
RECOMMENDER SYSTEMS
And matrix factorization



RECOMMENDER SYSTEMS

• A popular problem in Data Mining with many commercial/
industrial applications

• Given a user and its past interaction with items, recommend 
them some new items
‣ Movies, Music, Book, Video Games, etc.
‣ Products on Amazon or any shop with past information
‣ Posts/contents on Twitter, Facebook, Youtube, news media
‣ …



CONTENT-BASED
• Content-based recommendation

‣ We describe all our items using features
- Movies genre, length, age rate, topics…
- Objects categories, price range, etc.

‣ We recommend to users items having similar features to the ones they like
- For instance, using supervised machine learning (classification or score regression)

• Often disappointing in practice
‣ Finding useful descriptors is usually very hard

- What makes you like/dislike a music/movie is more than a list of keywords
- Somewhat arbitrary (is movie M a comedy? Book B a child book? 2 people might disagree)

‣ Very costly on large catalogs
- Impossible for social medias, but also Amazon, YouTube..



COLLABORATIVE FILTERING

• Solution: Collaborative filtering

• Principle:
‣ To evaluate if two items are similar, instead of comparing manually chosen 

descriptors (genre, etc.), we compare the users who have interacted with them
‣ =>Users themselves become the features

• The definition of similarity emerges from the 
collaborative efforts of all users

• Tell me what you like, I’ll tell you who you are



COLLABORATIVE FILTERING



DATA

• We model past data a matrix of size U x I
‣ U users
‣ I items

• X(u,i)=user/item interaction
‣ Buy, watch, clic, like, vote, etc.

• Users could be treated as any feature, but they have some 
specificities
‣ Values are sparse: 

- Missing values in all rows and columns (no user rates all items, no item is rated by every 
user)

‣ Both Users or Items can be used as variables or observations (rows/columns)



DATA COMPLEXITY
• Data form:

‣ Binary vote
- 1 and 0 are both reliable (rare) 

‣ Like, Heart, Watched, Bought, Listened, etc.
- 1 is a reliable information, but 0 and nan are not differentiable. 

‣ Note (e.g., 1 to 5 stars, etc.)
- Often imbalanced between 4/5 (frequent), 1/2 (less frequent)
- Missing values and 0 are correlated (people rate what they watch, and watch what they like)

• Users can have different labelling standards
‣ “Good” for one might correspond to “excellent” for another

- Some users put a like/share everything they find above average
- Other users will only like/share what they find exceptional
- Same for scores: some never give maximal note, while others use only the maximal note



DATA COMPLEXITY
• User note diversity => Normalize/Standardize scores for each 

user

• Normalizing by item ?
‣ We don’t care anymore if the score is good, we want to know if its better than 

for other users

• Considering both aspects: subtracting a baseline
‣ We estimate the baseline score  based on 2 constants,  and 

-  captures the tendency of  to give high or low marks
-  captures the tendency of  to have low or high marks
- e.g., minimize by gradient descent a regularized baseline 

-

- : average note for a random user on a random item
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USER-BASED KNN



USER-BASED KNN

• KNN: K-Nearest-Neighbors
‣ Simple yet powerful method popular in classification task

- 1)Find k most similar items (neighbors) to item i. 
- 2)Each neighbor “vote” for its target => average/mode of targets of neighbors

• Application to user-based collaborative filtering
‣ 1) Find k most similar users (neighbors)
‣ 2) Each neighbor “vote” for the products they liked

- Average notes
- Count of 1 for binary data (like, etc.)

‣ Usually, votes weighted by similarity to the original user



USER-BASED KNN
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SIMILARITY

• How to compute the similarity between users ?
‣ Euclidean distance => Poor results

- Think of a user with few likes {0,1}. They are very distant from users having many like, since 
each difference adds distance.

‣ Number of similar votes only ?
- Now users with many likes are similar to everyone

• Solution:
‣ (Binary) Jaccard Similarity  => | likes(u&v) | / ( | likes(u) | + | likes(v) | )
‣ (Notes) MSD=>Means Squared Difference when both notes present
‣ (Binary & Notes) Cosine Similarity 



SIMILARITY

cos(θ) =
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For binary:  

| likes(u & v) |

| likes(u) | | likes(v) |

Similar Principle than Jaccard Coefficient



ITEM-BASED 
COLLABORATIVE FILTERING



ITEM-BASED

• User-based collaborative filtering has weaknesses in practice
‣ Users with little info will have neighbors with little info too

