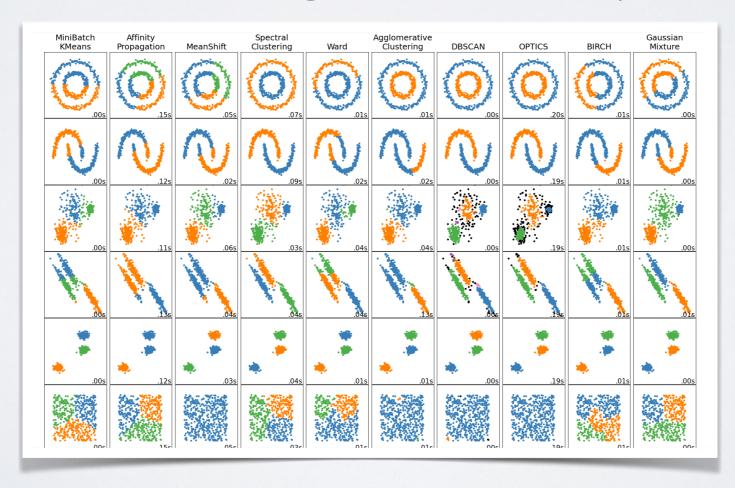
COMMUNITY DETECTION (GRAPH CLUSTERING)

COMMUNITY DETECTION

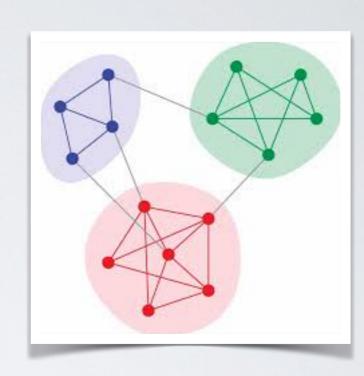
- Community detection is equivalent to "clustering" in unstructured data
- Similar problems: what is a good community?



COMMUNITY DETECTION

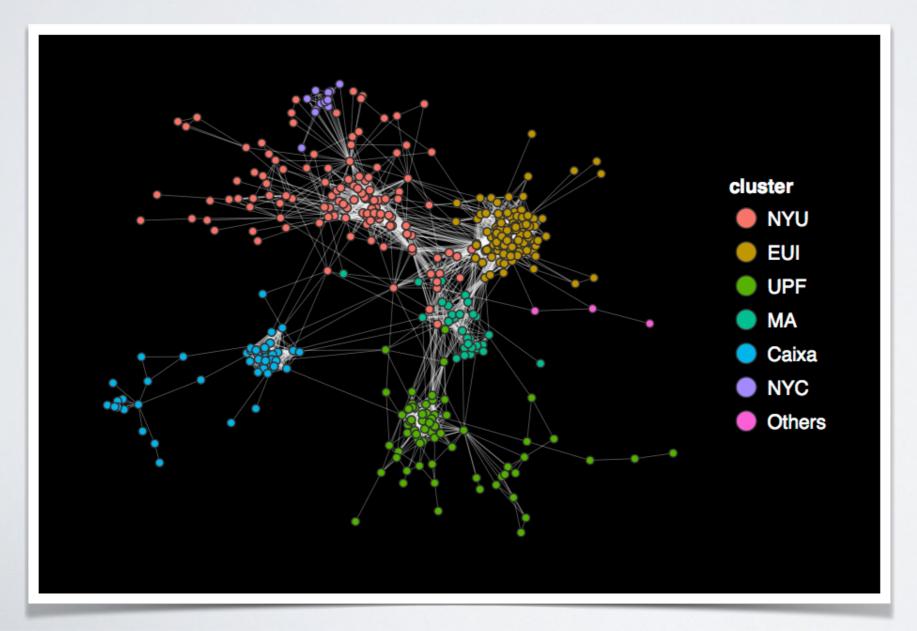
Community detection:

- Find groups of nodes that are:
 - Strongly connected to each other
 - Weakly connected to the rest of the network
 - Ideal form: each community is I)A clique, 2) A separate connected component
- No formal definition
- Hundreds of methods published since 2003



