DIMENSIONALITY
REDUCTION

Low dimensionality embedding



SMALL DIMENSION
EMBEDDING

- Multiple reasons to do 1t

» 2D/3D visualisation
» Curse of Dimensionality
» Correlated input features



VISUALIZATION

* Your data Is perfectly fine, but you want to inturtively
understand how It IS organized

» Are there groups of similar objects!

» Are my clusters meaningful?

» Is my classification/clustering on some types of elements and not others.
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CURSE OF DIMENSIONALITY

* Having hundreds/thousands of attributes Is a problem for data

analysis.

» e.g.: medicine: blood analysis, genomics.. ..
» e.g.. cooking recipes: each column an ingredient. ..

* We want to reduce number of attributes while keeping most
of the Information



CORRELATION

- Assume that you have correlated features such as age, height
and weight.

» Linear regression will attribute the coefficients somewhat randomly between
them

» Decision tree will spend a lot of time choosing between them for no reason

 Dimensionality reduction can create a single variable to
capture what 1s common

» The rest can be lost or captured by another feature,
- I.e, height - average height for that age, “residuals”
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» PCA: Principal Component Analysis

R Rc="heV/ dimensions that are linear
combinations of inrtial dimensions

» Objective: concentrate the variance on some
dimensions

- So that we can keep only these ones.
- Those we remove contain low variance, thus low information

* Similar principle than the Fourier transform
technigue for image compression
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» Algorithm:
\ i e . ) : 350000 -
» [)Find an “axis”, a unit vector defining a line
In the space ey
- That minimizes the variance=>the squared £ 200000 -

distance from all points to that line
150000 -

100000 A

* 2)For d in (initial_d- 1) om0
» Find another axis, with two constraints: R

- Orthogonal to all previous axis
- Among those, minimize the variance

@ ine end, keep the ftirst k

dimensions
» Some Information is lost 0






PCAVS LINEAR REGRESSION

Linear regression

%X -

Old X X
Variance, Squared error,
.e., squared error to the mean minimizes distance to a line,

on a chosen axis on a particular axis (target)
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EXAMPLE PCA 218
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EXAMPLE PCA 218
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EXAMPLE PCA 218
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EXAMPLE PCA 218

New axis |

50,100 000]
[1,2 000]

e

DCA.COMPOREIIEE

[-4.79586975e+01, -9.99999885e+04]
[ 9.99999885e+04, -4.79586975e+01]

=>[-48 ,99 999]
=>[],2 083]



EXAMPLE PCA 218
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25000 H

Covariance matrix (original)

[7.27810651e+02, 1.48478888e+06],
[1.48478888e+06, 3.09597381e+09]

Sum of variance
2897097325.718247

Variance by dimension
2.89709660e+09 727.810

60 80 100

Covariance matrix (pca)

[2.89709731e+09, 0]
[0, 1.75019564e+01]

Sum of variance
2897097325.718247

Variance by dimension
2.89709731e+09 17.501
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AFTER STANDARDIZATION
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Covariance matrix (pca)

[ 1.98675899¢e+00, 0],
[0, 1.32410092e-02]

Sum of variance
2

Variance by dimension
1.98675899 0.01324101

Explained variance(ratio) [0.9933795, 0.0066205]
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CHOOSING COMPONENTS

 How to choose k!

» Elbow method

» OR fix beforehand a min threshold of explained variance, e.g.: 80%
- We are fine with losing 20% of information

Scree Plot

Explained
variance

Component Number



COMPUTATION IN PRACTICE

* Find the eigenvectors of the covariance matrix of centered
data

» If you want k new dimensions, pick the k eigenvectors
associated with the k largest eigenvalues

» Eigenvalues = explained variance

» [ he eigenvectors corresponding to the top eigenvalues are
coefficients of the linear transformation



FCA POPULARFEE

* Why 1s PCA popular?

* Similar reasons than linear regression:

Historically important

Analytical solutions
- Guarantee to find the global minimum of the objective

v

v

- Could be done before modern computers
Interpretable solution

Inturtively pleasant

v

v

* No reason to consider it ‘'better’ than other methods...