- =>We will learn based on few info
- Imagine you liked movies M1 and M2. The 20 most similar users will like exactly M1 and M2, 

maybe 1 movie more.
‣ Users change a lot =>Need to recompute KNN on whole database very 

frequently

• => Move to Item-based Collaborative filtering



ITEM-BASED

• We want to evaluate the interest of (u,i)
‣ 1)For each item x liked by u

- Compute the similarity between x and i
‣ 2)(u,i) is the average similarities (x,i) for x liked by u

• We compute score (u,i) for every unknown item



ITEM-BASED
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ITEM-BASED

-1 -3 2

=(1*(-1)+1*(-3)-1*2 )/3=>-2



ITEM-BASED

• Original Amazon patented method introduced in 1998

• Strengths
‣ Distances between items can be precomputed at fix interval, do not change 

too quickly
‣ Distances between items robust, lot of information (appart from new items)



MATRIX FACTORIZATION 
COLLABORATIVE FILTERING



NETFLIX PRIZE
• Worldwide competition to improve Netflix recommendation

‣ Cash prize, 1 Million $
‣ 2006 to 2009 (Objective of reducing RMSE on scores by 10% compared with 

Netflix own method)

• Winning method: Stacking of multiple recommendation 
systems

• Yet, one new popular approach attracted lot of attention: SVD
‣ /!\ Singular Value Decomposition(SVD) is a classic linear algebra matrix 

decomposition. But in recommendation literature, SVD is also the name of an 
algorithm related but different to the original SVD.

https://intoli.com/blog/pca-and-svd/



MATRIX FACTORIZATION

• Matrix Factorization is a name given to a general 
approach of data mining
‣ We start with an original matrix , typically item/user matrix
‣ We search for 2 matrices , , such as to minimize a cost function 

- With  a matrix multiplication

• If the dimension of  is 
‣ Then , 

- With  a parameter, corresponding to a number of latent variables
‣ The process is a type of dimensionality reduction

A
U V L(A, UV )

UV

A X × Y
U = > X × D V = > D × Y

D



MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

2 latent variables



MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Vector representing user 2, u2
Vector representing item 3, i3
Multiply the two vectors to reconstruct estimated 

value(u2,i3)



MATRIX FACTORIZATION

• As with word embedding approaches (word2vec, etc.), 
dimensions can be understood as latent variables, i.e., features 
representing some semantic notion

• For instance, in movies, latent variables could capture
‣ Horror-ness, comedy-ness, adult-ness, etc.
‣ Each user has a score in each of these features (enjoy horror=1, comedy=0.2)
‣ Each movie too (is horror=1, is comedy=1.5)
‣ =>(user, movie)=>combination of match in each category



OBJECTIVE FUNCTION

• The classic SVD would correspond 
to using as a loss the means squared 
error
‣ Having 0 where we have no data 

(like/rating)



OBJECTIVE FUNCTION

• The recommendation based Matrix 
Factorization has an adapted loss, 
‣ Computed only on non-zero values



OBJECTIVE FUNCTION

A variant has a parameter to combine both
(Weighted Matrix Factorization)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix



OPTIMIZATION

• To find the two matrices, we use a greedy approach
‣ Typically the Weighted Alternating Least Square (WALS)

- 1)Initialize values at random
- 2)Fix  and solve for 
- 3)Fix  and solve for 
- Repeat 2 and 3 until convergence

‣ Solving in 2 and 3 is equivalent to doing linear regression for each component

U V
V U



OPTIMIZATION

p*2 = 3

Arbitrary initialization



MF + REGULARIZATION

• As with many machine learning tasks, we can introduce 
regularization to avoid overfitting
‣ Due to the large number of parameters, regularization is important

• The objective to solve becomes:

‣

-  are latent vectors
‣  controls the strength of the regularization

∑
rui∈obs

(rui − ̂rui)2 + λ ( | |qi | |2 + | |pu | |2 )
qi, pu

λ



MF + BASELINE
• As mentioned before, it is also important to take into account 

the variability of users and of items
‣ We want to predict what cannot be simply predicted by 

- Movies being good/bad
- Each actor tendency to give good/bad scores
- => If most users give good marks to movie M1, and user U1 tend to always give maximal 

scores to movies they rate, the fact that (U1,M1)=maximal note is “expected”

• The objective to solve becomes:

‣

‣ With  and  representing items and users expected scores, respectively

∑
rui∈obs

(rui − ̂rui)2 + λ (b2
i + b2

u + | |qi | |2 + | |pu | |2 )
bi bu



MF RECOMMENDATION

• From the two partial matrices, we 
can compute any value by 
multiplying the corresponding 
vectors

• Recommending for a user 
consists in picking
‣ In the user row
‣ The highest computed values



NETFLIX PRIZE

• A few other elements were taken into account in the Netflix 
Prize winning strategy
‣ Temporal aspects (how long since this product was rated…)
‣ Sequential aspects 

- Watch episode1 then episode 2. Contrary unlikely.

