RECOMMENDER SYSTEMS

And matrix factorization

RECOMMENDER SYSTEMS

- A popular problem in Data Mining with many commercial/ industrial applications
- Given a user and its past interaction with items, recommend them some new items
 - Movies, Music, Book, Video Games, etc.

. . .

- Products on Amazon or any shop with past information
- Posts/contents on Twitter, Facebook, Youtube, news media

CONTENT-BASED

Content-based recommendation

- We describe all our items using features
 - Movies genre, length, age rate, topics...
 - Objects categories, price range, etc.
- We recommend to users items having similar features to the ones they like
 - For instance, using supervised machine learning (classification or score regression)
- Often disappointing in practice
 - Finding useful descriptors is usually very hard
 - What makes you like/dislike a music/movie is more than a list of keywords
 - Somewhat arbitrary (is movie M a comedy? Book B a child book? 2 people might disagree)
 - Very costly on large catalogs
 - Impossible for social medias, but also Amazon, YouTube..

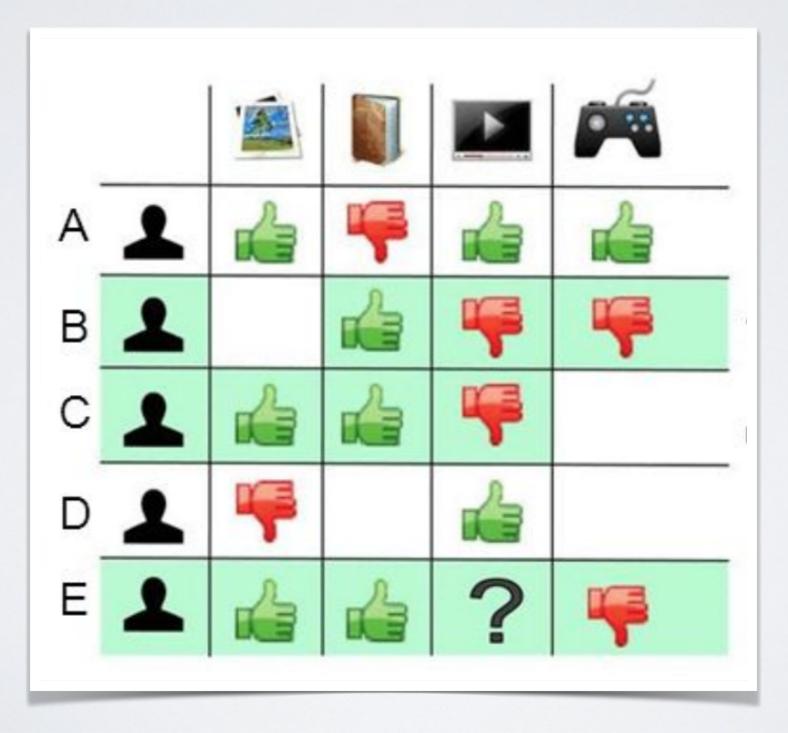
COLLABORATIVE FILTERING

Solution: Collaborative filtering

• Principle:

- To evaluate if two items are similar, instead of comparing manually chosen descriptors (genre, etc.), we compare the users who have interacted with them
- =>Users themselves become the features
- The definition of similarity emerges from the collaborative efforts of all users
- Tell me what you like, I'll tell you who you are

COLLABORATIVE FILTERING



DATA

- We model past data a matrix of size $U \times I$
 - U users
 - I items
- X(u,i)=user/item interaction
 - Buy, watch, clic, like, vote, etc.
- Users could be treated as any feature, but they have some specificities
 - Values are sparse:
 - Missing values in all rows and columns (no user rates all items, no item is rated by every user)
 - Both Users or Items can be used as variables or observations (rows/columns)

DATA COMPLEXITY

• Data form:

- Binary vote
 - I and 0 are both reliable (rare)
- Like, Heart, Watched, Bought, Listened, etc.
 - I is a reliable information, but 0 and nan are not differentiable.
- Note (e.g., I to 5 stars, etc.)
 - Often imbalanced between 4/5 (frequent), 1/2 (less frequent)
 - Missing values and 0 are correlated (people rate what they watch, and watch what they like)
- Users can have different labelling standards
 - "Good" for one might correspond to "excellent" for another
 - Some users put a like/share everything they find above average
 - Other users will only like/share what they find exceptional
 - Same for scores: some never give maximal note, while others use only the maximal note

DATA COMPLEXITY

- User note diversity => Normalize/Standardize scores for each user
- Normalizing by item ?
 - We don't care anymore if the score is good, we want to know if its better than for other users
- Considering both aspects: subtracting a baseline
 - We estimate the baseline score (u, i) based on 2 constants, b_u and b_i
 - b_u captures the tendency of u to give high or low marks
 - b_i captures the tendency of i to have low or high marks
 - e.g., minimize by gradient descent a regularized baseline

$$\sum_{r_{ui} \in R_{train}} \left(r_{ui} - (\mu + b_u + b_i) \right)^2 + \lambda \left(b_u^2 + b_i^2 \right)$$

