
Dimensionality Reduction/Low dimensional Embedding

1 Fundamentals
1. Getting started: PCA

(a) Get ready to use the movie dataset. Keep columns [budget, popularity, revenue, runtime, vote average,
vote count] as numerical columns. Clean them by removing rows having undefined (na) values. Re-
move 0 in Budget, Revenue, runtime and vote count.

(b) Using sklearn library, apply PCA algorithm in 2 dimensions
(c) Create a dataframe with 3 columns: ”d1” and ”d2” for each of the 2 new dimensions, and ”cluster”,

in which you insert the values of the clusters obtained in the previous class with k-means (3 clusters
on normalized data, for instance)

(d) Plot a scatterPlot of this data, with colors corresponding to clusters.
(e) Standardize the dataframe and do the same process. You should observe a clear difference between

the 2.
(f) A strenght of PCA is that it is interpretable: each new dimension is a linear combination of original

ones. Print using pca.components the coefficients of this linear combination, with and without
normalization, and try to understand what it means. In particular, what d1 mostly capture that
d2 do not capture ?

(g) Compute a correlation coefficient between d1 and d2 to check that PCA indeed captures uncorrelated
features.

2. Comparing and making sense of embeddings
(a) Using sklearn, compute TSNE and IsoMap in 2 dimensions, and create dataframes with 3 columns

as before.
(b) To make sense of the results, we need to be able to explore which movie is where in the embedding.

To do so, add to each dataframe a fourth columns, which contain the title of the movie. To do so,
you can do something like df pca["title"]=list(df.loc[numerical.index]["title"]) .

(c) You can now create an interactive scatterPlot, using function scatter from library plotly.express ,
with the title in the parameter hover data .

(d) Explore the interactive plot for the different embeddings, and check if you can make sense of it, in
particular checking movies at the extremities of the plot (you might want to search some of them
on Wikipedia to see if they have obvious characteristics).

(e) An objective of embedding is that elements that are more distant in the original space should be
more distant in the reduced space, i.e., it somewhat preserves the order of distances. To check
this, compute the correlation coefficient (Pearson/Spearman) between the distances before and
after applying the dimensionality reduction. You can use cdist from scipy to compute distances,
flatten to transform a matrix into a single dimensional vector, and triu indices to keep the

upper triangle of the matrix (the distance matrix is symmetric, and keeping both triangles would
artificially raise the correlation)

2 Advanced

3. Correlation to network, network to graph embedding



(a) We would like to create a map of movies, in which similar movies are close in space. We can use
for this the principle that two movies that are liked by the same persons should be similar. On
the website of the class, you can find a link to a vote file, which is a simplified version of the one
available on Kaggle. Load this dataset.

(b) Use pivot pandas function to create a matrix, and replace nan by zeros

(c) Using sklearn pairwise distances , compute the cosine similarity between movies

(d) Use a threshold to keep only strong values of similarity. You will have to make several trials.
(e) Using networkx, create a graph from the thresholded similarity matrix. Don’t forget to add the

node names (you can get them from the pivoted matrix index, for instance)

(f) Remove self-loops, e.g., g.remove edges from(nx.selfloop edges(g))

(g) Plot the graph and check that edges seem meaningful.
(h) Using library karateclub , use node2vec to embed the graph in small dimensions, e.g., 8 dimen-

sions
(i) Use t-SNE or PCA to embed the 8 dimensions in 2, and use an interactive plot to check that you

now have a meaningful map of movies.

4. Coding your own PCA
(a) One strength of PCA is that it is very simple to code using linear algebra. We will compute it

manually and check that we get the same results as with the sklearn function
(b) Start by centering the data, for instance using df-df.mean()

(c) Compute the covariance matrix using np.cov (be careful to compute the covariance between
variables, not elements !)

(d) Compute the eigenvectors of the covariance matrix using numpy LA.eig

(e) Check that the eigenvectors you obtained are similar to the components obtained by sklearn.
Don’t forget that we are looking for those associated with the highest eigenvalues !

(f) You can recompute the final embedding in 2D using a simple matrix multiplication. The result
should be identical to the one obtained by PCA
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