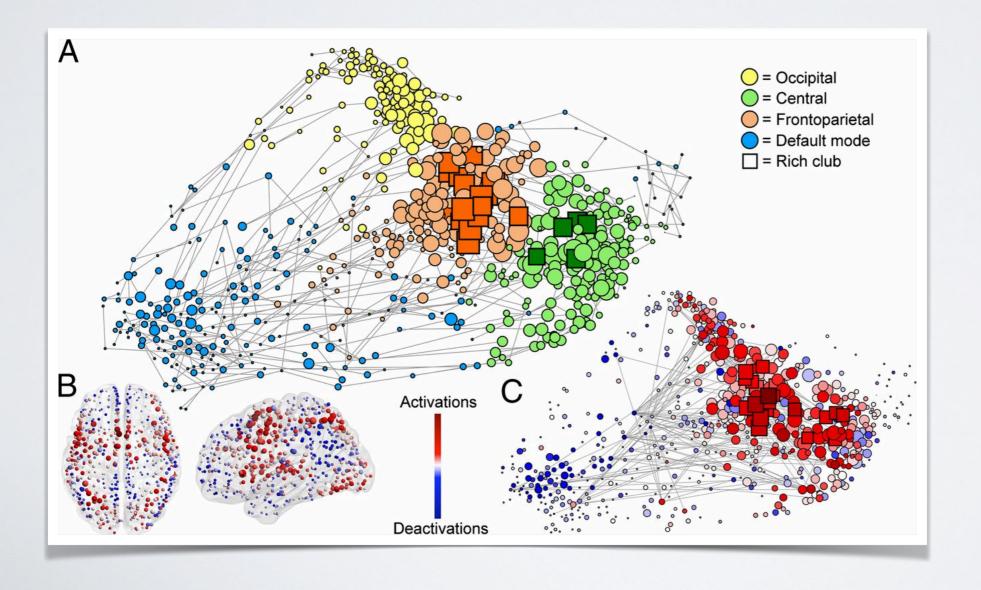
COMMUNITY STRUCTURE IN REAL GRAPHS

· If you plot the graph of your facebook friends, it looks like this



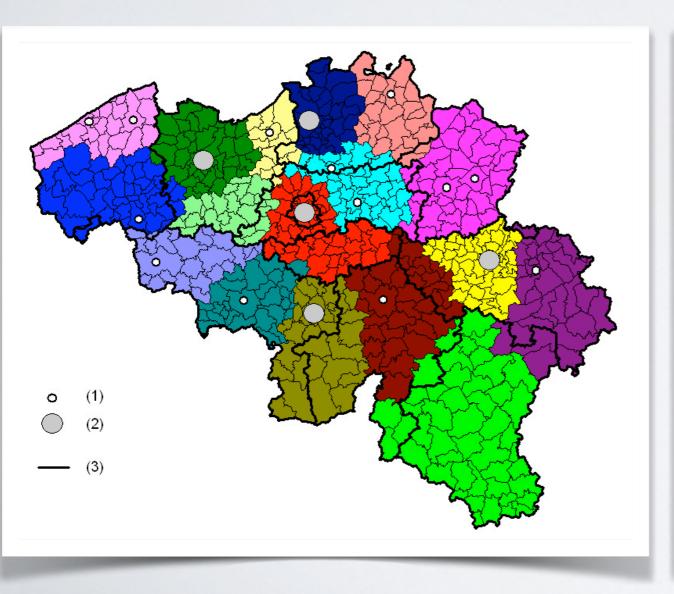
COMMUNITY STRUCTURE IN REAL GRAPHS

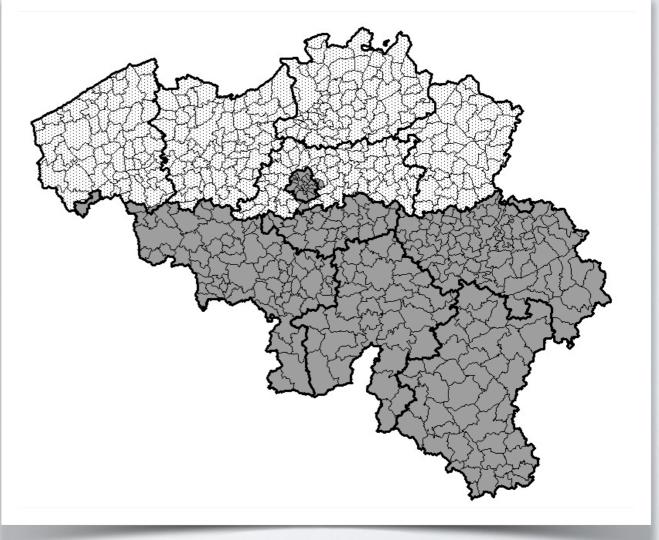
Connections in the brain?