- μ : average note for a random user on a random item

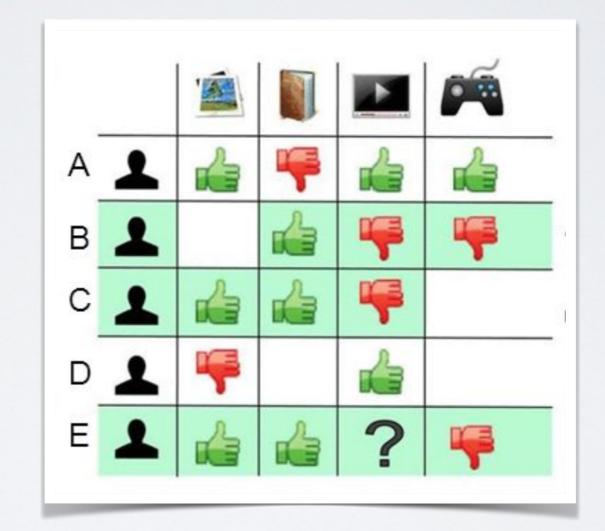
• KNN: K-Nearest-Neighbors

- Simple yet powerful method popular in <u>classification</u> task
 - I)Find k most similar items (neighbors) to item i.
 - 2)Each neighbor "vote" for its target => average/mode of targets of neighbors
- Application to user-based collaborative filtering
 - I) Find k most similar users (neighbors)
 - 2) Each neighbor "vote" for the products they liked
 - Average notes
 - Count of I for binary data (like, etc.)
 - Usually, votes weighted by similarity to the original user

