UNSUPERVISED ML



OB|ECTIVE

» Discover information from data without labeled examples

» Extract some hidden organisation, patterns, relation between
elements

» Extract a (statistical /) model of the data !



OB|ECTIVE

* lypical objectives:
» Cluster discovery

» Anomaly Detection
» Latent variable discovery / Embedding / dimensionality reduction...




CLUSTERING



CLUSTERING

» [he most famous unsupervised ML problem

« |00+ methods exist

» Most people use “good old” methods: k-means (1967), DBSCAN (1996)
» They are often “good enough’, well Implemented, safe, ...

» Part of the problem: Clustering is not well defined
» What is “a good cluster’?



CLUSTERING

* How would you define a good cluster !

* A good partition in clusters ¢



MiniBatch Affinity Spectral Agglomerative Gaussian

KMeans Propagation MeanShift Clustering Ward Clustering DBSCAN OPTICS BIRCH Mixture
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K-MEANS

* Definrtion:

» For a target number of clusters k

» FIind the item assignment minimizing
- The inter-cluster variance (weighted by cluster size)
- Equivalently => The squared distance from points to their cluster center
- Equivalently => The squared distance between cluster elements



K-MEANS

argmmzz ”X U H —argmmZ\SlVar(S)

i=1"xES:

with
S a cluster assignment,
k a number of clusters
x a d dimensional item, and
. the centroid of items in the cluster S..




K-MEANS

agminy ¥ x|

i=1"xES:

— 1Y mlnz | S; | Var(S))

This 1s only one possible objective for clustering!

For instance, why using the squared distance?

=>Good math proper

=>Consequence: outliers pe

ies (derivation), history

nalized more (pros and cons)



K-MEANS

=>(Conseqguence: outliers penalized more (pros and cons)

Squared distance minimized by the mean.
Absolute distance minimized by the median.

Comparison of Centroids Minimizing Absolute vs. Squared Distances

@ Data Points

Centroid (Absolute)
Centroid (Squared)
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K-MEDOIDS

Same method, replacing the squared distance by
the absolute distance




K-MEANS

argmmzz ”X U H —argmmZ\SlVar(S)

i=1"xES:

Note that without fixing k, there is a trivial solution
with each tem alone in its own cluster




K-MEANS

» Discovering the global optimum 1s NP-hard

* How to find quickly a good solution ¢

» Naive k-means
» K-means ++ (used in most current implementations)
Sl ERonmized data structure (KDtrees. . .)



NAIVE K-MEANS

* |)Assigment: Assign each item to its closest cluster center

A REIDc e Recompute the center of each cluster as tRERRGE i
(centroid) of items that compose that cluster

e Start with random centroids



NAIVE K-MEANS
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NAIVE K-MEANS

* Known limit: convergence to poor local minimum if poor initial
centroids
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K-MEANS++

» Several variants to choose wisely the Initial centroids

* K-means++ Is proven to improve the results, statistically

» Not always, but improves more often than deteriorate the results.



K-MEANS++

. Choose one center uniformly at random among the data
ooints.

-or each data point « not chosen yet, compute D(x), the
distance between z and the nearest center that has al-
ready been chosen.

. Choose one new data point at random as a new center,
using a weighted probability distribution where a point x is
chosen with probability proportional to D(x)?.

. Repeat Steps 2 and 3 until k centers have been chosen.



K-MEANS++

Nine Data Items in Two-Dimension into Three Clusters
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WEAKNESSES

* We can identity some clear weaknesses:
» K-means has a tendency to search for clusters of equal
sizes (minimize overall cluster variance)

» Clusters tend to be circular, since all directions are
worth the same.

.00s




NORMALIZATION

* Important point: k-means i1s based on Euclidean distance.

» We minimize the inter-cluster Euclidean distance between points
» We could adapt the method to other distances

* Data needs to be normalized/standardized

» Clustering based on age In years and revenue in $. The “distance™ in $ will
dominate

» Remember: normalization/standardization are not fixing magically problems
(outliers..)

- You need to think:|Is | unit in one dimension worth | unit in other dimensions!?



GAUSSIAN MIXTURES



GAUSSIAN MIXTURES

» Generalize k-means concept:

» Clusters are sets of points that are close in euclidean space
» Different clusters tend to be far appart

» Iranslate it statistically:

» Each cluster can be described using a normal distribution centered on its
centroid, with the probabllity of observing points decreasing with the distance
to the centroid.



GAUSSIAN MIXTURES
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GAUSSIAN MIXTURES

* We define a generative model for k clusters

» Each cluster corresponds to a gaussian distribution, defined by a center and a
variance, or covariance matrix

» The problem to solve is to find the parameters ® (centers, variances) that
maximize the likelihood of the corresponding model to generate the observed

tems X

. More formally, we are searching for: arg(f)naxp(Xl )



MULTIVARIATE GAUSSIAN

* A gaussian Is defined by

» 2 mean
» a variance

* A multivariate gaussian Is
defined by a

y A center
B RGearlance matrix

Figure 1

S oEE

sigma=[10;0 1]

sigma =[10; 0 4]




K-MEANS EQUIVALENCE

Var(x,)  ...... Cov(x_,x,)

e [f we assume that: -

» The gaussian distributions are defined only by their variance, not by complete
covariance matrices
- Similar in all directions, “spherical”

» The variance value Is the same for all gaussian distributions
- Spheres of the same “size”

» The probability for each item to be generated by each of the gaussian
distribution Is identical

* [hen 1t can be shown that the objective Is equivalent to the k-
means objective !