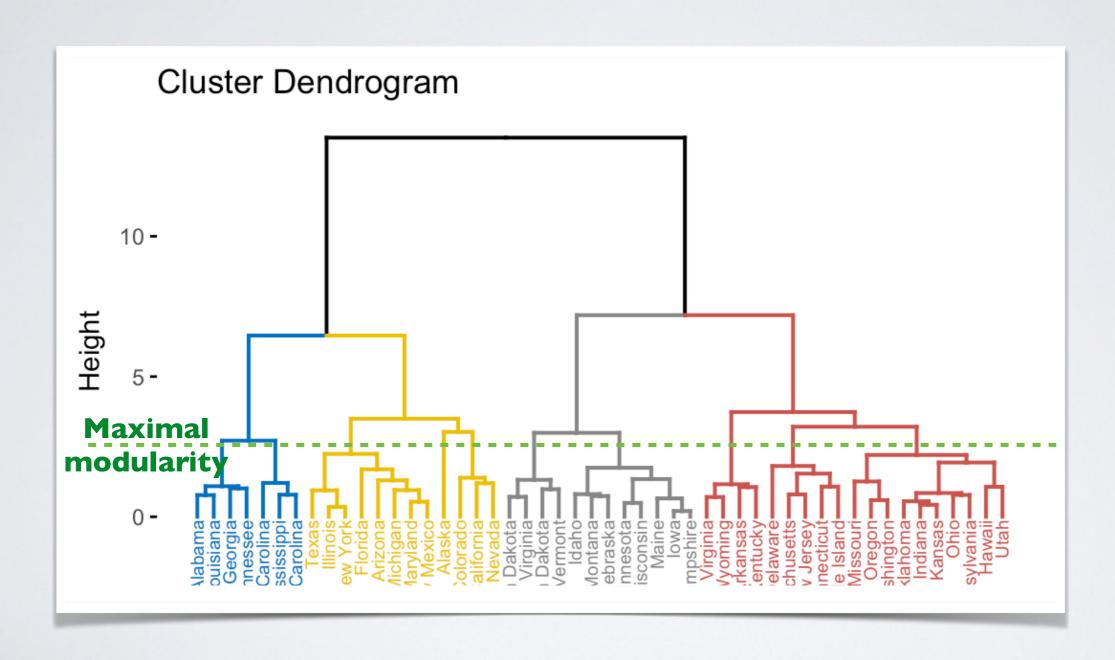
COMMUNITY STRUCTURE IN REAL GRAPHS

Phone call communications in Belgium ?





- 1) Compute the betweenness of all edges
- 2) Remove the edge of highest betweenness
- 3) Repeat until all edges have been removed
 - Connected components are communities
- => It is called a divisive method
- =>What you obtain is a dendrogram
- How to cut this dendrogram at the best level?



- Introduction of the Modularity
- The modularity is computed for a partition of a graph
 - (each node belongs to one and only one community)
- It compares:
 - The **observed** fraction of edges inside communities
 - To the **expected** fraction of edges inside communities in a random network

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw} - rac{k_v k_w}{(2m)}
ight] \delta(c_v, c_w)$$

Original formulation

$$Q = rac{1}{(2m)} \Biggl[A_{vw} - rac{k_v k_w}{(2m)} \Biggr] \, \delta(c_v, c_w)$$

Sum over all pairs of nodes

$$Q = rac{1}{(2m)} \sum_{vw} igg[A_{vw} - rac{k_v k_w}{(2m)} igg] \delta(c_v, c_w)$$

I if in same community

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw}
ight] - rac{k_v k_w}{(2m)}
ight] \delta(c_v, c_w)$$

I if there is an edge between them

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw} - egin{pmatrix} k_v k_w \ \hline (2m) \end{bmatrix} \delta(c_v, c_w)
ight.$$

Probability of an edge in a configuration model (Edges at random, keeping degrees)

Can also be defined as a sum by community

$$Q = \frac{1}{L} \sum_{i=1}^{|C|} (L_i - \frac{1}{2} K_i^2)$$

with $L_i = L(H(c_i))$ the number of edges inside community i and $K_i = \sum_{u \in c_i} k_u$ the sum of degrees of nodes in community i.

