
DIMENSIONALITY 
REDUCTION

Low dimensionality embedding



SMALL DIMENSION 
EMBEDDING

• Multiple reasons to do it
‣ 2D/3D visualisation
‣ Curse of Dimensionality
‣ Correlated input features



VISUALIZATION

• Your data is perfectly fine, but you want to intuitively 
understand how it is organized
‣ Are there groups of similar objects?
‣ Are my clusters meaningful?
‣ Is my classification/clustering on some types of elements and not others.



VISUALIZATION



CURSE OF DIMENSIONALITY

• Having hundreds/thousands of attributes is a problem for data 
analysis.
‣ e.g.: medicine: blood analysis, genomics….
‣ e.g.: cooking recipes: each column an ingredient…

• We want to reduce number of attributes while keeping most 
of the information



CORRELATION

• Assume that you have correlated features such as age, height 
and weight. 
‣ Linear regression will attribute the coefficients somewhat randomly between 

them
‣ Decision tree will spend a lot of time choosing between them for no reason

• Dimensionality reduction can create a single variable to 
capture what is common
‣ The rest can be lost or captured by another feature, 

- i.e., height - average height for that age, “residuals”



PCA



PCA
• PCA: Principal Component Analysis

• Defines new dimensions that are linear 
combinations of initial dimensions
‣ Objective: concentrate the variance on some 

dimensions
- So that we can keep only these ones.
- Those we remove contain low variance, thus low information

• Similar principle than the Fourier transform 
technique for image compression



PCA
• Algorithm:

‣ 1)Find an “axis”, a unit vector defining a line 
in the space
- That minimizes the variance=>the squared 

distance from all points to that line

• 2)For d in (initial_d-1)
‣ Find another axis, with two constraints:

- Orthogonal to all previous axis
- Among those, minimize the variance

• 3)At the end, keep the first k 
dimensions
‣ Some information is lost

?
?
?





PCA VS LINEAR REGRESSION

PCA Linear regression

Squared error, 
minimizes distance to a line, 
on a particular axis (target)

Variance,
i.e., squared error to the mean 

on a chosen axis

X

Y

Old X

Old Y

New
 X



EXAMPLE PCA 2D

Old axis:
[0,1]
[1,0]



EXAMPLE PCA 2D
New axis 1

[50,100 000]
=>[1,20 000]

Old axis:
[0,1]
[1,0]



EXAMPLE PCA 2D
New axis 1

[50,100 000]
=>[1,20 000]

Old axis:
[0,1]
[1,0]

New axis 2
No choice: 

orthogonal to axis 1



EXAMPLE PCA 2D

In 3D:
Second choice in a plan

Third choice imposed by orthogonality



EXAMPLE PCA 2D

pca.components_
New axis 1

[50,100 000]
[1,2 000] [-4.79586975e+01, -9.99999885e+04] 

[ 9.99999885e+04, -4.79586975e+01]

=>[-48 , 99 999] 
=>[1 , 2 083]



EXAMPLE PCA 2D

[7.27810651e+02, 1.48478888e+06], 
[1.48478888e+06, 3.09597381e+09]

Covariance matrix  (original) Covariance matrix  (pca)
[2.89709731e+09, 0] 
[0, 1.75019564e+01]

Sum of variance
2897097325.718247

Sum of variance
2897097325.718247

2.89709660e+09 727.810 2.89709731e+09 17.501

Variance by dimension Variance by dimension



AFTER STANDARDIZATION

Covariance matrix  (original) Covariance matrix  (pca)
[ 1.98675899e+00, 0], 
[0,  1.32410092e-02]

1 1 1.98675899 0.01324101

Variance by dimension Variance by dimension

[1.        , 0.98675899], 
       [0.98675899, 1.        ]

Sum of variance Sum of variance
2 2

[0.9933795, 0.0066205]Explained variance(ratio)



3D=>2D



CHOOSING COMPONENTS

Explained 
variance

• How to choose k?
‣ Elbow method
‣ OR fix beforehand a min threshold of explained variance, e.g.: 80%

- We are fine with losing 20% of information 



COMPUTATION IN PRACTICE

• Find the eigenvectors of the covariance matrix of centered 
data

• If you want  new dimensions, pick the  eigenvectors 
associated with the  largest eigenvalues
‣ Eigenvalues = explained variance

• The eigenvectors corresponding to the top eigenvalues are 
coefficients of the linear transformation

k k
k



PCA POPULARITY

• Why is PCA popular?

• Similar reasons than linear regression:
‣ Historically important
‣ Analytical solutions

- Guarantee to find the global minimum of the objective
- Could be done before modern computers

‣ Interpretable solution
‣ Intuitively pleasant

• No reason to consider it “better” than other methods…



NON-LINEAR SITUATIONS

Pearson correlation(d1,d2): 0



NONLINEAR DATA



MANIFOLDS



MANIFOLDS

• Manifolds are another approach to dimensionality reduction

• The general principle is to 
‣ 1)Define a notion of distance between elements in the original space
‣ 2)Define a notion of distance between elements in a reduced, target space
‣ 3)Minimize the difference between distances in original and target space

• In many cases, the process is nonlinear, i.e., we choose 
distances such as
‣ We care more about preserving close proximity than exact distance for nodes 

that are “far” from each other









MDS
• MDS: Multi-dimensional Scaling:

‣ Simply minimize distance between original space and target space
- e.g., d-dimensional forced to 2-dimensional

• How to do it?
‣ 1)Compute all pairwise distances between Objects=>similarity matrix

