
RECOMMENDER SYSTEMS
And matrix factorization

RECOMMENDER SYSTEMS

• A popular problem in Data Mining with many commercial/
industrial applications

• Given a user and its past interaction with items, recommend
them some new items
‣ Movies, Music, Book, Video Games, etc.
‣ Products on Amazon or any shop with past information
‣ Posts/contents on Twitter, Facebook, Youtube, news media
‣ …

CONTENT-BASED
• Content-based recommendation

‣ We describe all our items using features
- Movies genre, length, age rate, topics…
- Objects categories, price range, etc.

‣ We recommend to users items having similar features to the ones they like
- For instance, using supervised machine learning (classification or score regression)

• Often disappointing in practice
‣ Finding useful descriptors is usually very hard

- What makes you like/dislike a music/movie is more than a list of keywords
- Somewhat arbitrary (is movie M a comedy? Book B a child book? 2 people might disagree)

‣ Very costly on large catalogs
- Impossible for social medias, but also Amazon, YouTube..

COLLABORATIVE FILTERING

• Solution: Collaborative filtering

• Principle:
‣ To evaluate if two items are similar, instead of comparing manually chosen

descriptors (genre, etc.), we compare the users who have interacted with them
‣ =>Users themselves become the features

• The definition of similarity emerges from the
collaborative efforts of all users

• Tell me what you like, I’ll tell you who you are

COLLABORATIVE FILTERING

DATA

• We model past data a matrix of size U x I
‣ U users
‣ I items

• X(u,i)=user/item interaction
‣ Buy, watch, clic, like, vote, etc.

• Users could be treated as any feature, but they have some
specificities
‣ Values are sparse:

- Missing values in all rows and columns (no user rates all items, no item is rated by every
user)

‣ Both Users or Items can be used as variables or observations (rows/columns)

DATA COMPLEXITY
• Data form:

‣ Binary vote
- 1 and 0 are both reliable (rare)

‣ Like, Heart, Watched, Bought, Listened, etc.
- 1 is a reliable information, but 0 and nan are not differentiable.

‣ Note (e.g., 1 to 5 stars, etc.)
- Often imbalanced between 4/5 (frequent), 1/2 (less frequent)
- Missing values and 0 are correlated (people rate what they watch, and watch what they like)

• Users can have different labelling standards
‣ “Good” for one might correspond to “excellent” for another

- Some users put a like/share everything they find above average
- Other users will only like/share what they find exceptional
- Same for scores: some never give maximal note, while others use only the maximal note

DATA COMPLEXITY
• User note diversity => Normalize/Standardize scores for each

user

• Normalizing by item ?
‣ We don’t care anymore if the score is good, we want to know if its better than

for other users

• Considering both aspects: subtracting a baseline
‣ We estimate the baseline score based on 2 constants, and

- captures the tendency of to give high or low marks
- captures the tendency of to have low or high marks
- e.g., minimize by gradient descent a regularized baseline

-

- : average note for a random user on a random item

(u, i) bu bi
bu u
bi i

∑
rui∈Rtrain

(rui − (μ + bu + bi))2 + λ (b2
u + b2

i) .

μ

USER-BASED KNN

USER-BASED KNN

• KNN: K-Nearest-Neighbors
‣ Simple yet powerful method popular in classification task

- 1)Find k most similar items (neighbors) to item i.
- 2)Each neighbor “vote” for its target => average/mode of targets of neighbors

• Application to user-based collaborative filtering
‣ 1) Find k most similar users (neighbors)
‣ 2) Each neighbor “vote” for the products they liked

- Average notes
- Count of 1 for binary data (like, etc.)

‣ Usually, votes weighted by similarity to the original user

USER-BASED KNN

2
2
-1

-1

Similarity to E

USER-BASED KNN

2
2
-1

-1

Similarity to E

(2*-1)/2=-1

SIMILARITY

• How to compute the similarity between users ?
‣ Euclidean distance => Poor results

- Think of a user with few likes {0,1}. They are very distant from users having many like, since
each difference adds distance.