- Modularity compares the observed network to a null model
 - Usually the configuration model
 - Multi-edges and loops are allowed
 - Other models could be used, such as ER random graphs.
- Natural extension to weighted/multi-edge networks

- Back to the method:
 - Create a dendrogram by removing edges
 - Cut the dendrogram at the best level using modularity
- =>In the end, your objective is... to optimize the Modularity, right ?
- Why not optimizing it directly!

MODULARITY MAXIMIZATION

- From 2004 to 2008: The golden age of Modularity
- Scores of methods proposed to maximize it
 - Graph spectral approaches
 - Meta-heuristics approaches (simulated annealing, multi-agent...)
 - ▶ Local/Global approaches...
- => 2008: the Louvain algorithm

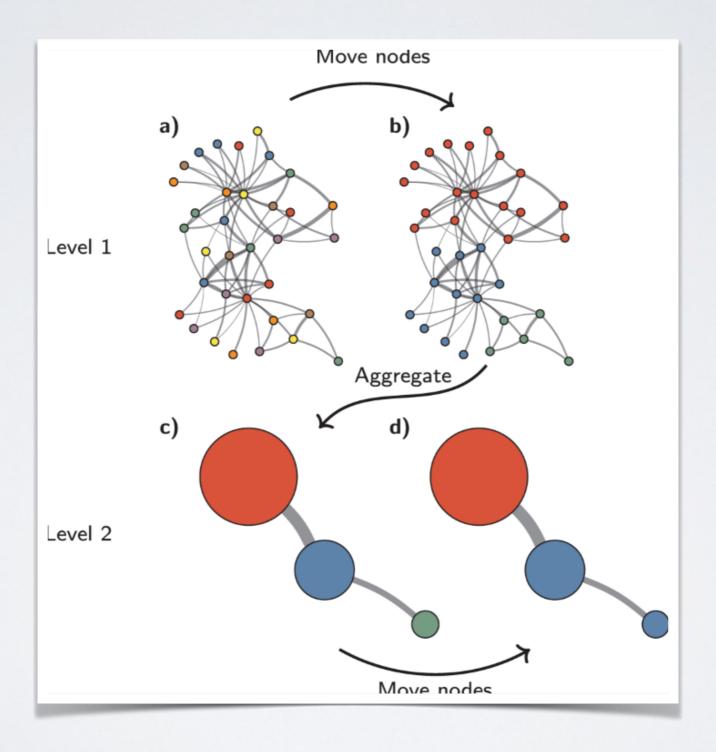
LOUVAIN ALGORITHM

- · Simple, greedy approach
 - Easy to implement
 - Fast
- Yields a hierarchical community structure
- · Beat state of the art on all aspects (when introduced)
 - Speed
 - Max modularity obtained
 - Do not fall in some traps (see later)

LOUVAIN ALGORITHM

- Each node start in its own community
- Repeat until convergence
 - FOR each node:
 - FOR each neighbor: if adding node to its community increase modularity, do it
- When converged, create an induced network
 - Each community becomes a node
 - Edge weight is the sum of weights of edges between them
- Trick: Modularity is computed by community
 - Global Modularity = sum of modularities of each community