- n x f matrix => n x n matrix
‣ 2)Compute PCA on this similarity matrix

- PCA preserves columns information => preserve distance on a similarity matrix

• Problems: 
- Very costly (nb features=nb elements), 
- Try to preserve all distances, therefore extremely constrained

n2



MDS



ISOMAP
• Variation of MDS

‣ 1)We define a graph such as two elements are connected if they are at 
distance<threshold. (Alternative: fixed number of neighbors)
- Put a weight on edges=euclidean distance

‣ 2)Compute a similarity matrix, such as distance= weighted shortest path 
distance

‣ 3)Apply MDS on it

• Computing shortest paths on a graph is fast
‣ Floyd–Warshall algorithm

• Much less constraints



T-SNE



T-SNE

• t-SNE : t-distributed stochastic neighbor embedding

• Non-linear dimensionality reduction

• Currently the most popular method for visualizing data in low 
dimensions



T-SNE

• General principle:
‣ Define a notion of similarity  in the high dimensional space 
‣ Define a notion of similarity  in the low dimensional space 
‣ For each point of initial coordinates , find a new coordinate  in the lower 

dimensional space, such as to minimize the difference between  and 
-  

pj|i P
qj|i Q

xi yi
P Q

∀i, j pj|i ≈ qj|i



SNE

• Distance in the original space 
‣ To compute how far  is from , consider a normal distribution centered in  

with variance 

‣ Mathematically: the raw distance is given as 

‣  

- Normalizes the similarity by sum of similarity to all other points.
- With proper , local definition of similarity

P
j i j

σ

sP
j|i = e−

∥xi − xj∥
2

2σ2

pj|i =
sP
j|i

∑k≠i sP
j|k

σ

i

i

Euclidean

Normal



T-SNE

• Previous method, SNE, defines similarity in  in the same way, 
setting for convenience , thus 

‣

-  are computed new features

‣
With  

Q
σ =

1

2
sQ
j|i = e∥yi−yj∥2

y

qj|i =
sQ
j|i

∑k≠i sQ
j|k



SNE
• Define the similarity between  and 

‣ Minimize the KL-divergence (Kullback-Leibler divergence)

-

‣ KL: Information theory:
- Average additional number of bits required to encode a sample from  using the optimal 

code to encode samples of 
- Non-symmetric

• Solved by gradient descent

‣

P Q

C = KL (P ∥ Q) = ∑
i≠j

pij log
pij

qij

P
Q

∂C
∂yi

= 2∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj)



SNE

•

• Intuitive interpretation:
‣ Imagine a system of attraction/springs between points
‣ If the distance is right, left=0, don’t move
‣ If  is “too far”, left is positive, we go in the direction of 
‣ If  is “too close”, left is negative, we move away from 

∂C
∂yi

= 2∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj)

i j
i j



SNE
• Missing part: how to fix  for similarity in original space?

• Density of points is assumed heterogeneous,  is chosen 
independently for each point.
‣ User fix a parameter of perplexity, 

- With  Shannon Entropy

- Search for  to obtain the right perplexity.
‣ It is a bit like imposing to have a fix number of neighbors

- But you can have few points at very short distance and many at long distance
- Or many at medium distance
- As long as the overall distribution of distance is respected

σ

σ

perp(pi) = 2H(pi)

H(Pi) = − ∑
j

pj|ilog2pj|i

σi



INFLUENCE OF PERPLEXITY



T-SNE

• T-SNE modifies the distance in the lower dimensional space

• It uses a Student-t distribution, which leads to several 
advantages
‣ Makes optimisation easier and faster
‣ Tends to “exaggerate” similarities/dissimilarities

- Emphasizes clusters, i.e., groups of nodes all close together





LOW DIMENSIONAL 
EMBEDDINGS



EMBEDDINGS

• A recent usage of low dimensional embeddings is to encode 
complex objects as vectors
‣ Words as Vector => Word2Vec
‣ Nodes (of graph) as Vectors => Node2Vec
‣ Documents as Vectors => Doc2Vec
‣ ….



WORD EMBEDDING



WORD EMBEDDING

• Words can be understood as a (very) high dimensional space
‣ Using One Hot encoding: vocabulary of 1000 words=>1000 columns

• Could we assign a vector in “low dimension”, encoding the 
“semantic” of a word? 
‣ Two words with similar meanings should be close



SKIPGRAM
Word embedding

Corpus => Word = vectors
Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]
48



SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b49



SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b50

N=embedding size. V=vocabulary size



SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
51

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
52

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


PRE-TRAINED

• You can easily train word2vec on your own dataset, but it 
needs to be large enough
‣ https://radimrehurek.com/gensim/models/word2vec.html 

• You can use pre-trained embeddings, trained on enormous 
corpus (Twitter, Wikipedia…)
‣ e.g., Glove: https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/


USAGE

• Single words=> Use directly vectors

• Short texts=> Weighted average vectors (more weights to 
more important words, e.g., rare words: TF-IDF…)

• Long texts=> More tricky. Need other approaches (Doc2vec, 
RNN)



USAGE

• Parameters: 
‣ Embedding dimensions d
‣ Context size



GRAPH EMBEDDING



GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with interesting properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

57



DEEPWALK

• Skipgram for graphs: 
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters: 
‣ Same as Skipgram

- Embedding dimensions d
- Context size

‣ Parameters for “sentence” generation: length of random walks, number of walks 
starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining (pp. 701-710). ACM.
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NODE2VEC
• Use biased random walk to tune the context to capture 

*what we want*
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge 
discovery and data mining (pp. 855-864). ACM. 59



EMBEDDING ROLES

60



STRUC2VEC/ROLE2VEC

• In node2vec/Deepwalk, the context collected by RW contains 
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes: 
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same 
“position” in the graph

• =>Capture the role of nodes instead of proximity
Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.61



Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC
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