‣ Number of similar votes only ?
- Now users with many likes are similar to everyone

• Solution:
‣ (Binary) Jaccard Similarity => | likes(u&v) | / (| likes(u) | + | likes(v) |)
‣ (Notes) MSD=>Means Squared Difference when both notes present
‣ (Binary & Notes) Cosine Similarity

SIMILARITY

cos(θ) =
A ⋅ B

∥A∥∥B∥
=

n
∑
i=1

AiBi

n
∑
i=1

A2
i

n
∑
i=1

B2
i

For binary:

| likes(u & v) |

| likes(u) | | likes(v) |

Similar Principle than Jaccard Coefficient

ITEM-BASED
COLLABORATIVE FILTERING

ITEM-BASED

• User-based collaborative filtering has weaknesses in practice
‣ Users with little info will have neighbors with little info too

- =>We will learn based on few info
- Imagine you liked movies M1 and M2. The 20 most similar users will like exactly M1 and M2,

maybe 1 movie more.
‣ Users change a lot =>Need to recompute KNN on whole database very

frequently

• => Move to Item-based Collaborative filtering

ITEM-BASED

• We want to evaluate the interest of (u,i)
‣ 1)For each item x liked by u

- Compute the similarity between x and i
‣ 2)(u,i) is the average similarities (x,i) for x liked by u

• We compute score (u,i) for every unknown item

ITEM-BASED

-1 -3 2

ITEM-BASED

-1 -3 2

=(1*(-1)+1*(-3)-1*2)/3=>-2

ITEM-BASED

• Original Amazon patented method introduced in 1998

• Strengths
‣ Distances between items can be precomputed at fix interval, do not change

too quickly
‣ Distances between items robust, lot of information (appart from new items)

MATRIX FACTORIZATION
COLLABORATIVE FILTERING

NETFLIX PRIZE
• Worldwide competition to improve Netflix recommendation

‣ Cash prize, 1 Million $
‣ 2006 to 2009 (Objective of reducing RMSE on scores by 10% compared with

Netflix own method)

• Winning method: Stacking of multiple recommendation
systems

• Yet, one new popular approach attracted lot of attention: SVD
‣ /!\ Singular Value Decomposition(SVD) is a classic linear algebra matrix

decomposition. But in recommendation literature, SVD is also the name of an
algorithm related but different to the original SVD.

https://intoli.com/blog/pca-and-svd/

MATRIX FACTORIZATION

• Matrix Factorization is a name given to a general
approach of data mining
‣ We start with an original matrix , typically item/user matrix
‣ We search for 2 matrices , , such as to minimize a cost function

- With a matrix multiplication

• If the dimension of is
‣ Then ,

- With a parameter, corresponding to a number of latent variables
‣ The process is a type of dimensionality reduction

A
U V L(A, UV)

UV

A X × Y
U = > X × D V = > D × Y

D

MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

2 latent variables

MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Vector representing user 2, u2
Vector representing item 3, i3
Multiply the two vectors to reconstruct estimated

value(u2,i3)

MATRIX FACTORIZATION

• As with word embedding approaches (word2vec, etc.),
dimensions can be understood as latent variables, i.e., features
representing some semantic notion

• For instance, in movies, latent variables could capture
‣ Horror-ness, comedy-ness, adult-ness, etc.
‣ Each user has a score in each of these features (enjoy horror=1, comedy=0.2)
‣ Each movie too (is horror=1, is comedy=1.5)
‣ =>(user, movie)=>combination of match in each category

OBJECTIVE FUNCTION

• The classic SVD would correspond
to using as a loss the means squared
error
‣ Having 0 where we have no data

(like/rating)

OBJECTIVE FUNCTION

• The recommendation based Matrix
Factorization has an adapted loss,
‣ Computed only on non-zero values

OBJECTIVE FUNCTION

A variant has a parameter to combine both
(Weighted Matrix Factorization)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

OPTIMIZATION

• To find the two matrices, we use a greedy approach
‣ Typically the Weighted Alternating Least Square (WALS)

- 1)Initialize values at random
- 2)Fix and solve for
- 3)Fix and solve for
- Repeat 2 and 3 until convergence

‣ Solving in 2 and 3 is equivalent to doing linear regression for each component

U V
V U

OPTIMIZATION

p*2 = 3

Arbitrary initialization

MF + REGULARIZATION

• As with many machine learning tasks, we can introduce
regularization to avoid overfitting
‣ Due to the large number of parameters, regularization is important

• The objective to solve becomes:

‣

- are latent vectors
‣ controls the strength of the regularization

∑
rui∈obs

(rui − ̂rui)2 + λ (| |qi | |2 + | |pu | |2)
qi, pu

λ

MF + BASELINE
• As mentioned before, it is also important to take into account

the variability of users and of items
‣ We want to predict what cannot be simply predicted by

- Movies being good/bad
- Each actor tendency to give good/bad scores
- => If most users give good marks to movie M1, and user U1 tend to always give maximal

scores to movies they rate, the fact that (U1,M1)=maximal note is “expected”

• The objective to solve becomes:

‣

‣ With and representing items and users expected scores, respectively

∑
rui∈obs

(rui − ̂rui)2 + λ (b2
i + b2

u + | |qi | |2 + | |pu | |2)
bi bu

MF RECOMMENDATION

• From the two partial matrices, we
can compute any value by
multiplying the corresponding
vectors

• Recommending for a user
consists in picking
‣ In the user row
‣ The highest computed values

NETFLIX PRIZE

• A few other elements were taken into account in the Netflix
Prize winning strategy
‣ Temporal aspects (how long since this product was rated…)
‣ Sequential aspects

- Watch episode1 then episode 2. Contrary unlikely.