LOUVAIN ALGORITHM



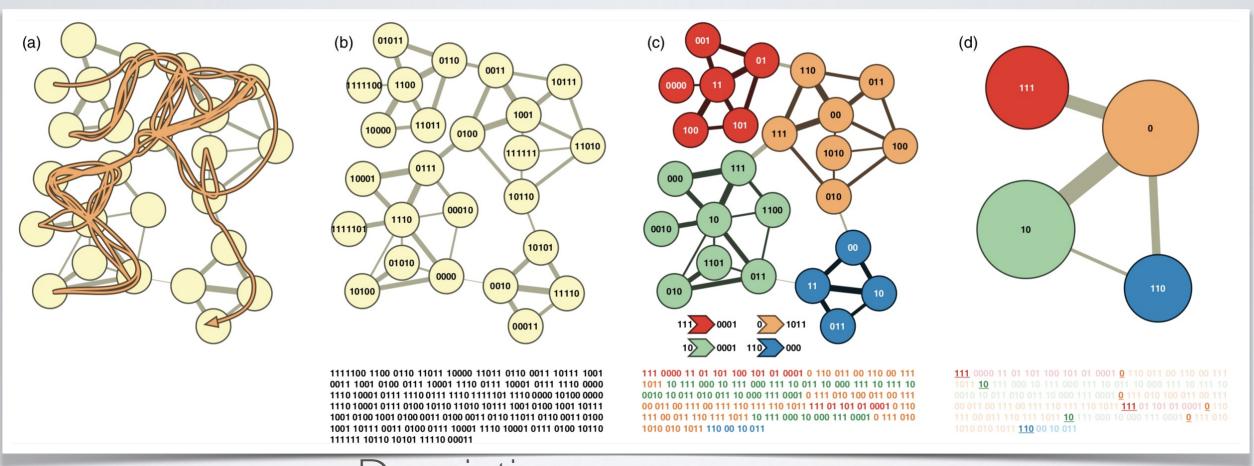
ALTERNATIVES

- Most serious alternatives
 - Infomap (based on information theory —compression)
 - Stochastic block models (bayesian inference)
- These methods have a clear definition of what are good communities. Theoretically grounded

INFOMAP

- [Rosvall & Bergstrom 2009]
- Find the partition minimizing the description of any random walk on the network
- · We want to compress the description of random walks

INFOMAP



Random walk

Description
Without
Communities

With communities

Huffman coding: short codes for frequent items

Prefix free: no code is a prefix of another one (avoid fix length/separators)

The Infomap method

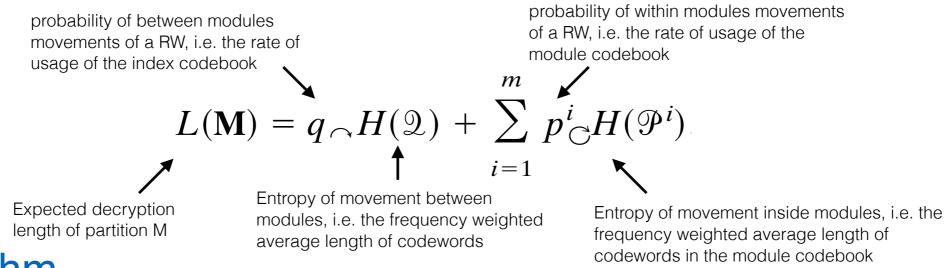
Finding the optimal partition M:

Shannon's source coding theorem (Shannon's entropy)

for a probability distribution $P = \{p_i\}$ such that Σ_i $p_i = 1$, the lower limit of the per-step code-length is

$$L(\mathcal{P}) = H(\mathcal{P}) \equiv -\sum_{i} p_{i} \log p_{i}$$

Minimise the expected description length of the random walk
 Sum of Shannon entropies of multiple codebooks weighted by the rate of usage



Algorithm

- 1. Compute the fraction of time each node is visited by the random walker (Power-method on adjacency matrix)
- 2. Explore the space of possible partitions (deterministic greedy search algorithm similar to Louvain but here we join nodes if they decrease the description length)
- 3. Refine the results with simulated annealing (heat-bath algorithm)

INFOMAP

• To sum up:

- Infomap defines a quality function for a partition different than modularity
- Any algorithm can be used to optimize it (like Modularity)

Advantage:

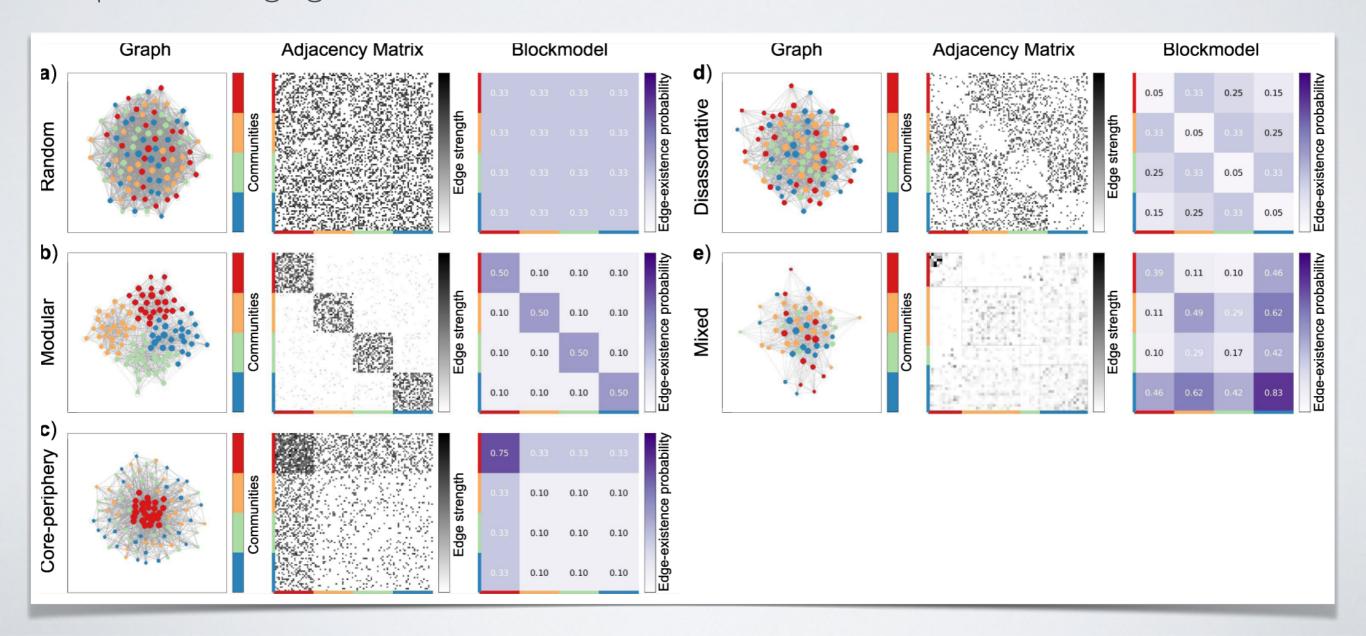
Infomap can recognize random networks (no communities)

STOCHASTIC BLOCK MODELS

- Stochastic Block Models (SBM) are based on statistical models of networks
- · They are in fact more general than usual communities.
- The model is:
 - Each node belongs to I and only I community
 - To each pair of communities, there is an associated density (probability of each edge to exist)

STOCHASTIC BLOCK MODELS

- SBM can represent different things:
 - Associative SBM: density inside nodes of a same communities >> density of pairs belonging to different communities.



STOCHASTIC BLOCK MODELS

- General idea of SBM community detection:
 - Specify the desired number of cluster
 - Find parameters to optimize the maximum likelihood
 - Principle: The best parameters are those that allow to generate the observed network with the highest probability
- Main weakness of this approach
 - Number of clusters must be specified (avoid trivial solution)
- MDL (Minimum Description Lenght) approaches exist to automatically find the number of blocks

EVALUATION OF COMMUNITY STRUCTURE

EVALUATION

- Similar to clustering:
 - Intrinsic/Internal evaluation
 - Partition quality function
 - Individual Community quality function
 - Comparison of observed communities and expected communities
 - Synthetic networks with community structure
 - Real networks with Ground Truth

INTRINSIC EVALUATION

INTRINSIC EVALUATION

- Partition quality function
 - Already defined: Modularity, graph compression, etc.
- · Quality function for individual community
 - Internal Clustering Coefficient

, Conductance:
$$\frac{|E_{out}|}{|E_{out}| + |E_{in}|}$$

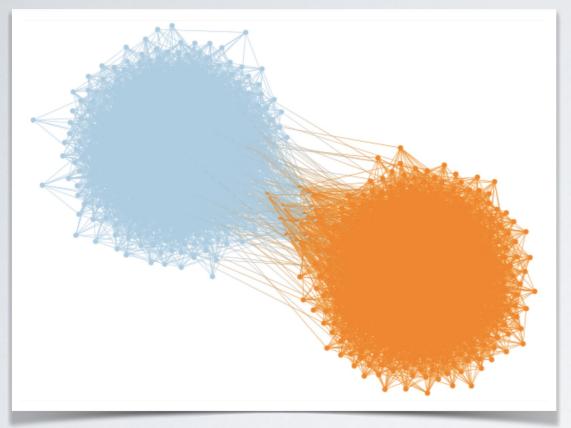
- Fraction of external edges

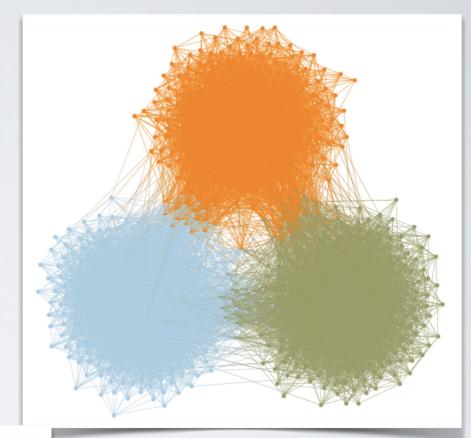
 $|E_{in}|, |E_{out}|$: # of links to nodes inside (respectively, outside) the community