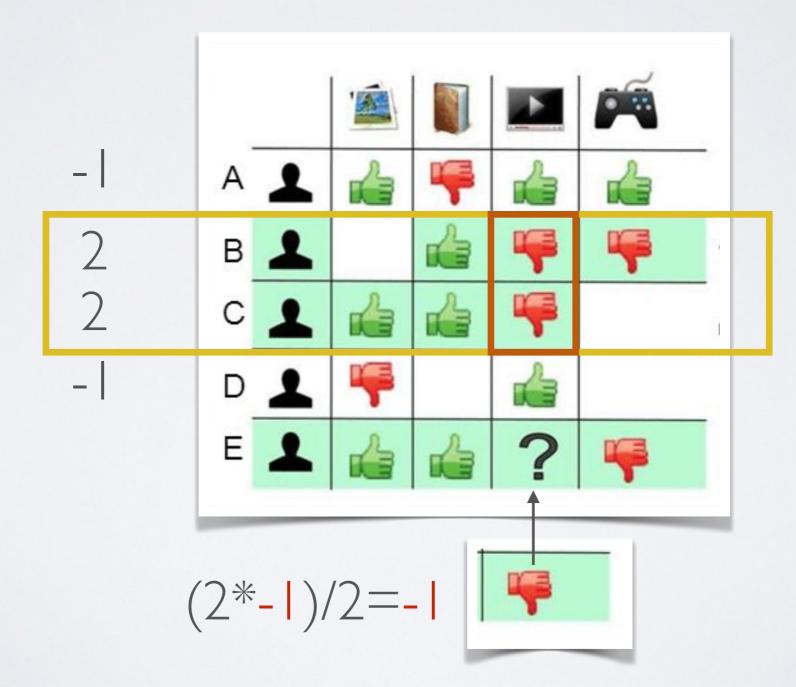
Similarity to E

2 2 -

- |

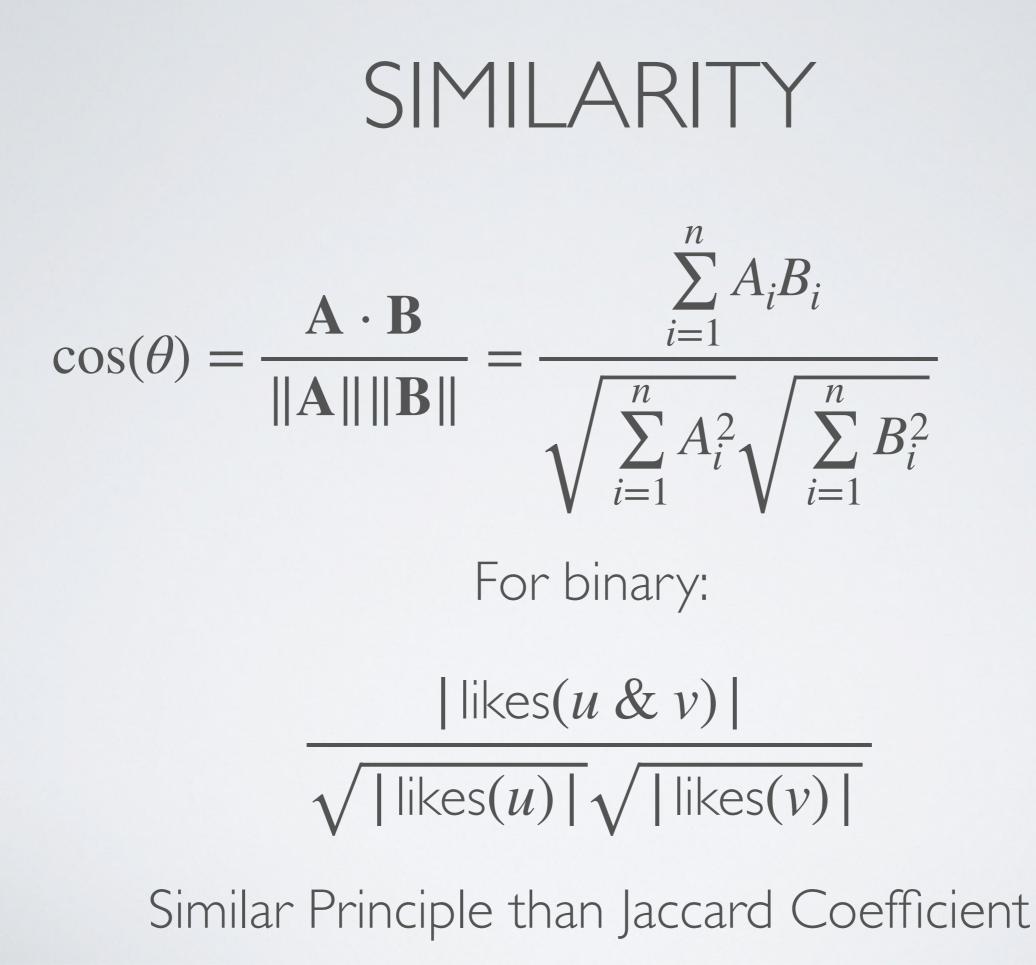


Similarity to E



SIMILARITY

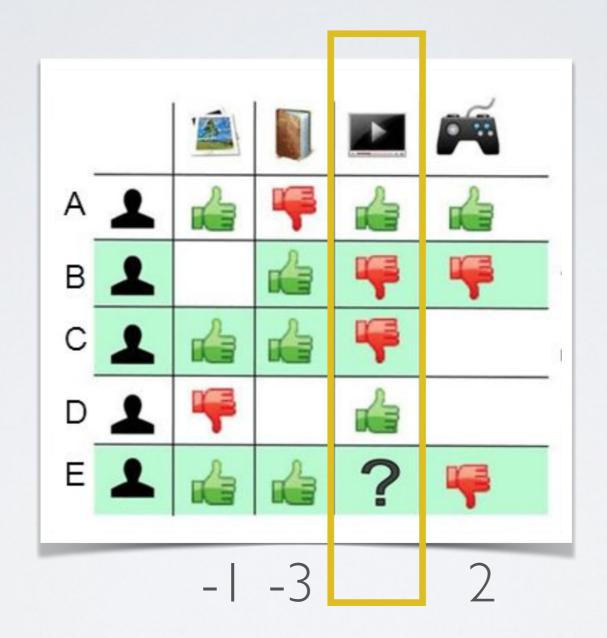
- How to compute the similarity between users ?
 - Euclidean distance => Poor results
 - Think of a user with few likes {0,1}. They are very distant from users having many like, since each difference adds distance.
 - Number of similar votes only ?
 - Now users with many likes are similar to everyone
- Solution:
 - (Binary) Jaccard Similarity => | likes(u&v) | / (| likes(u) | + | likes(v) |)
 - Notes) MSD=>Means Squared Difference when both notes present
 - (Binary & Notes) Cosine Similarity

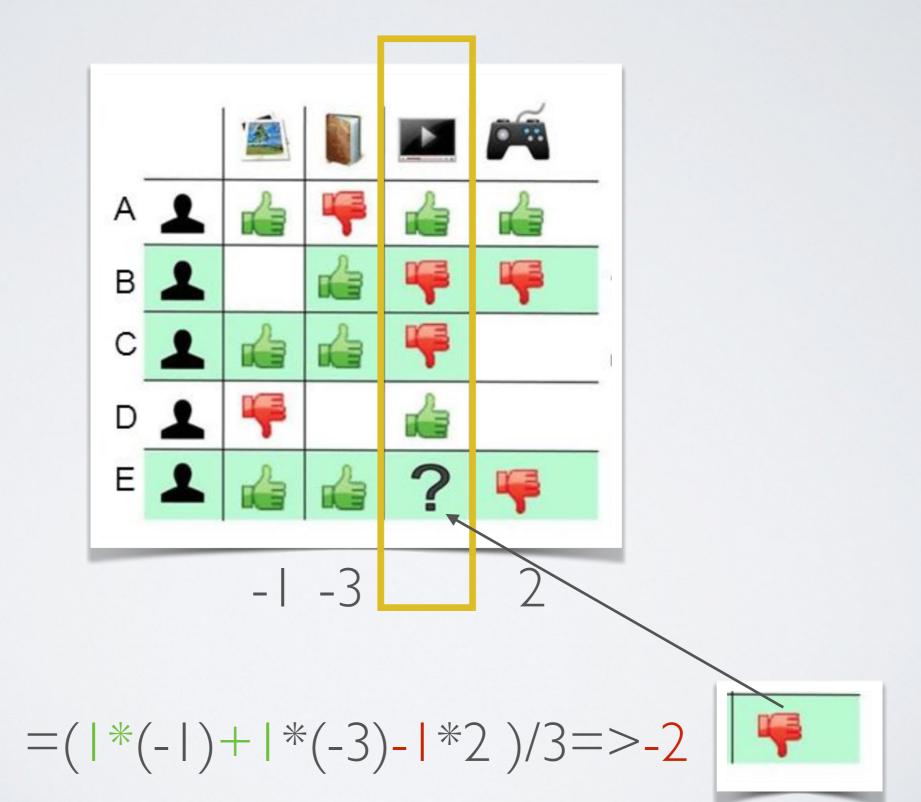


ITEM-BASED COLLABORATIVE FILTERING

- User-based collaborative filtering has weaknesses in practice
 - Users with little info will have neighbors with little info too
 - =>We will learn based on few info
 - Imagine you liked movies M1 and M2. The 20 most similar users will like exactly M1 and M2, maybe 1 movie more.
 - Users change a lot =>Need to recompute KNN on whole database very frequently
- => Move to Item-based Collaborative filtering