• Fine parameter tuning, clever stacking…

NEW USER

• If a new user requests a recommendation, the complexity to
provide one depends on the method
‣ User based=>Compute distance to all other users

- Then direct answer for all items
‣ Item based=>Precomputed distances betweeen all items

- Naive approach, need to compute for all candidate items, but in reality, faster tricks
- e.g., Find items that are “close” to the ones liked by that user

‣ Matrix Factorization
- In theory, not possible to make recommendation to a new user without recomputing

everything
- In practice, an approximation can be obtained quickly, doing 1 step of the Alternating Least

Square: we consider the item latent matrix fixed, updating the user matrix. Similar in nature
to solving a linear regression

EVALUATION OF
RECOMMENDER SYSTEMS

EVALUATION

• Recommendation evaluation use similar quality scores as
supervised machine learning evaluation
‣ RMSE, Precision@k, AUC, etc.

• The specificity of recommender systems is the way the train
and test sets are built
‣ General principle: For one test user,

- We show part of their scores/votes to the trained recommender
- We hide part of them, to use as ground truth

‣ The problem is thus either :
- A regression: how accurately do we predict the scores of hidden items
- A classification: how many of the positive items in the test set do we recommend? Or, more

realistically, AUC=Do we assign high scores to positive items?

EVALUATION
• In practice, two ways to evaluate, hiding users or hiding

pairs(u,i)

• Hiding users
‣ Rarer, but more realistic

- If possible, even keep the most recent users hidden: prediction at time t
‣ 1)We train with full data on a fraction of users
‣ 2)We validate on other users, considered “new”

• Hiding pairs (u,i)
‣ Hide random (u,i) pairs, ensuring a minimal number of visible ratings per users

and items
‣ Evaluate the recommendation on those removed pairs.

OTHER RECOMMENDATION
QUALITY CRITERIA

• Diversity of recommendation
‣ e.g., average cosine distance between 2 items recommended to a same user

(among top-5)

• Coverage
‣ e.g., fraction of all items recommended at least once, or information entropy…

• Personalization
‣ e.g., average cosine distance between users recommendation

MF VARIANT: NMF
Non-negative Matrix Factorization

NMF

• A strength of Matrix Factorization is that it produces latent
variables which, in theory, can be interpretable.

• A weakness of classic MF is that these variables can cancel
each other, if one is positive and the other negative

• In NMF (Non-negative MF), we impose that all variables values
must be positive. Of course, the Matrix to decompose must
be positive too.
‣ Imposes additive combinations

NMF

BICYCLE SHARING SYSTEMS

Docking stations Bicycle trips

Red: empty

Green: full

DATA

Part Dieu Tête d’or Guillotière

Cumulated

t1 t2 t3 t4 t5 t6 … t168

e1
e2
e3
…e4
……

Hours of the typical week

Entities
(station)

0

5000

10000

15000

20000

25000

30000

35000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0

5000

10000

15000

20000

25000

30000

35000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0

5000

10000

15000

20000

25000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

“Commercial” ? “Work” ?

“Bars-Restaurants” ? “Leisure” ?

…

Automatically discovered patterns

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

“Leisure” ?
Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

For each pattern, for each station,
we have a value

=>Total trips due to this pattern

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

CO-CLUSTERING
Or Bi-clustering, two-mode clustering, block clustering

CO-CLUSTERING
• Objective: Find dense submatrices in a matrix

• Groups of rows that are preferentially related to groups of
columns

CO-CLUSTERING
• Various algorithms exist, a simple one for sparse data consists

in optimizing a modified version of the modularity on the
bipartite graph (user-item)

•

‣ With the matrix to co-cluster, dimension
‣ the weighted degree(strength) of
‣ =1 if belong to the same co-cluster
‣ sum of all values in the matrix

Q =
n

∑
i

d

∑
j

Aij −
kikj

|A |
δij

A n × d
ki i
δij i, j
|A |

https://dl.acm.org/doi/pdf/10.1145/2806416.2806639

CO-CLUSTERING

• Co-cluster make natural sense in user-item matrices
‣ Group of people who like the same type of products, and products liked by the

same people

• Co-clustering can be used to improve recommender systems
‣ To improve scalability, one can compute co-cluster first, and then use only

users/items in the same co-cluster for recommendation
‣ It can also improve precision: remove the effect of most popular items, that

tend to be recommended to everyone