NON-LINEAR SITUATIONS
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MANIFOLDS



MANIFOLDS

» Manifolds are another approach to dimensionality reduction

* [ he general principle is to

» | )Define a notion of distance between elements in the original space
» 2)Define a notion of distance between elements in a reduced, target space
» 3)Minimize the difference between distances in original and target space

* In many cases, the process Is honlinear, 1.e., we choose
distances such as

» We care more about preserving close proximity than exact distance for nodes
that are “far’ from each other



Intersecting
Corkscrews Gaussians Random

Sphere in Sphere
(shells)

Cube in Cube
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Manifold Learning with 1000 points, 10 neighbors

LLE (0.12 sec) LTSA (0.27 sec) Hessian LLE (0.32 sec) Modified

LLE (0.24 sec)

T T T

T

T T T

Isomap (0.58 sec) MDS (3 sec) SpectralEmbedding (0.17 sec) t-SNE (22 sec)

T T T T T T T T T T T T T

Manifold Learning with 1000 points, 10 neighbors
LLE (0.086 sec) LTSA (0.17 sec) Hessian LLE (0.23 sec) Modified LLE (0.18 sec)

Isomap (0.32 sec)
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* MDS: Multi-dimensional Scaling:

» SImply minimize distance between original space and target space
- e.g, d-dimensional forced to 2-dimensional

* How to do 1t!
» [ )Compute all pairwise distances between Objects=>similarity matrix

- n X f matrix => n x n matrix
» 2)Compute PCA on this similarity matrix

- PCA preserves columns information => preserve distance on a similarity matrix

* Problems:

- Very costly (nb features=nb elements), n*
- Try to preserve all distances, therefore extremely constrained
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SO

* Variation of MDS

MAP

» |)VWe define a graph such as two elements are connected Iif they are at
distance<threshold. (Alternative: fixed number of neighbors)

- Put a weight on edges=euclidean distance

» 2)Compute a similarity matrix, such as distance= weighted shortest path

distance
» 3)Apply MDS on it

» Computing shortest paths on a graph Is fast

» Floyd—Warshall algorithm

ERNEIE Iess constralnts

Isomap (0.58 sec)

MDS (3 sec) Spe




1-SNE



1-SNE

» t-SNE : t-distributed stochastic neighbor embedding
* Non-linear dimensionality reduction

» Currently the most popular method for visualizing data in low
dimensions



1-SNE

» General principle:
» Define a notion of similarity p;; in the high dimensional space P

» Define a notion of similarity g;; in the low dimensional space O

» For each point of Intial coordinates x; find a new coordinate y; in the lower
dimensional space, such as to minimize the difference between P and Q

L



S N E Euclidean
2: i
Normal °
| | I I 0.2 1 l.
» Distance in the original space P g

» To compute how farJj is from i, consider a normal distribution centered in j
with variance o

lx; — ;112
» Mathematically: the raw distance is given as Sﬁ)l- =e 27
2
i

s Al e
k#i "jlk

- Normalizes the similarity by sum of similarity to all other points.
- With proper o, local definition of similarity



1-SNE

* Previous method, SNE, defines similarity in Q in the same way,

. | 1
setting for convenience o = T,thus
2

_v.lI2

Jli

-y are computed new features

0
Sili

Q
AT



SNE

* Define the similarity between P and 0

» Minimize the KL-divergence (Kullback—Leibler divergence)

e (o) = Zp,]log—
IF]
» KL: Information theory:

- Average additional number of bits required to encode a sample from P using the optimal
code to encode samples of Q

- Non-symmetric

» Solved by gradient descent

oC
: g =2 Z (pj|i — 4 TPijj — 6]i|j)(yi = yj)
‘ J



SNE

0C
O : Z (Pjti = 4j1i + Piyj — 4O = )
i j

* Inturtive interpretation:

» Imagine a system of attraction/springs between points

» If the distance is right, left=0, don't move

» If 1 1s"too far’”, left Is positive, we go In the direction of j
» T 1 1s "too close”, left Is negative, we move away from J




SNE

* Missing part: how to fix o for similarity in original space!

* Density of points Is assumed heterogeneous, o Is chosen
independently for each point.

» User fix a parameter of perplexity, perp(p;) = 2H(»
() = — Zpﬂilngpﬂi Shannon Entropy

J
- Search for o; to obtain the right perplexity.

