
CLASSIFICATION

CLASSIFICATION

• Objective: predict the class of an item

• Methods for regression can be reused with some adaptations
‣ Binary Classification is usually simple
‣ Multiclass Classification might require more changes

• Evaluation is different

LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface

LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface

Classified as 1Classified as 0

MSE 0.06361520558572538
RMSE 0.2522205494913636
MAE 0.20506852857512292
R2 0.7455391776570985

LINEAR CLASSIFICATION
• Weaknesses: Outliers

LINEAR CLASSIFICATION
• Weaknesses: Class imbalance

LINEAR CLASSIFICATION
• More generally, inadapted objective:

‣ The relation is not linear
‣ We minimize a cost function (MSE) which is not meaningful:

- Some predictions go beyond possible values (prediction less than 0 or more than 1 adding
error

SIGMOID FUNCTION

lim
t→+∞

sig(t) = 1lim
t→−∞

sig(t) = 0 sig(0) = 0.5

LOGISTIC REGRESSION

̂y = β0 + β1xi + β2x2 + . . . + βnxn

P(y = 1) = Sig(β0 + β1xi + β2x2 + . . . + βnxn)

Sig(x) =
1

1 + e−x

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

Linear regression:

Logistic
Regression:

Logisitic (Sigmoid) function:

LOGISTIC REGRESSION

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

1
P(y = 1)

= 1 + e−β0+β1xi+β2x2+...+βnxn

1 − P(y = 1)
P(y = 1)

= e−β0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn

LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2(. . .)eβnxn

ln(
P(y = 1)

1 − P(y = 1)
) = β0 + β1xi + β2x2 + . . . + βnxn

LOGISTIC REGRESSION
ln(

P(y = 1)
1 − P(y = 1)

) = β0 + β1xi + β2x2 + . . . + βnxn

Problem to solve similar to a linear regression.
We minimize the error between true

and estimated probability of being
y ∈ {0,1}

1

LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2(. . .)eβnxn

/!\ log transform of the target variable => multiplicative relation between
variables

Interpretation as odd ratios:
in =>prediction multiplied by +1 xi eβi

https://christophm.github.io/interpretable-ml-book/logistic.html

MULTICLASS
LOGISTIC REGRESSION

• In many cases, we have more than 2 classes
‣ e.g.: {house, apartment, office, industrial}. {cat,dog,horse,…}
‣ Categories are unordered=> conversion to numeric would be catastrophic

• Simple solution (often used): one VS all
‣ Train a logistic classifier on one class VS all other classes.
‣ Pick the class with the largest confidence

- e.g.: house: 20%. Apartment: 30%. Office: 70%. Industrial: 80%=>Industrial.
‣ Rather a heuristic than principled method.

• Alternative approach: softmax regression

SOFTMAX

• Softmax is a generalization of Logistic/Sigmoid to Multiclass
‣ Takes several outputs with arbitrary values
‣ Convert into a set of (positive) probabilities summing to 1.

•

‣ : vector of real numbers
‣ Exponential convert Real into
‣ Division by the sum normalizes (sum of values =1).

∈ (−∞, + ∞)

σ(z)i =
ezi

∑K
j=1 ezj

z
(0, + ∞)

SOFTMAX

• Define the cost function to minimize as:

•

‣ 1{x}=1 if x:True, 0 if x:False
‣ Sum for each observation and each class of the error, defined as {0,1}-proba of

the class

• =>No analytical solution, optimization, e.g., gradient descent

J(θ) = −
m

∑
i=1

K

∑
k=1

1 {y(i) = k} log
ef(x(i))

∑K
j=1 ef(x(i))

CLASSIFICATION WITH
DECISION TREE

DECISION TREE

• Trees can be easily adapted to the classification task
‣ It is even more natural than for regression

• The principle is to divide observations in term of class
homogeneity
‣ We want items in the same branch/leaf to belong to the same class

DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class

‣
Gini Coefficient:

‣
Entropy:

pi i
1 − ∑

j

p2
j

−∑
j

pj ⋅ log2pj

DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class

‣
Gini Coefficient:

- Min: 0: 1 class only
- Max: 0.5: (2 classes), 0.66(3classes), 0.75 (4classes), 0.875(8classes)

‣ Interpretation:
- If we classify by taking an element at random, probability to be wrong.

pi i
1 − ∑

j

p2
j

DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class

‣
Entropy:

- Min: 0: 1 class only
- Max: 1(2 classes), 1.584(3 classes), 2 (4 classes), 3 (8 classes), etc.

‣ Interpretation: average # of bits required to encode the information of the
class of each item

pi i

−∑
j

pj ⋅ log2pj

DECISION TREE

CLASSIFICATION EVALUATION

CLASSIFICATION:
EVALUATION

/!\ Positive=1, not 0.
Results change according to

which class
Is 1.

