
UNIBA: http://www.uniba.it DIB: http://www.di.uniba.it KDDE: http://kdde.di.uniba.it

Deep Learning:
Keras and Tensorflow

Dr. Giuseppina Andresini

Deep Learning frameworks

Deep Learning 1

Tensorflow
● Open-source library for Deep Neural Network
● Developed by Google Brain team
● First version developed in 2015; version 2.0 in 2018
● Can be used in a wide variety of programming languages:

○ Python, Javascript, C++, and Java
● Supports running computations on a variety of types of devices:

○ including CPU and GPU
● Basic type:

○ Tensor: multi-dimensional arrays with a uniform type, (kind of) like np.arrays

Deep Learning 2

https://www.tensorflow.org/

https://www.tensorflow.org/

Keras

● Open-source library that provide an interface for DL architectures
● High-level API written in Python:

○ Running on top of TensorFlow platform
● Provides modular abstractions and building blocks for developing artificial

neural networks:
○ contains implementations of commonly neural-network building blocks

(e.g., Convolutional layer, Dense layer), activation functions, loss
function.

https://keras.io/

Deep Learning 3

https://en.wikipedia.org/wiki/Activation_function
https://keras.io/

Keras the functional API

● The Keras functional API is a way to create models

○ more flexible than the tf.keras.Sequential API.

○ The functional API can handle models with non-linear topology, shared

layers, and even multiple inputs or outputs.

● The main idea is that a deep learning model is usually a directed acyclic

graph (DAG) of layers.

○ the functional API builds graphs of layers.

Deep Learning 4

model = Sequential()

model.add(Dense(4,activation='relu'))

model.add(Dense(4,activation='relu'))

input_layer = Input(shape=(3,))
Layer_1 = Dense(4, activation="relu")(input_layer)
Layer_2 = Dense(4, activation="relu")(Layer_1)

https://keras.io/api/models/sequential#sequential-class

Google Colab

● Free platform from Google that allows users to code in Python.

● Colab is essentially the Google version of a Jupyter Notebook.

● Advantages:

○ zero configuration

○ free access to GPUs & CPUs

○ sharing of code.

Deep Learning 5

https://colab.research.google.com/

Google Colab:GPU

● Edit

● Notebook settings

Deep Learning 6

https://colab.research.google.com/

Exercise 1: CNN

Deep Learning 7

Classification of MNIST dataset:

● 1 CNN

○ 3 Convolutional layers with padding = 0 and stride =1

○ 16,32,64 neurons

○ A MaxPooling layer

○ A Dropout layer

○ A Dense layer with 128 neurons

● Creation of adversarial examples using Adversarial Robustness Toolbox library

○ https://adversarial-robustness-toolbox.readthedocs.io/en/latest/modules/att

acks/evasion.html

https://adversarial-robustness-toolbox.readthedocs.io/en/latest/modules/attacks/evasion.html
https://adversarial-robustness-toolbox.readthedocs.io/en/latest/modules/attacks/evasion.html

CNNs: filters
● A transformation filter:

○ used to learn the shared information in image pixels
○ the position define a spatial filter (feature)

8Deep Learning

CNNs: stride
● Stride:

○ how many cells filter is moved next in one step.

9Deep Learning

CNNs: stride
● Stride:

○ how many cells filter is moved next in one step.

10Deep Learning

CNNs: padding
• Add the pixels around the border of feature map in order to maintain the

spatial footprint
• The value of the padded features is 0

11Deep Learning

CNNs: convolution on 3 channels

12Deep Learning

● Channels
○ RGB input: 3 channels red, green and blue
○ A convolution layer:

■ receives the image (h×w×c) as input
■ generates as output an activation map of dimensions h’×w′×c′.

○ The number of channels is the depth of the matrices involved in the convolutions

Exercise 2

● Goal: create an Adversarial Autoencoder

● Using MINST Clothes dataset

Deep Learning 13

Exercise 3

● Goal: create an unsupervised GAN

● Using MINST Clothes dataset

Deep Learning 14

