
CLASSIFICATION



CLASSIFICATION

• Objective: predict the class of an item

• Methods for regression can be reused with some adaptations
‣ Binary Classification is usually simple
‣ Multiclass Classification might require more changes

• Evaluation is different



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface

Classified as 1Classified as 0

MSE 0.06361520558572538 
RMSE 0.2522205494913636 
MAE 0.20506852857512292 
R2 0.7455391776570985



LINEAR CLASSIFICATION
• Weaknesses: Outliers



LINEAR CLASSIFICATION
• Weaknesses: Class imbalance



LINEAR CLASSIFICATION
• More generally, inadapted objective: 

‣ The relation is not linear
‣ We minimize a cost function (MSE) which is not meaningful: 

- Some predictions go beyond possible values (prediction less than 0 or more than 1 adding 
error



SIGMOID FUNCTION

lim
t→+∞

sig(t) = 1lim
t→−∞

sig(t) = 0 sig(0) = 0.5



LOGISTIC REGRESSION

̂y = β0 + β1xi + β2x2 + . . . + βnxn

P(y = 1) = Sig(β0 + β1xi + β2x2 + . . . + βnxn)

Sig(x) =
1

1 + e−x

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

Linear regression:

Logistic 
Regression:

Logisitic (Sigmoid) function:



LOGISTIC REGRESSION

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

1
P(y = 1)

= 1 + e−β0+β1xi+β2x2+...+βnxn

1 − P(y = 1)
P(y = 1)

= e−β0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn



LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2( . . . )eβnxn

ln(
P(y = 1)

1 − P(y = 1)
) = β0 + β1xi + β2x2 + . . . + βnxn



LOGISTIC REGRESSION
ln(

P(y = 1)
1 − P(y = 1)

) = β0 + β1xi + β2x2 + . . . + βnxn

Problem to solve similar to a linear regression.
We minimize the error between true  

and estimated probability of being 
y ∈ {0,1}

1



LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2( . . . )eβnxn

/!\ log transform of the target variable => multiplicative relation between 
variables

Interpretation as odd ratios: 
in  =>prediction multiplied by +1 xi eβi

https://christophm.github.io/interpretable-ml-book/logistic.html



MULTICLASS
LOGISTIC REGRESSION

• In many cases, we have more than 2 classes
‣ e.g.: {house, apartment, office, industrial}. {cat,dog,horse,…}
‣ Categories are unordered=> conversion to numeric would be catastrophic

• Simple solution (often used): one VS all
‣ Train a logistic classifier on one class VS all other classes.
‣ Pick the class with the largest confidence

- e.g.: house: 20%. Apartment: 30%. Office: 70%. Industrial: 80%=>Industrial.
‣ Rather a heuristic than principled method.

• Alternative approach: softmax regression



SOFTMAX

• Softmax is a generalization of Logistic/Sigmoid to Multiclass
‣ Takes several outputs with arbitrary values 
‣ Convert into a set of (positive) probabilities summing to 1.

•

‣ : vector of real numbers
‣ Exponential convert Real into 
‣ Division by the sum normalizes (sum of values =1). 

∈ (−∞, + ∞)

σ(z)i =
ezi

∑K
j=1 ezj

z
(0, + ∞)



SOFTMAX

• Define the cost function to minimize as:

•

‣ 1{x}=1 if x:True, 0 if x:False
‣ Sum for each observation and each class of the error, defined as {0,1}-proba of 

the class

• =>No analytical solution, optimization, e.g., gradient descent

J(θ) = −
m

∑
i=1

K

∑
k=1

1 {y(i) = k} log
ef(x(i))

∑K
j=1 ef(x(i))



CLASSIFICATION WITH 
DECISION TREE



DECISION TREE

• Trees can be easily adapted to the classification task
‣ It is even more natural than for regression

• The principle is to divide observations in term of class 
homogeneity
‣ We want items in the same branch/leaf to belong to the same class



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Gini Coefficient: 

‣
Entropy: 

pi i
1 − ∑

j

p2
j

−∑
j

pj ⋅ log2pj



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Gini Coefficient: 

- Min: 0: 1 class only
- Max: 0.5: (2 classes), 0.66(3classes), 0.75 (4classes), 0.875(8classes)

‣ Interpretation:
- If we classify by taking an element at random, probability to be wrong.

pi i
1 − ∑

j

p2
j



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Entropy: 

- Min: 0: 1 class only
- Max: 1(2 classes), 1.584(3 classes), 2 (4 classes), 3 (8 classes), etc.