CLASSIFICATION:
EVALUATION

• Precision=
‣ Among those predicted as True, fraction of really

True

• Recall=
‣ Among those really true, what fraction did we

identity correctly

• Non-symmetric
‣ Precision success != Precision failure.

TP
TP + FP

TP
TP + FN

ACCURACY

• Accuracy:

• Fraction of correct prediction, among all predictions
‣ Simple to interpret, symmetric

• Main drawback: class imbalance
‣ Test whole city, 1 000 people, for Covid

- 95% don’t have covid, i.e., 50 people have covid, 950 don’t have it
‣ Our test (ML algorithm) is pretty good: TP: 45 - FN: 5 - TN: 900 -FP: 50

- Accuracy= (45+900)/1 000=0.945
‣ Dumb classifier : Always answer: not covid

- Accuracy: (0+950)/1 000 = 0.95

TP + TN
P + N

F1 SCORE
• F1 score:

‣ Harmonic mean between precision and recall
- Harmonic mean more adapted for rates.
- Gives more importance to the lower value
- Not symmetric

• Scores for the covid predictor :
- Precision=45/95=0.47
- Recall = 45/50=0.9

‣ F1=0.65

• Score for the naive predictor impossible to compute…
‣ You need at least some TP !
‣ Assuming 1 “free” TP (Precision=1, Recall=1/50)

F1 = 2
precision * recall
precision + recall

RANKING-BASED
EVALUATION SCORES

RANKING-BASED SCORES

• Most classification methods assign a probability, or score, to
their prediction.

• If our objective is not really to answer a yes/no question, but
rather to find some positives, we can use ranking-based
approaches
‣ Typical example: recommendation. Will user X buy product Z?

- We are not really interested in having a correct classification(impossible problem), but of
ranking correctly items.

PRECISION@K

• If we know that we will do exactly k recommendations,
compute the precision among the k highest scores:
Precision@k
‣ Typically, search engine-like evaluation

• If we don’t know the exact k-value, but we know we care
more about the first ones: Average Precision@k
‣ Compute the precision for each value of k, weighted by the gain in recall

-

- It can also be understood as the area under the Precision/Recall Curve

n

∑
i

(Ri − Ri−1)Pi

AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

31

AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Green is predicted at 1, rest at 0
(Confidence threshold)

TP=1 FP=0
FN=3

Precision= , Recall=
1
1

1
1 + 3

32

AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top2

TP=2 FP=0
FN=2

Precision= , Recall=
2
2

2
2 + 2

33

AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top3

TP=2 FP=1
FN=2

Precision= , Recall=
2

2 + 1
2

2 + 2
34

AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top5

TP=3 FP=2
FN=1

Precision= , Recall=
3

3 + 2
3

3 + 1
35

AVERAGE PRECISION
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

36

All correct
Until we got 50% of all P.

When we get all Pos.,
precision =50%

AVERAGE PRECISION

37

Top1

Top n

AVERAGE PRECISION

• Interpretation:
‣ 1: all class 1 ranked first

• Pros:
‣ No need to arbitrarily decide k

• Cons:
‣ Results still depend on the fraction of real positive in the test set:

- The more positive, the easier it is to have a good score
- Imagine 90% of class 1 : random order => value of 0.9
- If 10% of class 1, random order => value of 0.1

38

AUC - AUROC

• AUC: Area Under the Curve. Short name for AUROC (Area
under the Receiver Operating Characteristic Curve)

• Similar idea than AP, but analyzing the relationship between

‣ True positives rate (recall):

- Among all really positives, those we labelled correctly

‣ False positives rate :

- Among all really negatives, fraction we mislabelled.

TPR =
TP

TP + FN
= Recall

FPR =
FP

FP + TN

39

AUC
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

40

AUC
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Green is predicted at 1, rest at 0
(Confidence threshold)

TP=1 FP=0

TPR= , FPR=
1
4

0
8

41

AUC
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top2

TP=2 FP=0

42

TPR= , FPR=
2
4

0
8

AUC
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top3

TP=2 FP=1

43

TPR= , FPR=
2
4

1
8

AUC
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

Top5

TP=3 FP=2

44

TPR= , FPR=
3
4

2
8

AUC
1
1
0
0
1
0
0
1
0
0
0
0

Decreasing
Classifier

Confidence

45

50% of pos. without FP

Got all pos. with 50% of FPR

AUC - AUROC

46

AUC - AUROC

• Probabilistic interpretation:
‣ If we pick a random positive example and a random negative example,

probability that the positive one has a higher score

• Pros:
‣ Independent on the fraction of positive examples, i.e., an unbalanced test set

can be used
- If at random we got 30% of all positives, we have also 30% of all negatives