» [t 1s a bit like Imposing to have a fix number of neighbors
- But you can have few points at very short distance and many at long distance
- Or many at medium distance
- As long as the overall distribution of distance is respected



INFLUENCE OF PERPLEXITY
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1-SNE

* [-SNE modifies the distance In the lower dimensional space

* [t uses a Student-t distribution, which leads to several

advantages

» Makes optimisation easier and faster

» lends to “exaggerate’ similarities/dissimilarities
- Emphasizes clusters, I.e., groups of nodes all close together



MNIST - PCA

MNIST - TSNE

-100

50

100




LOW DIMENSIONAL
EMBEDDINGS



EMBEDDINGS

* A recent usage of low dimensional embeddings Is to encode

complex objects as vectors

» Words as Vector => Word2Vec
» Nodes (of graph) as Vectors => Node2Vec
» Documents as Vectors => Doc2Vec

MRoS L



WORD EMBEDDING



WORD EMBEDDING

* Words can be understood as a (very) high dimensional space
» Using One Hot encoding: vocabulary of 1000 words=>[000 columns

» Could we assign a vector In “low dimension”, encoding the
“semantic’’ of a word!

» Two words with similar meanings should be close



SKIPGRAM

Word embedding
Corpus => Word = vectors
Similar embedding= similar context

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

[http://mccormickml.com/2016/04/ | 9/Wi>8rd2vec—tutoria|—the—s|<ip—gram—model/]



SKIPGRAM

Output Layer
Softmax Classifier

Hldden Layer Probability that the word at a
Linear Neurons /;
Input Vector Ay /

> randomly chosen, nearby
position is “abandon”

pr—— ‘//' /
10 | v il )
[0 _ AL
0 ~ Vs —— .. “ability”
il W=
0 N7 e
0 ) /
. 7~ :;/ // 4
0 =\l AT
Bl Tl
/ P ~ “, 27
A ‘1’ in the position 0 \ 7 > .. “able
corresponding to the — \\ /XS
word “ants” 0 \ y
P / / !
0] X / |
: e / 3
10,000
positi
—> ..“zone”
10,000
neurons

Output weights for “car”

Word vector for “ants”

I X

300 features

Probability that if you
randomly pick a word
nearby “ants”, that it is “car”

300 features

https://towardsdatascience.com/word2vec-skip4sram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM

Output
Input softmax
A 7 )
X110 Hidden O /I
X2| O N /Khl\ 0 |¥Y2
; hs v :
Vector of word i
h3 2
- g
P Matrix W = X Matrix W’ e |V =
: 2
Xi| 1 8_ 1 Y;
' Context matrix
h
Embedding matrix ~—\_ /
Xv! 0 N-dimension vector 0 |yv
N N

N=embedding size. V=vocabulary size

https://towardsdatascience.com/word2vec-skipiram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

| https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|
S


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

PRE- [ RAINED

* You can easlly train word2vec on your own dataset, but it
needs to be large enough

» https://radimrehurek.com/gensim/models/word2vec.html

* YOU can use pre-trained embeddings, trained on enormous
corpus (Iwitter, Wikipedia...)

» e.g., Glove: https://nlp.stanford.edu/projects/glove/



https://nlp.stanford.edu/projects/glove/

USAGE

* Single words=> Use directly vectors

» Short texts=> Weighted average vectors (more welights to
i@ Impertant words, e.g,, rare words: I F-IDE.

* Long texts=> More tricky. Need other approaches (Doc2vec,
RNN)



USAGE

R lrAmeters:

» Embedding dimensions d
B Giicdt size



GRAPH EMBEDDING



GENERIC “SKIPGRAM”

» Algorithm that takes an input:

» The element to embed
» A list of “context’’ elements

* Provide as output:

» An embedding with interesting properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

Sl



DEEPWALK

» Skipgram for graphs:

» | )Generate “sentences’” using random walks
» 2)Apply Skipgram

* Parameters:

» Same as Skipgram
- Embedding dimensions d
- Context size

» Parameters for “sentence’” generation: length of random walks, number of walks
starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



NODE2VEC

» Use biased random walk to tune the context to capture

*what we want™®

» "“Breadth first” like RW => local neighborhood (edge probability ?)
» “Depth-first” like RW => global structure ¢ (Communities ?)
» 2 parameters to tune:

- Pp: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in nodeZvec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases c.

| T— m—

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



EMIBEDDING ROLES



STRUC2VEC/ROLE2ZVEC

* In node2vec/Deepwalk, the context collected by RWV contains
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
SINBNEES I avallable, or computed attributes (degrees .

« =>Nodes with a same context will be nodes In a same
“position” In the graph

» =>(apture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data I\/ﬁ'nling (pp- 385-394). ACM.
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Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.