- We want to evaluate the interest of (u,i)
 - I)For each item x liked by u
 - Compute the similarity between x and i
 - 2)(u,i) is the average similarities (x,i) for x liked by u
- We compute score (u,i) for every unknown item





- Original Amazon patented method introduced in 1998
- Strengths
 - Distances between items can be precomputed at fix interval, do not change too quickly
 - Distances between items robust, lot of information (appart from new items)

MATRIX FACTORIZATION COLLABORATIVE FILTERING

NETFLIX PRIZE

- Worldwide competition to improve Netflix recommendation
 - Cash prize, I Million \$
 - 2006 to 2009 (Objective of reducing RMSE on scores by 10% compared with Netflix own method)
- Winning method: Stacking of multiple recommendation systems
- Yet, one new popular approach attracted lot of attention: SVD
 - /!\ Singular Value Decomposition(SVD) is a classic linear algebra matrix decomposition. But in recommendation literature, SVD is also the name of an algorithm related but different to the original SVD.

https://intoli.com/blog/pca-and-svd/

- Matrix Factorization is a name given to a general approach of data mining
 - We start with an original matrix A, typically item/user matrix
 - We search for 2 matrices U,V, such as to minimize a cost function L(A, UV)
 - With UV a matrix multiplication
- If the dimension of A is $X \times Y$
 - Then $U = > X \times D$, $V = > D \times Y$
 - With D a parameter, corresponding to a number of *latent variables*
 - The process is a type of dimensionality reduction

	Harry Potter	The Triplets of Belleville	Shrek	The Dark Knight Rises	Memento				.9 2	-1 8	1 -1	1 .9	9 1
	4		4	4			1	.1	.88	-1.08	0.9	1.09	-0.8
		4			4	~	-1	0	-0.9	1.0	-1.0	-1.0	0.9
	4	4	4				.2	-1	0.38	0.6	1.2	-0.7	-1.18
2				4	4		.1	1	-0.11	-0.9	-0.9	1.0	0.91

2 latent variables

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

	Harry Potter	The Triplets of Belleville	Shrek	The Dark Knight Rises	Memento				.9 2	-1 8	1 -1	1 .9	9 1
	4		4	4			1	.1	.88	-1.08	0.9	1.09	-0.8
		4			4	*	-1	0	-0.9	1.0	-1.0	-1.0	0.9
	4	4	4				.2	-1	0.38	0.6	1.2	-0.7	-1.18
2				4	4		.1	1	-0.11	-0.9	-0.9	1.0	0.91

Vector representing user 2, u2 Vector representing item 3, i3

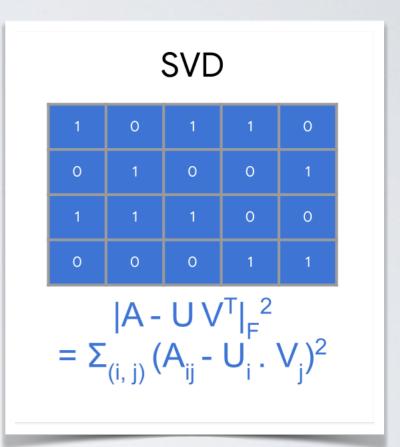
Multiply the two vectors to reconstruct estimated value(u2,i3)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

- As with word embedding approaches (word2vec, etc.), dimensions can be understood as *latent variables*, i.e., features representing some semantic notion
- For instance, in movies, latent variables could capture
 - Horror-ness, comedy-ness, adult-ness, etc.
 - Each user has a score in each of these features (enjoy horror=1, comedy=0.2)
 - Each movie too (is horror=1, is comedy=1.5)
 - > =>(user, movie)=>combination of match in each category

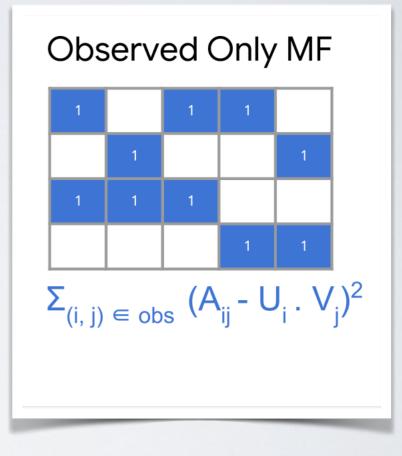
OBJECTIVE FUNCTION

- The classic SVD would correspond to using as a loss the means squared error
 - Having 0 where we have no data (like/rating)

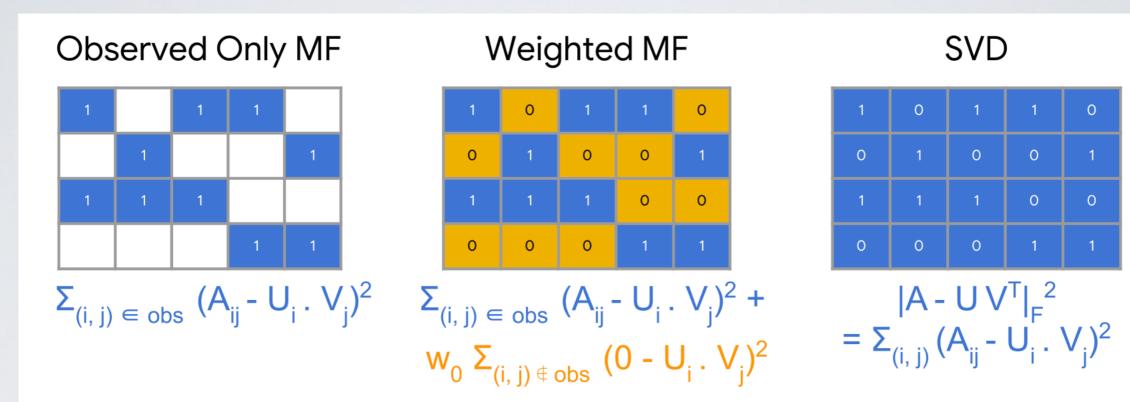


OBJECTIVE FUNCTION

- The recommendation based Matrix Factorization has an adapted loss,
 - Computed only on non-zero values