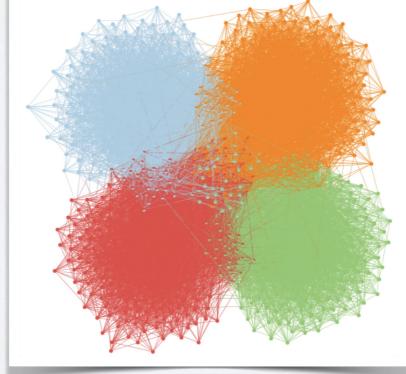
COMPARISON WITH GROUND TRUTH

Planted Partition models:

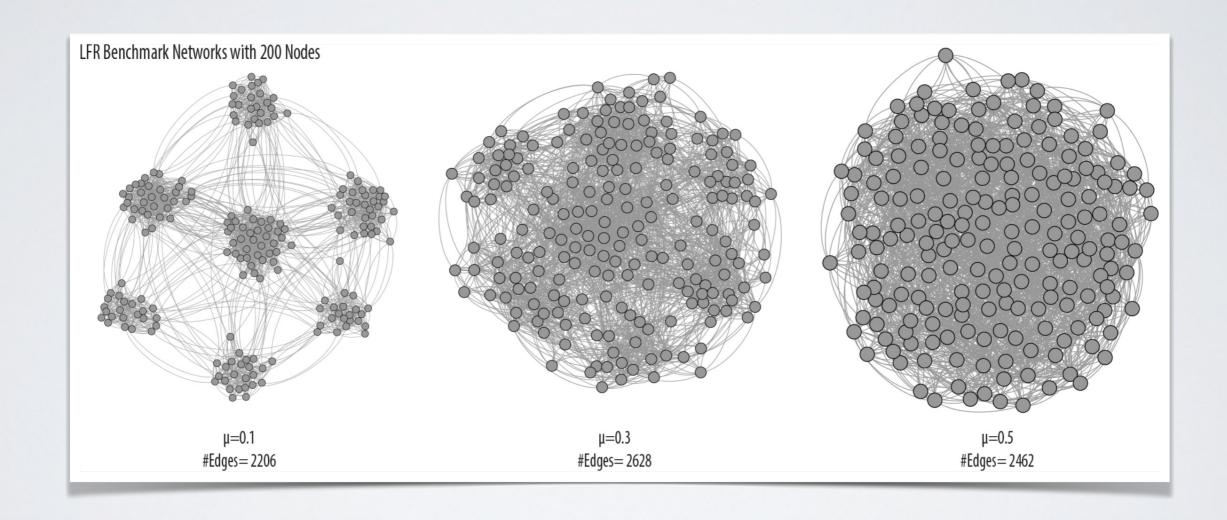
- Another name for SBM with manually chosen parameters
 - Assign degrees to nodes
 - Assign nodes to communities
 - Assign density to pairs of communities
 - Attribute randomly edges
- Problem: how to choose parameters?
 - Either oversimplifying (all nodes same degrees, all communities same #nodes, all intern densities equals...)
 - Or ad-hoc process (sample values from distributions)







- LFR Benchmark [Lancichinetti 2008]
 - High level parameters:
 - Slope of the power law distribution of degrees/community sizes
 - Avg Degree, Avg community size
 - Mixing parameter: fraction of external edges of each node
 - Varying the mixing parameter makes community more or less well defined
- Currently the most popular



OTHER TYPES OF COMMUNITIES

OVERLAPPING COMMUNITIES

- · In real networks, communities are often overlapping
 - Some of your High-School friends might be also University Friends
 - A colleague might be a member of your family
 - **.** . . .
- · Overlapping community detection is considered much harder
 - And is not well defined
- Difference between "attributes" and overlapping communities?
 - Community of Women, Community of 17-19yo, Community of fans of...

HIERARCHICAL COMMUNITIES