» We can relax some of those constraints to get richer results



DENSITY HETEROGENEITY

» Allowing denser/sparser clusters

» Consider the case in which Gaussians are defined by a single value of variance
(covariance=0)

» [T they differ for each cluster, some can be denser than others

U T U DA L I LI RN LN

GM,
free variance




SHAPE VARIATIONS

Figure 1 - o IEN

sigma=[10;01] sigma = [10; 0 4]

» Allowing non-circular shaped

clusters

» |If values on the diagonal of the covariance X
matrix differs, the matrix can have
ellipsoidal shape, in the direction of the

axes
» I the full covariance matrix Is inferred, any . o
ellipsoidal shape can be obtained ;\a \i‘

5 -5

o e & = e e Full saussian




SIZE HETEROGENEITY

2 - Different sizes

* The fraction of all tems generated by each
generative gaussian (e.g., cluster) Is the same.

* We usually add a strength parameter 7 to 2 - Different sizes
welght the fraction of items generated by each
cluster

K
p(X) = ) mGX|w,0)
=1




Ll TOGETHESS

K
p(X) = ) mGX| . o)
k=1

arg maxp(X | ©)

@ Q=G



K-MEANS COMPARISON

K-means

1 - Mixture of Gaussians 2 - Different sizes 3 - Different variances
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Full Gaussian Mixture

1 - Mixture of Gaussians 2 - Different sizes 3 - Different variances

10- A

4 - Non zero covariance 5 - Disparate Gaussians 6 - Spherical classes
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B ALGORI TS

* o search for the parameters, we can use a method similar to
naive k-means known as EM (Expectation Maximization)

Note Z the cluster assignation of items to their most likely clusters
)Initialize parameters ® to random values

2)(E) Compute Z, given ©

3)(M) Use assignations in Z to update values of ©®

4lterate steps 2 and 3 until convergence

v

v

v

v
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PROS AND CONS

» Gaussian mixture seems an improvement over k-means. VWhy
not always using It?
» Force of habits

» Higher computational cost (More parameters => More complex problem)
» Higher possibility of overfitting (More parameters =>More overfit risk)

Under-fitting Appropirate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be true) HG

T ——



REMAINING PROBLEMS

* We can mention 3 problems remaining (at least)

» The number of clusters still needs to be provided.

- It allowed to change, it will always converge to the trivial solution with each rtem In its own
cluster

» If the data I1s completely random, the method still finds clusters
» Impossible to discover non-convex structures, such as circles or spirals

7 - Spirals 6 - Spherical classes 9 - unclustered data

QM&A%A
3

v

A
AA
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1 [ 1 1
-5 0 5 10 -
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el o

» Discovering automatically the number of clusters —and thus

finding no clusters In random data— iIs possible using an MDL
approach

* MDL = Minimum Description Length
* I he principle Is to search a solution maximizing the
compression rate, 1.e.,, minimizing the cost of the description,

S ORI oIts.

* https://en.wikipedia.org/wiki/Minimum_ description_length



https://en.wikipedia.org/wiki/Minimum_description_length

NORMALIZATION

* |s normalization as important for full GM models as for k-
means?

) Figure 1 - o IEl

sigma=[10;01] sigma =[10; 04]




DBSCAN



K-MEANS/GM LIMITS

* The problem of spiral/Circulal/weird shaped clusters comes
from the assumption that rtems of a cluster should be

“normally distributed” around their mean
©

"’&W’"

v
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LOCAL DEFINITIONS

* lo overcome this problem, several methods propose local

definitions of clusters

» Does not explicitly optimize a global function

» Items belong to clusters because they are close enough, locally, to other items
in that cluster

» Clusters exist because there Is continuum between all items In it, locally



DBSCAN

* Define some local parameters:

» €,the distance threshold above which items are considered “too different”
» minPts, a minimal number of reachable points
» No need to define a number of clusters !

* Define:

» An item p Is a core point If it has at least minPts items at distance less than €
- Including p rtself



DBSCAN: GRAPH DEFINITION

* |)Build a graph such as

» Each core node Is a node

» A link exist between core nodes If they are at d<e \/\A/-<:
» 2)Detect the connected components of the graph

» 2 nodes belong to the same connected components if there Is a path between
them

» 3) For all non-core nodes:

» |If they have no core points directly reachable, discard them as noise

» Else, attribute them to (one of) the clusters for which one core point is directly
reachable

- Variant DBSCAN* =>ignore those points as noise






MiniBatch Gaussian
KMeans Mixture DBSCAN
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DBSCAN

» Strength:

» No need to define the number of clusters
» Can discover arbitrarily-shaped clusters
» A notion of noise

°
e, °
° ° o %o °o, o0 oo
() o'o 8’:.0.0,00000:'30'30
0% % 0 0 0%% $00,%°%,
® 000 ,% o® o a.o.".
e 0 0,°0%,% o
e e ° o

» Defining € Is extremely difficult i

- Similar to the number of clusters.