OBJECTIVE FUNCTION



A variant has a parameter to combine both (Weighted Matrix Factorization)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

OPTIMIZATION

- To find the two matrices, we use a greedy approach
 - Typically the Weighted Alternating Least Square (WALS)
 - I)Initialize values at random
 - 2)Fix U and solve for V
 - 3)Fix V and solve for U
 - Repeat 2 and 3 until convergence
 - Solving in 2 and 3 is equivalent to doing linear regression for each component

OPTIMIZATION
user 1
$$\begin{bmatrix} 0.5 & ? & L \\ 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

user 1 $\begin{bmatrix} 0.5 & ? & L \\ 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$
user 1 $\begin{bmatrix} 0.5 & ? & L \\ 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 \\ v_2 \end{bmatrix} \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$
user 2 $\begin{bmatrix} 1 & 3 & 5 \\ 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Arbitrary initialization

$$p_1^* = \operatorname{argmin} \left(0.5 - p_1\right)^2 + (1 - p_1)^2 \tag{6}$$

 $p_2^* = 3$

 $p_3^* = \operatorname{argmin} \left(4 - p_3\right)^2 + (5 - p_3)^2 \tag{7}$

 $P = \begin{bmatrix} 0.75 & 3 & 4.5 \end{bmatrix}$

 $U = \begin{bmatrix} 0.7461\\ 1.7966 \end{bmatrix} \qquad P = \begin{bmatrix} 0.758 & 2.5431 & 4.7999 \end{bmatrix}$

MF + REGULARIZATION

- As with many machine learning tasks, we can introduce regularization to avoid overfitting
 - Due to the large number of parameters, regularization is important
- The objective to solve becomes:

$$\sum_{r_{ui} \in obs} (r_{ui} - \hat{r}_{ui})^2 + \lambda \left(||q_i||^2 + ||p_u||^2 \right)$$

- q_i, p_u are latent vectors
- λ controls the strength of the regularization

MF + BASELINE

- As mentioned before, it is also important to take into account the variability of users and of items
 - We want to predict what cannot be simply predicted by
 - Movies being good/bad
 - Each actor tendency to give good/bad scores
 - => If most users give good marks to movie MI, and user UI tend to always give maximal scores to movies they rate, the fact that (UI,MI)=maximal note is "expected"
- The objective to solve becomes:

$$\sum_{\substack{r_{ui} \in obs}} \left(r_{ui} - \hat{r}_{ui} \right)^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2 \right)$$

• With b_i and b_u representing items and users expected scores, respectively

MF RECOMMENDATION

- From the two partial matrices, we can compute any value by multiplying the corresponding vectors
- Recommending for a user consists in picking
 - In the user row
 - The highest computed values

NETFLIX PRIZE

- A few other elements were taken into account in the Netflix Prize winning strategy
 - Temporal aspects (how long since this product was rated...)
 - Sequential aspects
 - Watch episode I then episode 2. Contrary unlikely.
- Fine parameter tuning, clever stacking...

NEW USER

- If a new user requests a recommendation, the complexity to provide one depends on the method
 - User based=>Compute distance to all other users
 - Then direct answer for all items
 - Item based=>Precomputed distances betweeen all items
 - Naive approach, need to compute for all candidate items, but in reality, faster tricks
 - e.g., Find items that are "close" to the ones liked by that user
 - Matrix Factorization
 - In theory, not possible to make recommendation to a new user without recomputing everything
 - In practice, an approximation can be obtained quickly, doing I step of the Alternating Least Square: we consider the item latent matrix fixed, updating the user matrix. Similar in nature to solving a linear regression

EVALUATION OF RECOMMENDER SYSTEMS

EVALUATION

- Recommendation evaluation use similar quality scores as supervised machine learning evaluation
 - RMSE, Precision@k, AUC, etc.
- The specificity of recommender systems is the way the train and test sets are built
 - General principle: For one test user,
 - We **show** part of their scores/votes to the trained recommender
 - We hide part of them, to use as ground truth
 - The problem is thus either:
 - A regression: how accurately do we predict the scores of hidden items
 - A classification: how many of the positive items in the test set do we recommend? Or, more realistically, AUC=Do we assign high scores to positive items?

EVALUATION

 In practice, two ways to evaluate, hiding users or hiding pairs(u,i)

• Hiding users

- Rarer, but more realistic
 - If possible, even keep the most recent users hidden: prediction at time t
- I)We train with full data on a fraction of users
- 2)We validate on other users, considered "new"
- Hiding pairs (u,i)
 - Hide random (u,i) pairs, ensuring a minimal number of visible ratings per users and items
 - Evaluate the recommendation on those removed pairs.

