# FREQUENT PATTERN MINING

# FREQUENT PATTERN MINING

- Frequent Pattern mining/ FP discovery
  - Objective: find items that occur frequently together in a database
  - Algorithmically difficult problem
- Association Rule Learning
  - From frequent patterns,
    - Identify statistically relevant associations

# MARKET BASKET ANALYSIS

- Typical example: Market Basket Analysis
  - Database: people buying products
    - One reason why supermarkets/shops propose Loyalty programs
- If you buy tomatoes, onions and hamburger patties, you will probably buy hamburger breads
- Famous unexpected association:
  - Beers and Diapers
  - (Probably a legend...)



# MARKET BASKET ANALYSIS

- Usage of market basket analysis:
  - Put one object on sale, to favor selling the other ones
    - Sales on burger breads=>consumer buy tomatoes, onion and beef patty
  - Put products close/far away
    - Men buying diapers tempted to buy beers ? Put beers close to diapers
- Relevant in other contexts of course
  - Relation between medical condition and life habits
    - Smoking+cholesterol=>heart disease...

### DATASETS

- Type of data: list of itemsets
  - I ={milk, bread,fruit}
  - > 2={butter,eggs,fruit}
  - > 3={beer,diapers}
  - 4={milk, bread, butter,eggs,fruit}
  - > 5={bread}

| transaction ID | milk | bread | butter | beer | diapers | eggs | fruit |
|----------------|------|-------|--------|------|---------|------|-------|
| 1              | 1    | 1     | 0      | 0    | 0       | 0    | 1     |
| 2              | 0    | 0     | 1      | 0    | 0       | 1    | 1     |
| 3              | 0    | 0     | 0      | 1    | 1       | 0    | 0     |
| 4              | 1    | 1     | 1      | 0    | 0       | 1    | 1     |
| 5              | 0    | 1     | 0      | 0    | 0       | 0    | 0     |

### DEFINITIONS

- **Items**:  $I = \{i_1, i_2, ..., i_n\}$ 
  - Unique item (butter, milk, etc)

#### • **Database** $D = \{t_1, t_2, ..., t_m\}$

- Collection of transactions
  - $(t_i \subseteq I)$ , arbitrary size

#### • **Itemset**: set of items of arbitrary size $(X \subseteq I)$

# DEFINITIONS

- Absolute Support of itemset X in D:
  - Number of transactions containing X (i.e.,  $| \{t \in D/X \subseteq t\} |$ )
- Relative support (or simply Support)
  - Fraction of transactions containing X abs\_support(X)
  - Estimation of P(X)
    - Probability for a random transaction to contains  $\boldsymbol{X}$

#### • Frequent itemset:

Itemset with support ≥ min\_supp

### SUPPORT

- Support {Milk,bread} = 2/5
- Support {diapers,beer}=1/5

| transaction ID | milk | bread | butter | beer | diapers | eggs | fruit |
|----------------|------|-------|--------|------|---------|------|-------|
|                |      |       | 0      | 0    | 0       | 0    |       |
| 2              | 0    | 0     |        | 0    | 0       |      |       |
| 3              | 0    | 0     | 0      |      |         | 0    | 0     |
| 4              |      |       |        | 0    | 0       |      |       |
| 5              | 0    |       | 0      | 0    | 0       | 0    | 0     |

# DEFINITIONS

- Association rule : rule of the form
  - $\bullet \ X \to Y$ 
    - $X \subseteq I, Y \subseteq I$
    - $-X \cap Y = \emptyset$
  - If X is in a transaction, then Y too
- Support of  $X \to Y$ :
  - => Support of itemset  $W = X \cup Y$
- For an association to be interesting, we further look at interest scores
  - Else, risk to find spurious associations

# SCORES OF INTEREST

# CONFIDENCE

• 
$$\operatorname{conf}(X \Rightarrow Y) = P(Y|X) = \frac{\operatorname{supp}(X \cap Y)}{\operatorname{supp}(X)} = \frac{\operatorname{number of transactions containing } X \text{ and } Y}{\operatorname{number of transactions containing } X}$$

- Fraction of transactions containing X that also contains Y
  - An itemset/rule can be frequent because its elements are frequent
  - We want to know if Y is frequent when we have X
- Non-symmetric

| transaction ID | milk | bread | butter | beer | diapers | eggs | fruit |
|----------------|------|-------|--------|------|---------|------|-------|
|                |      |       | 0      | 0    | 0       | 0    |       |
| 2              | 0    | 0     |        | 0    | 0       |      | I     |
| 3              | 0    | 0     | 0      |      | I       | 0    | 0     |
| 4              |      |       |        | 0    | 0       |      | I     |
| 5              | 0    |       | 0      | 0    | 0       | 0    | 0     |