• Cons:
‣ Often high values, (>0.95), thus small (relative) improvements

47

KNN
K nearest neighbors

K-NN

• Extremely simple approach, yet very powerfull in certain cases

• Principle: to classify (or regress) a new observation, we search
for the closest one(s) in the training set, and assign the same
class/value average.
‣ K is obviously a parameter

K-NN

https://helloacm.com/a-short-introduction-to-k-nearest-neighbors-algorithm/

Dataset (2D, 3 classes)

1-NN 5-NN

K-NN
• Strength

‣ Extremely efficient with large training set and good covering of the feature
space
- Shown to outperforms more advanced methods in many applications

‣ Few parameters, simple to understand
‣ No training time (possible precomputation)

• Weaknesses
‣ Finding neighbors is done at evaluation time, which can be a problem with large

datasets
- Solutions: K-D tree, Ball tree… but keep dataset in memory. Hashing…

‣ Curse of dimensionality=>dimensionality reduction first.
‣ Choice of a proper distance

NAIVE BAYES

NAIVE BAYES

• As KNN, a simple yet powerful approach for classification

• Imagine you want to classify fruits/vegatables
‣ You have features: color, height, sweetness, weight…
‣ Make the naive assumptions that variables are uncorrelated
‣ You want to know if product X,{red, 10cm,sweet,200g} is of class: Tomato.

Compute independently:
- If a product is a tomato, probability to be red?=> among tomatoes, fraction of red
- If a product is a tomato, probability to be 10cm?=> among tomatoes, fraction of 10cm
- …

‣ Combine all independent predictions as a product of probabilities.

NAIVE BAYES

• General case:

‣ are possible classes to predict
‣ probability to observe class
‣ : Probability to have property x if we have class k

̂y = argmax
k∈{1,…,K}

p(Ck)
n

∏
i=1

p(xi ∣ Ck) .

K
p(Ck) k
p(xi |Ck)

NAIVE BAYES

• Why Bayes?
‣ Solution comes from Bayes theorem

• We want to find:
‣ : vector of observed features for an item

• Bayes theorem:

‣

p(Ck ∣ x)
x

p(Ck ∣ x) =
p(Ck) p(x ∣ Ck)

p(x)
posterior =

prior × likelihood
evidence

NAIVE BAYES

•

• In

‣ is a constant and can be ignored

• Thus =>

p(x1, . . . , xn |Ck) =
n

∏
i=1

p(xi ∣ Ck)

p(Ck ∣ x) =
p(Ck) p(x ∣ Ck)

p(x)
p(x)

̂y = argmax
k∈{1,…,K}

p(Ck)
n

∏
i=1

p(xi ∣ Ck) .

NAIVE BAYES

•

• How to compute with continuous features?

• Make an assumption about the variable distribution
‣ Typically, normal distribution.

‣

̂y = argmax
k∈{1,…,K}

p(Ck)
n

∏
i=1

p(xi ∣ Ck) .

p(xi |Ck)

p(x = v ∣ Ck) = p(x = v ∣ N(μk, σ2
k)) =

1

2πσ2
k

e
− (v − μk)2

2σ2
k

NAIVE BAYES

ML ADVANCED

ML: OLD-STYLE VS NEW
GENERATION

• Old style machine learning:
‣ 1)Define a set of intuitive rules to solve a problem

- Not necessarily with mathematical justification (e.g., decision tree, KNN, DBSCAN…)
‣ 2) Well defined mathematical objective without realistic assumption

- Linear regression…

• More recent trend:
‣ Design methods with 1)clearly defined objectives and 2)good properties:

- Expressive enough to go beyond underfit and allow non-linearity
- Integrate protections agains overfit

MACHINE LEARNING:
GENERAL FORMALIZATION

MACHINE LEARNING
• Start by defining the objective:

• Loss functions

- MSE, L2 loss :

- MAE, L1 loss

-
K-means loss :

- Softmax logistic Regression Loss :

- …

L(yi, ̂yi) =
N

∑
i

(yi − ̂yi)2

L(yi, ̂yi) =
N

∑
i

|yi − ̂yi |

L(S, x) =
k

∑
j=1

∑
x∈Sj

(x − mj)2

L(yi, ̂yi) =
N

∑
i=1

yi log(̂yi)

MACHINE LEARNING

• Once we have define our loss function, the ML task to solve
can simply be expressed as minimizing it over some
parameters:
‣ E.g., for Linear Regression:

- Detailed way:

- Simplified way:

- Generic way:

arg min
β0,β1...,βn

n

∑
i

(yi − (β0 + β1x(i)
1 + β2x(i)

2 + . . . + βnx(i)
n))2

arg min
β

n

∑
i

(yi − f(β, x))2

arg min
θ

L2(f(θ, x))