OTHER RECOMMENDATION QUALITY CRITERIA

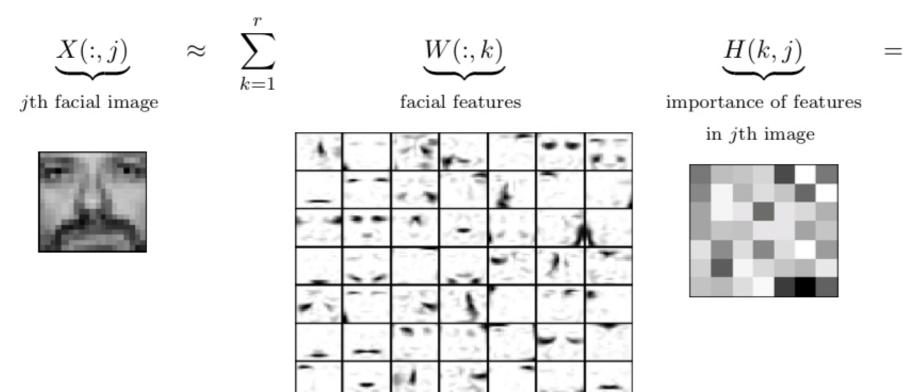
- Diversity of recommendation
 - e.g., average cosine distance between 2 items recommended to a same user (among top-5)
- Coverage
 - e.g., fraction of all items recommended at least once, or information entropy...
- Personalization
 - e.g., average cosine distance between users recommendation

MFVARIANT: NMF Non-negative Matrix Factorization

NMF

- A strength of Matrix Factorization is that it produces latent variables which, in theory, can be interpretable.
- A weakness of classic MF is that these variables can cancel each other, if one is positive and the other negative
- In NMF (Non-negative MF), we impose that all variables values must be positive. Of course, the Matrix to decompose must be positive too.
 - Imposes additive combinations

NMF



WH(:,j)

approximation of jth image

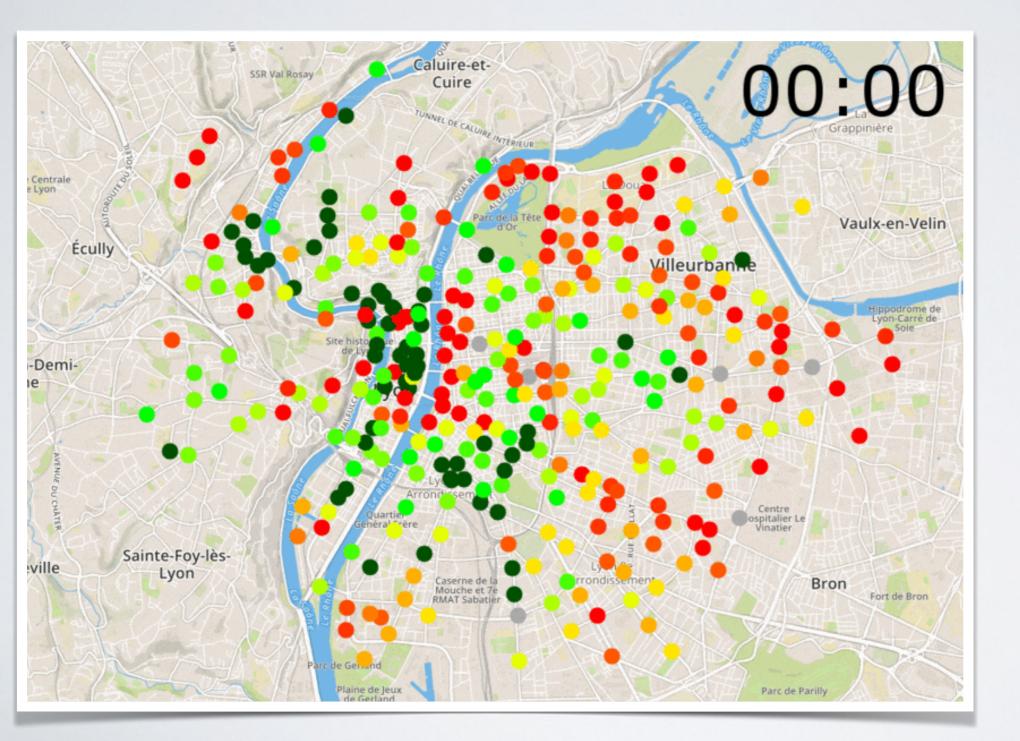
Figure 1: Decomposition of the CBCL face database, MIT Center For Biological and Computation Learning (2429 gray-level 19-by-19 pixels images) using r = 49 as in [79].