‣ Interpretation: average # of bits required to encode the information of the 
class of each item

pi i

−∑
j

pj ⋅ log2pj



DECISION TREE



CLASSIFICATION EVALUATION



CLASSIFICATION:
EVALUATION

/!\ Positive=1, not 0.
Results change according to 

which class
Is 1. 



CLASSIFICATION:
EVALUATION

• Precision=
‣ Among those predicted as True, fraction of really 

True

• Recall= 
‣ Among those really true, what fraction did we 

identity correctly

• Non-symmetric 
‣ Precision success != Precision failure. 

TP
TP + FP

TP
TP + FN



ACCURACY

• Accuracy: 

• Fraction of correct prediction, among all predictions
‣ Simple to interpret, symmetric

• Main drawback: class imbalance
‣ Test whole city, 1 000 people, for Covid

- 95% don’t have covid, i.e., 50 people have covid, 950 don’t have it
‣ Our test (ML algorithm) is pretty good: TP: 45 - FN: 5 - TN: 900 -FP: 50

- Accuracy= (45+900)/1 000=0.945
‣ Dumb classifier : Always answer: not covid

- Accuracy: (0+950)/1 000 = 0.95

TP + TN
P + N



F1 SCORE
• F1 score: 

‣ Harmonic mean between precision and recall
- Harmonic mean more adapted for rates.
- Gives more importance to the lower value
- Not symmetric

• Scores for the covid predictor :
- Precision=45/95=0.47
- Recall = 45/50=0.9

‣ F1=0.65

• Score for the naive predictor impossible to compute…
‣ You need at least some TP !
‣ Assuming 1 “free” TP (Precision=1, Recall=1/50)

F1 = 2
precision * recall
precision + recall



RANKING-BASED 
EVALUATION SCORES



RANKING-BASED SCORES

• Most classification methods assign a probability, or score, to 
their prediction.

• If our objective is not really to answer a yes/no question, but 
rather to find some positives, we can use ranking-based 
approaches
‣ Typical example: recommendation. Will user X buy product Z?

- We are not really interested in having a correct classification(impossible problem), but of 
ranking correctly items.



PRECISION@K

• If we know that we will do exactly k recommendations, 
compute the precision among the k highest scores: 
Precision@k
‣ Typically, search engine-like evaluation

• If we don’t know the exact k-value, but we know we care 
more about the first ones: Average Precision@k
‣ Compute the precision for each value of k, weighted by the gain in recall

-

- It can also be understood as the area under the Precision/Recall Curve

n

∑
i

(Ri − Ri−1)Pi



AVERAGE PRECISION
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AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Green is predicted at 1, rest at 0
(Confidence threshold)

TP=1 FP=0
FN=3

Precision= , Recall=
1
1

1
1 + 3
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AVERAGE PRECISION
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AVERAGE PRECISION
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AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top5
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AVERAGE PRECISION
1
1
0
0
1
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0
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Decreasing
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Confidence

36

All correct
Until we got 50% of all P.

When we get all Pos.,
precision =50%



AVERAGE PRECISION

37

Top1 

Top n



AVERAGE PRECISION

• Interpretation:
‣ 1: all class 1 ranked first

• Pros:
‣ No need to arbitrarily decide k

• Cons:
‣ Results still depend on the fraction of real positive in the test set:

- The more positive, the easier it is to have a good score
- Imagine 90% of class 1 : random order => value of 0.9
- If 10% of class 1, random order => value of 0.1

38



AUC - AUROC

• AUC: Area Under the Curve. Short name for AUROC (Area 
under the Receiver Operating Characteristic Curve)

• Similar idea than AP, but analyzing the relationship between

‣ True positives rate (recall): 

- Among all really positives, those we labelled correctly

‣ False positives rate :

- Among all really negatives, fraction we mislabelled.

TPR =
TP

TP + FN
= Recall

FPR =
FP

FP + TN

39



AUC
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AUC
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Green is predicted at 1, rest at 0
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0
8
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AUC
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AUC
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50% of pos. without FP

Got all pos. with 50% of FPR



AUC - AUROC
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AUC - AUROC

• Probabilistic interpretation:
‣ If we pick a random positive example and a random negative example, 

probability that the positive one has a higher score 

• Pros: 
‣ Independent on the fraction of positive examples, i.e., an unbalanced test set 

can be used
- If at random we got 30% of all positives, we have also 30% of all negatives

• Cons:
‣ Often high values, (>0.95), thus small (relative) improvements

47



KNN
K nearest neighbors



K-NN

• Extremely simple approach, yet very powerfull in certain cases

• Principle: to classify (or regress) a new observation, we search 
for the closest one(s) in the training set, and assign the same 
class/value average.
‣ K is obviously a parameter