- Confidence Milk=>bread = 2/2=1
- Confidence bread=>milk = 2/3
- Confidence diapers=>beer=1/1
- Confidence beer=>diapers= 1/1

### LIFT

- If Y has high confidence, but is also frequent, confidence is not enough.
  - , lift $(X \Rightarrow Y) = \frac{\text{confidence}(X \Rightarrow Y)}{\text{supp}(Y)}$ , - Compares Y presence when X with Y in general
  - ,  $\operatorname{lift}(X \Rightarrow Y) = \frac{\operatorname{supp}(X \cap Y)}{\operatorname{supp}(X) \times \operatorname{supp}(Y)}$ 
    - Compares observed co-presence with expected co-presence
- [0,+inf]
  - X and Y are independent: lift= I

| transaction ID | milk | bread | butter | beer | diapers | eggs | fruit |
|----------------|------|-------|--------|------|---------|------|-------|
|                |      |       | 0      | 0    | 0       | 0    | I     |
| 2              | 0    | 0     |        | 0    | 0       |      | I     |
| 3              | 0    | 0     | 0      |      | I       | 0    | 0     |
| 4              |      |       |        | 0    | 0       |      | I     |
| 5              | 0    |       | 0      | 0    | 0       | 0    | 0     |

- Lift Milk=>bread
  - ► (2/5)/(6/25)=1.666
  - ► (|)/(3/5)=1.666
- Lift beer=>diapers
  - (1/5)/(1/25)=5
  - ► (|)/(|/5)=5

#### LEVERAGE

- levarage( $A \rightarrow C$ ) = support( $A \rightarrow C$ ) support(A) × support(C), range: [-1,1]
  - Difference between the observed frequency of A and C appearing together and the frequency that would be expected if A and C were independent
- 0 indicates independence

| transaction ID | milk | bread | butter | beer | diapers | eggs | fruit |
|----------------|------|-------|--------|------|---------|------|-------|
|                |      |       | 0      | 0    | 0       | 0    |       |
| 2              | 0    | 0     |        | 0    | 0       |      |       |
| 3              | 0    | 0     | 0      |      | I       | 0    | 0     |
| 4              |      |       |        | 0    | 0       |      |       |
| 5              | 0    |       | 0      | 0    | 0       | 0    | 0     |

- Leverage Milk=>bread
  - ► (2/5)-(6/25)=0.16
- Leverage beer=>diapers
  - ► (1/5)-(1/25)=0.16

# FREQUENT ITEMSET OBJECTIVE

- Objective: limit the number of rules found
  - Given a minimum support threshold min\_sup
  - Given a minimum confidence threshold min\_conf
  - ▶ Find all association rules with support ≥ min\_sup and confidence ≥ min\_conf

# FREQUENT ITEMSET EXTRACTION

# NAIVE APPROACH

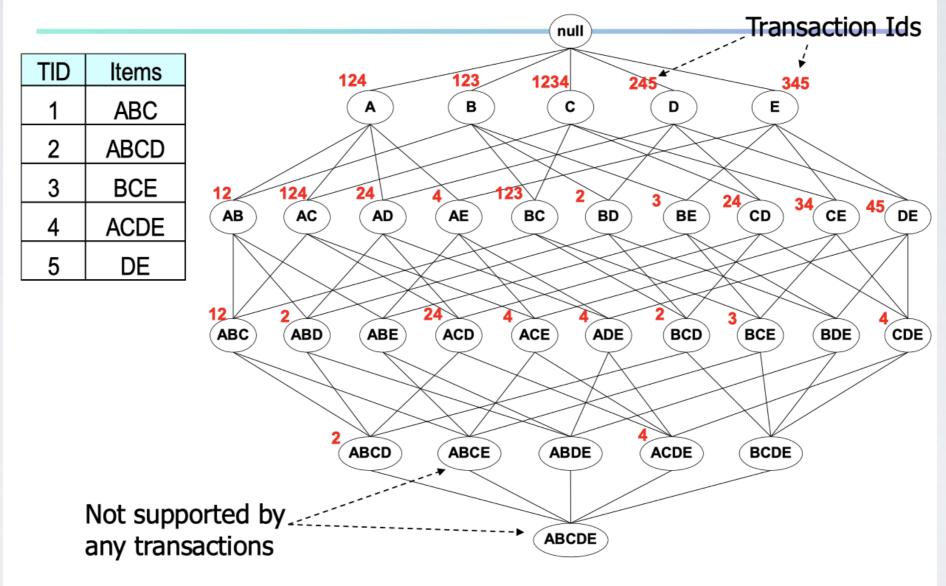
- Naive approach
  - I)Generate all possible itemsets (size 1, 2, 3, 4 etc.)
  - 2)Compute their support from the database
- Problem: explosion of possible combinations
  - 1000 items
    - 1000 itemsets of size 1
    - 1000\*999/2 itemsets of size 2
    - ...
    - 2<sup>100</sup> combinations

