)] + ω( ft) + constant

Instead of classic gradient descent, uses Taylor series
to compute an approximation, allowing any error function

gi = ∂ ̂y(t−1)
i

l(yi, ̂y(t−1)
i )

hi = ∂2
̂y(t−1)
i

l(yi, ̂y(t−1)
i )With  first and second derivativesgi, hi



LEAF AND TREE SCORES

w*j = −
Gj

Hj + λ

obj* = −
1
2

T

∑
j=1

G2
j

Hj + λ
+ γT

After development:

The score of a leaf
(What we will sum to make the prediction)

Gj = ∑
i∈Ij

gi Hj = ∑
i∈Ij

hiWith Score of leaf , sum for items inside itIj

The score of a tree
: leavesT



FROM GENERIC TO MSE



SCORES WITH MSE

wj = −
Gj

Hj + λ
Looks complicated…

In practice, meaning for squared loss?

gi = ∂ ̂y(t−1)
i

l(yi, ̂y(t−1)
i )

hi = ∂2
̂y(t−1)
i

l(yi, ̂y(t−1)
i )

∂ ̂yt−1
i

(yi − ̂yt−1
i )2 = 2(yi − ̂yt−1

i )(−1) = 2( ̂yt−1
i − yi)

∂2
̂yt−1
i

(yi − ̂yt−1
i )2 = ∂ ̂yt−1

i
2( ̂yt−1

i − yi) = 2

wj = −
Gj

Hj + λ  avg (signed) error ≈



CLASSIC ML VS DNN

• Until now, I have presented “classic” methods.

• In the news, we hear often about Neural networks methods 
when talking about IA. Are classic obsolete?
‣ DNN are mostly “chained” classic methods. Nothing different in the theory
‣ DNN are good for problems with

- Huge quantity of data
- Huge quantity of attributes
- Attributes being semantically related to each other (adjacent pixels, following words…)
- Attributes are of the same nature
- => Currently, extremely specialized for tasks on images, text, audio, etc.

‣ If limited data, set of unrelated, loosely known features: XGboost & Co. are the 
most used and usually most efficient methods