BICYCLE SHARING SYSTEMS

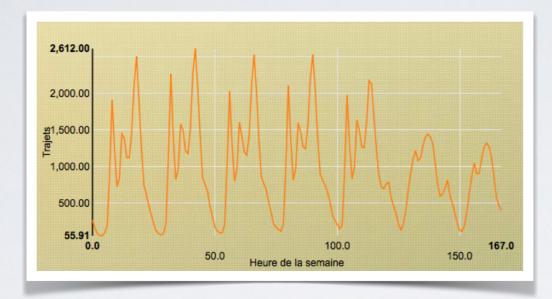
Docking stations

Bicycle trips

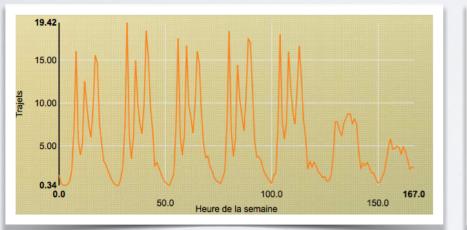
DATA

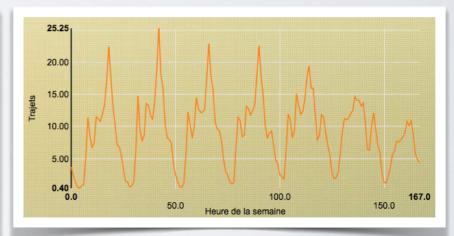


Red: empty Green: full



Cumulated





Part Dieu

Tête d'or

Guillotière

Hours of the typical week

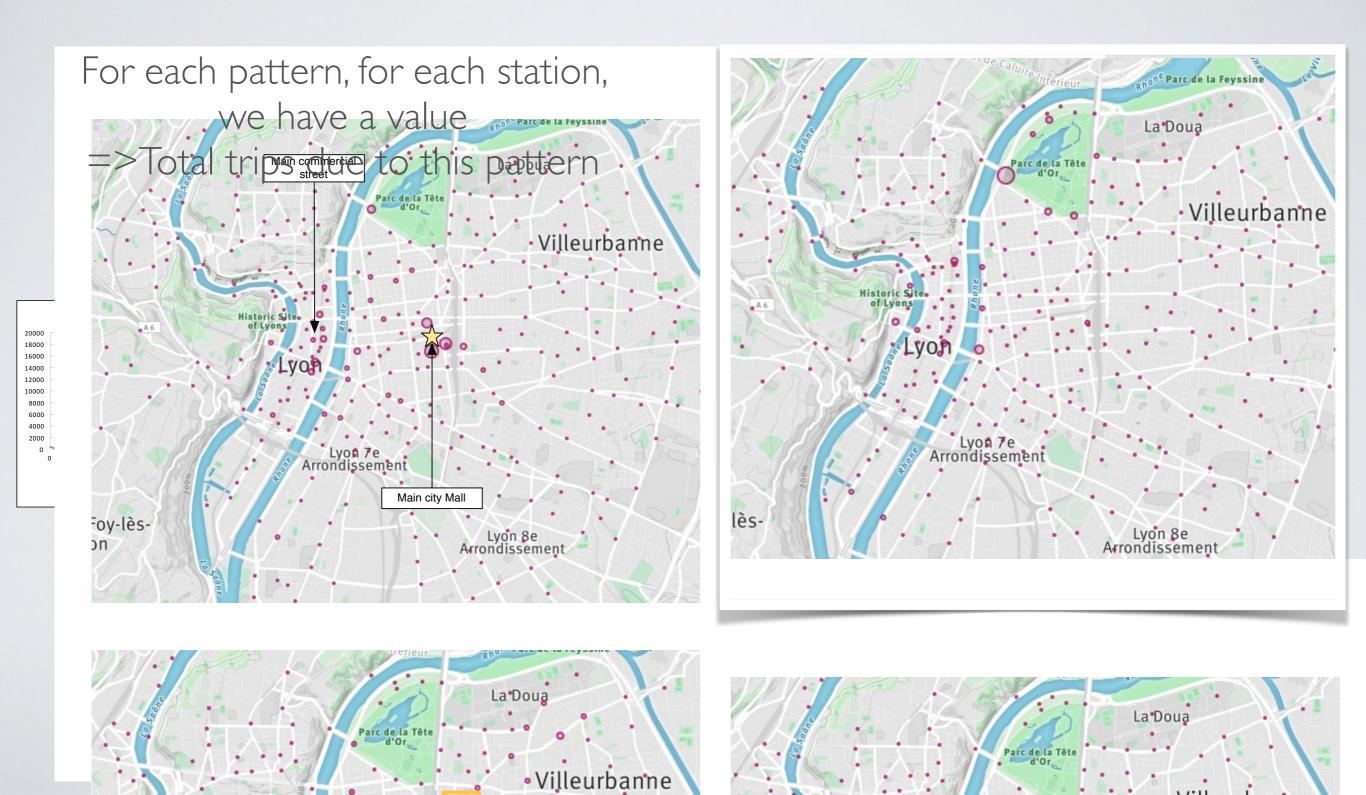
Entities (station)