# SUPPORT PROPERTY

- Anti-monotonic property of support
  - If  $X_1$  is frequent, then  $X_2 \subset X_1$  is frequent
  - If  $X_1$  is not frequent, then  $X_2$ ,  $X_1 \subset X_2$  is not frequent
- Computation trick:
  - I)Find frequent I-itemsets
  - 2)Find frequent 2-itemsets
    - Among those that contains only frequent I-itemsets
  - 3) Repeat for all size (or until reaching a threshold)

## SUPPORT PROPERTY

#### **Maximal vs Closed Itemsets**

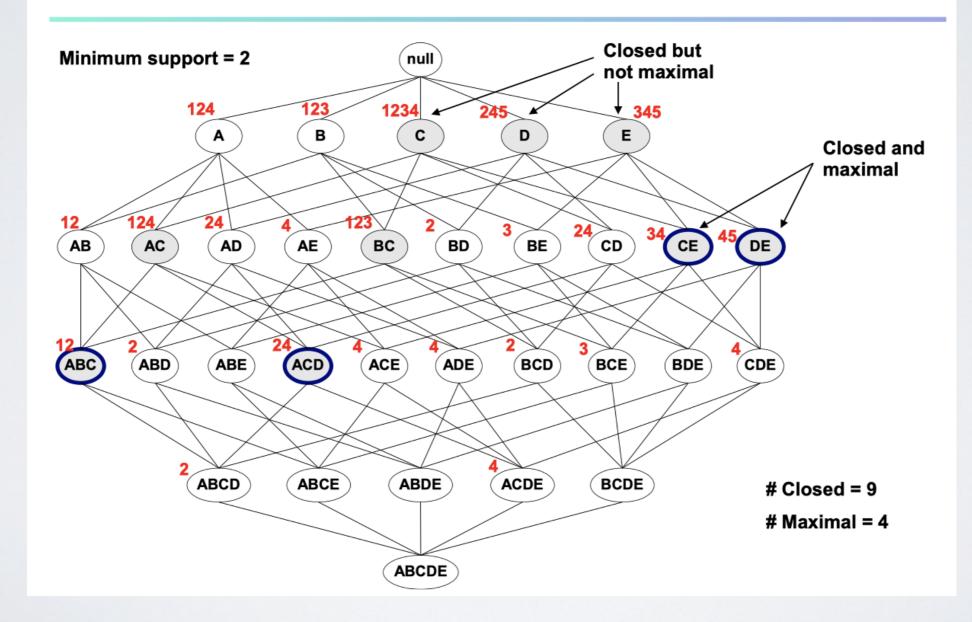


# CLOSED AND MAXIMAL

- We define a **closed** pattern as a frequent pattern (support>threshold) with not sub-pattern of equal support
- We defined a **maximal** pattern as a frequent pattern that has no frequent sub-pattern

# SUPPORT PROPERTY

#### Maximal vs Closed Frequent Itemsets



### ALGORITHM: APRIORI

### APRIORI

```
Apriori(Τ, ε)
    L_1 \leftarrow \{\text{frequent } 1 - \text{itemsets}\}
    k ← 2
    while L<sub>k-1</sub> is not empty
           C_k \leftarrow Apriori_gen(L_{k-1}, k)
           for transactions t in T
                  D_t \leftarrow \{c \text{ in } C_k : c \subseteq t\}
                  for candidates c in D<sub>t</sub>
                         count[c] \leftarrow count[c] + 1
           L_k \leftarrow \{c \text{ in } C_k : count[c] \ge \varepsilon\}
           k ← k + 1
    return Union(L<sub>k</sub>)
Apriori_gen(L, k)
      result \leftarrow list()
      for all p \in L, q \in L where p_1 = q_1, p_2 = q_2, ..., p_{k-2} = q_{k-2} and p_{k-1} < q_{k-1}
           c = p \cup \{q_{k-1}\}
           if u \in L for all u \subseteq c where |u| = k-1
               result.add(c)
       return result
```

# GOING FURTHER

#### Many other works in this domain

- Sequential Pattern Mining: Take order into account
  - If we first buy a printer, then we will buy ink (and not the opposite)
- Numeric target value: Find relevant intervals
  - If  $\{a,b\} = z \in [12,25]$ , if  $\{a,c\} = z \in [25,32]$
- Subraph frequent itemsets
- Spatial frequent itemsets

. . .