• Fine parameter tuning, clever stacking…



NEW USER

• If a new user requests a recommendation, the complexity to 
provide one depends on the method
‣ User based=>Compute distance to all other users

- Then direct answer for all items
‣ Item based=>Precomputed distances betweeen all items

- Naive approach, need to compute for all candidate items, but in reality, faster tricks
- e.g., Find items that are “close” to the ones liked by that user

‣ Matrix Factorization
- In theory, not possible to make recommendation to a new user without recomputing 

everything
- In practice, an approximation can be obtained quickly, doing 1 step of the Alternating Least 

Square: we consider the item latent matrix fixed, updating the user matrix. Similar in nature 
to solving a linear regression



EVALUATION OF 
RECOMMENDER SYSTEMS



EVALUATION

• Recommendation evaluation use similar quality scores as 
supervised machine learning evaluation
‣ RMSE, Precision@k, AUC, etc.

• The specificity of recommender systems is the way the train 
and test sets are built
‣ General principle: For one test user, 

- We show part of their scores/votes to the trained recommender
- We hide part of them, to use as ground truth

‣ The problem is thus either :
- A regression: how accurately do we predict the scores of hidden items
- A classification: how many of the positive items in the test set do we recommend? Or, more 

realistically, AUC=Do we assign high scores to positive items?



EVALUATION
• In practice, two ways to evaluate, hiding users or hiding 

pairs(u,i)

• Hiding users 
‣ Rarer, but more realistic

- If possible, even keep the most recent users hidden: prediction at time t
‣ 1)We train with full data on a fraction of users
‣ 2)We validate on other users, considered “new”

• Hiding pairs (u,i)
‣ Hide random (u,i) pairs, ensuring a minimal number of visible ratings per users 

and items
‣ Evaluate the recommendation on those removed pairs.



OTHER RECOMMENDATION 
QUALITY CRITERIA

• Diversity of recommendation
‣ e.g., average cosine distance between 2 items recommended to a same user 

(among top-5)

• Coverage
‣ e.g., fraction of all items recommended at least once, or information entropy…

• Personalization
‣ e.g., average cosine distance between users recommendation



MF VARIANT: NMF
Non-negative Matrix Factorization



NMF

• A strength of Matrix Factorization is that it produces latent 
variables which, in theory, can be interpretable.

• A weakness of classic MF is that these variables can cancel 
each other, if one is positive and the other negative

• In NMF (Non-negative MF), we impose that all variables values 
must be positive. Of course, the Matrix to decompose must 
be positive too.
‣ Imposes additive combinations



NMF



BICYCLE SHARING SYSTEMS

Docking stations Bicycle trips



Red: empty

Green: full

DATA



Part Dieu Tête d’or Guillotière

Cumulated



t1 t2 t3 t4 t5 t6 … t168

e1
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…e4
……

Hours of the typical week

Entities
(station)
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Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

For each pattern, for each station, 
we have a value

=>Total trips due to this pattern
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CO-CLUSTERING
Or Bi-clustering, two-mode clustering, block clustering



CO-CLUSTERING
• Objective: Find dense submatrices in a matrix

• Groups of rows that are preferentially related to groups of 
columns



CO-CLUSTERING
• Various algorithms exist, a simple one for sparse data consists 

in optimizing a modified version of the modularity on the 
bipartite graph (user-item)

•

‣ With  the matrix to co-cluster, dimension 
‣  the weighted degree(strength) of 
‣ =1 if  belong to the same co-cluster
‣ sum of all values in the matrix

Q =
n

∑
i

d

∑
j

Aij −
kikj

|A |
δij

A n × d
ki i
δij i, j
|A |

https://dl.acm.org/doi/pdf/10.1145/2806416.2806639



CO-CLUSTERING

• Co-cluster make natural sense in user-item matrices
‣ Group of people who like the same type of products, and products liked by the 

same people

• Co-clustering can be used to improve recommender systems
‣ To improve scalability, one can compute co-cluster first, and then use only 

users/items in the same co-cluster for recommendation
‣ It can also improve precision: remove the effect of most popular items, that 

tend to be recommended to everyone