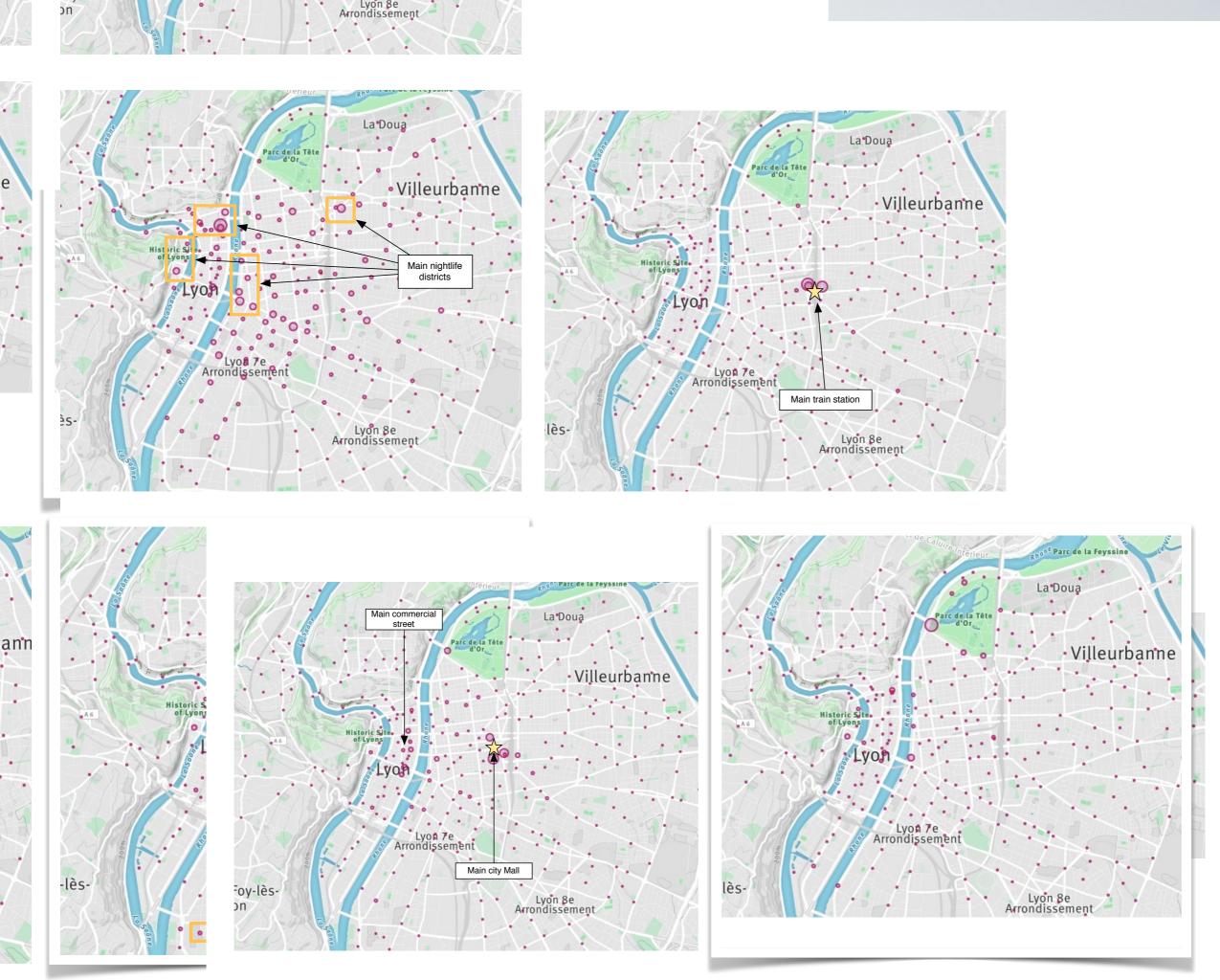
	tl	t2	t3	t4	t5	t6		tl68
el								
e2								
e3								
e3 e4								

Automatically discovered patterns

"Bars-Restaurants"?

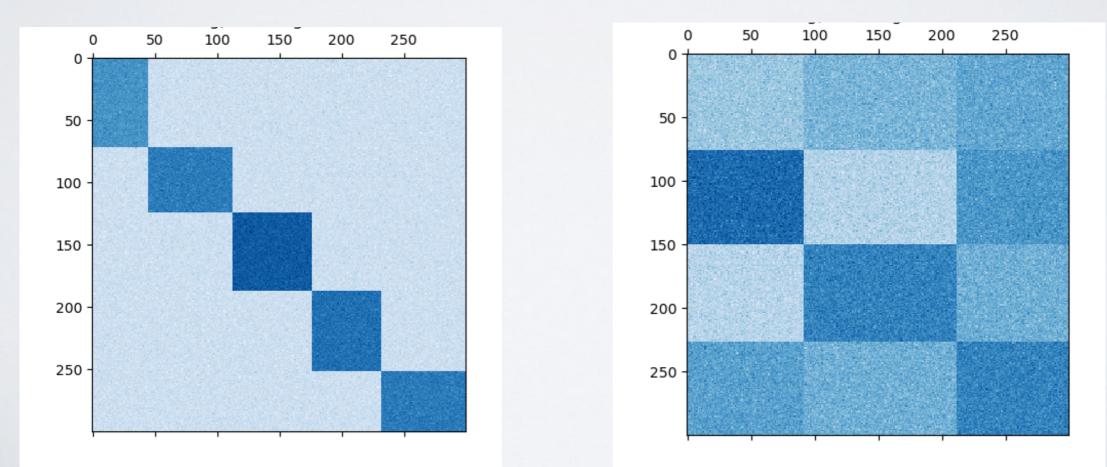
"Leisure"?





Or Bi-clustering, two-mode clustering, block clustering

- Objective: Find dense submatrices in a matrix
- Groups of rows that are preferentially related to groups of columns



 Various algorithms exist, a simple one for sparse data consists in optimizing a modified version of the modularity on the bipartite graph (user-item)

$$Q = \sum_{i}^{n} \sum_{j}^{d} A_{ij} - \frac{k_i k_j}{|A|} \delta_{ij}$$

- With A the matrix to co-cluster, dimension $n \times d$
- k_i the weighted degree(strength) of i
- $\delta_{ij} = 1$ if i, j belong to the same co-cluster
- |A| sum of all values in the matrix

https://dl.acm.org/doi/pdf/10.1145/2806416.2806639

- Co-cluster make natural sense in user-item matrices
 - Group of people who like the same type of products, and products liked by the same people
- Co-clustering can be used to improve recommender systems
 - To improve scalability, one can compute co-cluster first, and then use only users/items in the same co-cluster for recommendation
 - It can also improve precision: remove the effect of most popular items, that tend to be recommended to everyone