K-NN

https://helloacm.com/a-short-introduction-to-k-nearest-neighbors-algorithm/



Dataset (2D, 3 classes)

1-NN 5-NN



K-NN
• Strength

‣ Extremely efficient with large training set and good covering of the feature 
space
- Shown to outperforms more advanced methods in many applications

‣ Few parameters, simple to understand
‣ No training time (possible precomputation)

• Weaknesses
‣ Finding neighbors is done at evaluation time, which can be a problem with large 

datasets
- Solutions: K-D tree, Ball tree… but keep dataset in memory. Hashing…

‣ Curse of dimensionality=>dimensionality reduction first.
‣ Choice of a proper distance



NAIVE BAYES



NAIVE BAYES

• As KNN, a simple yet powerful approach for classification

• Imagine you want to classify fruits/vegatables
‣ You have features: color, height, sweetness, weight…
‣ Make the naive assumptions that variables are uncorrelated
‣ You want to know if product X,{red, 10cm,sweet,200g} is of class: Tomato. 

Compute independently:
- If a product is a tomato, probability to be red?=> among tomatoes, fraction of red
- If a product is a tomato, probability to be 10cm?=> among tomatoes, fraction of 10cm
- … 

‣ Combine all independent predictions as a product of probabilities.



NAIVE BAYES

• General case: 

‣  are possible classes to predict
‣  probability to observe class 
‣ : Probability to have property x if we have class k

̂y = argmax
k∈{1,…,K}

p(Ck)
n

∏
i=1

p(xi ∣ Ck) .

K
p(Ck) k
p(xi |Ck)



NAIVE BAYES

• Why Bayes?
‣ Solution comes from Bayes theorem

• We want to find: 
‣ : vector of observed features for an item

• Bayes theorem: 

‣

p(Ck ∣ x)
x

p(Ck ∣ x) =
p(Ck) p(x ∣ Ck)

p(x)
posterior =

prior × likelihood
evidence



NAIVE BAYES

•

• In 

‣  is a constant and can be ignored

• Thus =>    

p(x1, . . . , xn |Ck) =
n

∏
i=1

p(xi ∣ Ck)

p(Ck ∣ x) =
p(Ck) p(x ∣ Ck)

p(x)
p(x)

̂y = argmax
k∈{1,…,K}

p(Ck)
n

∏
i=1

p(xi ∣ Ck) .



NAIVE BAYES

•

• How to compute  with continuous features?

• Make an assumption about the variable distribution
‣ Typically, normal distribution.

‣

̂y = argmax
k∈{1,…,K}

p(Ck)
n

∏
i=1

p(xi ∣ Ck) .

p(xi |Ck)

p(x = v ∣ Ck) = p(x = v ∣ N(μk, σ2
k )) =

1

2πσ2
k

e
− (v − μk)2

2σ2
k



NAIVE BAYES



ML ADVANCED



ML: OLD-STYLE VS NEW 
GENERATION

• Old style machine learning:
‣ 1)Define a set of intuitive rules to solve a problem

- Not necessarily with mathematical justification (e.g., decision tree, KNN, DBSCAN…)
‣ 2) Well defined mathematical objective without realistic assumption

- Linear regression…

• More recent trend:
‣ Design methods with 1)clearly defined objectives and 2)good properties:

- Expressive enough to go beyond underfit and allow non-linearity
- Integrate protections agains overfit



MACHINE LEARNING: 
GENERAL FORMALIZATION



MACHINE LEARNING
• Start by defining the objective:

• Loss functions

- MSE, L2 loss : 

- MAE, L1 loss 

-
K-means loss : 

- Softmax logistic Regression Loss : 

- …

L(yi, ̂yi) =
N

∑
i

(yi − ̂yi)2

L(yi, ̂yi) =
N

∑
i

|yi − ̂yi |

L(S, x) =
k

∑
j=1

∑
x∈Sj

(x − mj)2

L(yi, ̂yi) =
N

∑
i=1

yi log( ̂yi)



MACHINE LEARNING

• Once we have define our loss function, the ML task to solve 
can simply be expressed as minimizing it over some 
parameters:
‣ E.g., for Linear Regression: 

- Detailed way: 

- Simplified way:  

- Generic way: 

arg min
β0,β1...,βn

n

∑
i

(yi − (β0 + β1x(i)
1 + β2x(i)

2 + . . . + βnx(i)
n ))2

arg min
β

n

∑
i

(yi − f(β, x))2

arg min
θ

L2( f(θ, x))