° e o
< oo
.0 o

SR IR ctiEdetermines the number of clusters...
» Despite safeguards, risk of the stretched clusters effect



CLUSTERING EVALUATION



INTERNAL/EXTERNAL

* Iwo types of evaluation: internal or external

- External Evaluation (extrinsic):

» Similarly to supervised learning, compares the clusters found with a “ground
R A
» The ground truth can be exactly the right clustering desired
- S0 we are just validating the method, since we already know the answer...

» The ground truth can be a proxy to what we want

- e.g, we have a manual ground truth, done by an expert. Not perfect, costly, and not
generalizable to newer data, so supervised cannot work.VWe can check that clustering find

something close.
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INTERNAL/EXTERNAL

* [wo types of evaluation: internal or external

* Internal Evaluation (Intrinsic):

» We have no ground truth to compare to
» VWe evaluate the intrinsic properties of our clusters, typically

- If their elements are similar
- If clusters are far appart /if elements in different clusters are different.



INTERNAL EVALUATION



AD-HOC SCORES

» Several clustering method define their own objective to
minimize. T his objective can be used as a score for clusters
obtained by this method or others

» k-means minimizes inter-cluster variance
» Gaussian mixture maximizes the likelihood

* But can lead to unfair comparisons:

» Using inter-cluster variance to compare k-means and another method such as
DBscan is unfair.

- One explicitly minimizes this objective, the other no...

e cnoice of a score Is equivalent to choosing a definifiCEEs!]
Ellster. . .



pEOUERT TE SCOS

 Silhouette score of | observation:

» |YCompute a(i), average distance to all other observations of the same cluster

» 2)Compute b(i), min of “average distance to all observations of another
clusislE

1 —a(i)/b(i), ifa(i) < b(i)
3) Silhouette: s(i) = < 0O, if a(i) = b(q)
’ b()la(i) =1, ifa() > b()

 Silhouette coefficient:

» Average of all individual Silhouette scores.



Cluster label

Cluster label
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

The silhouette plot for the various clusters.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clusters.
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Optimal number of clusters
Silhouette method

BRUTOMALIC K SELECTHCES

0.3 1 ||,
; = |
* [he Silhouette score can 5021 |
< |
Billced [0 cnoose s | | M
automatically the number 2. .
of clusters: |
I
» We vary the number of clusters I' |
001 ¢
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BRUTOMALIC K SELEC THEHS

« Better than the elbow method on real data



OTHER SCORE FUNCTIONS

- Davies-Bouldin Index (DBI): [ he average similarity

ratio of each cluster with its most similar cluster;

» where similarity is the ratio of wrthin-cluster distances to between-cluster
distances;

» lower DBI values suggest better clustering.



DUNN INDEX

min  o(C;, C))

1<i<j<m

e —
max Ay
1<k<m

* With
» 0(C,, CJ-) a measure of distance between clusters

- e.g, distance between closest points, average distance...
» A, a measure of the dispersion of the cluster

- e.g, max distance between two cluster points



NON-SPHERICAL CLUSTERS

« Remember the difference between k-means
clusters and DB-scan clusters

* Previous scores are reliable only in k-means-  + s,
ike clusters. B

» Specific (less known) scores for arbitrary

clusters

» Density-based silhouette
» DBCV(Density-Based Clustering Validation)



STABILITY

* It clusters are not clear, multiple runs of the same method
might discover different clusters

» Evaluating the stability of those clusters might be a way to
assess their qualrty

* o better assess the quality, one can introduce noise:

» Comparing clustering on sub-sets (random samples, independent samples...)
» Adding noise (fake data points, outliers, removing low-quality data...)



CONSENSUS CLUSTERING

* Let's consider that we have multiple candidate clusterings

» From the same method ran multiple times
» From the same method with different parameters
» From different methods

* One can compute a “consensus”

» Create the consensus matrix Cl-j counts the number of times data points i, j
were grouped together

} Apply your favorite clustering method on that matrix, considering that =3
ij
gives the distance between data points.



MANY OTHER CLUSTERINGS

* Hierarchical clustering

» Spectral clustering

» Mean-Shift clustering

» Affinity Propagation

BSOS (Ordering Points lo Identity the Clustering StriGusiEy



NO FREE LUNCH THEOREM

* “Any two optimization algorithms are equivalent when their

performance Is averaged across all possible problems”

» [wo clustering algorithms with different objective functions are fully
comparable, one Is not Intrinsically better than another.

» Each is the best for the objective function it defines
» What is “the best’ cluster! Depends on your definition.

* Does not mean that some methods are not more appropriate
than other for what most people consider as clusters...

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.


https://ieeexplore.ieee.org/document/585893

