$$
\begin{aligned}
& \text { MACHINE LEARNING } \\
& \text { DATA - INTRODUCTION }
\end{aligned}
$$

WHO AM I

- Rémy Cazabet (remy.cazabet@univ-lyon I.fr)
- Associate professor, LIRIS Laboratory, Lyon I University
- Team: Data Mining and Machine Learning (DM2L)
- Lyon's Institute of Complex Systems (IXXI)

WHO AMI

- Research topics:
- Large Network Analysis (Cryptocurrencies...)
- Graph Clustering
- Dynamic network
- Graph Embedding
- Graph Neural Networks
- Interns application welcomed

CLASS OVERVIEW

Topic

Mardi 12 Sep.(9:45-13h) - Introduction, Data Description
Vendredi 15 Sep.(14h-17h) - Clustering beyond k-means
Mardi 19 Sep.(9:45-13h) - Networks 1 - Centralities
Jeudi 21 Sep.(14:00-17h) - Networks 2 - Community Detection
Mardi 26 Sep.(9:45-13h) - Projet
Mardi 3 Oct. (9:45-13h) - 18/10: Dimensionality reduction beyond PCA
Mardi 10 Oct.(8:00-13h) - : Recommendation (TP libre de 8 à 9h45)
Mardi 17 Oct. (8:00-13:00) - : Frequent Patterns (TP libre de 8 à 9h45)
Mercredi 18 Oct. (14:00-17h) - : Frequent Patterns / Projet
07/11: Final Exam

THIS CLASS

- This class is based on:
- Countless Wikipedia and blogs (use them too!)
- Some books
- Borrow at my office

CLASS OVERVIEW

- Class with me: lecture + practical
- Two other lecturers
- Details on the lecture page:
- http://cazabetremy.fr/Teaching/DSIA/DM.html
- Exam:
- Final project 50\% (small groups)
- Final Exam 50\%

TYPES OF DATA

DATA TYPES

- Data types :What kind of data (feature, variables) can we encounter?
- People
- Name, Age, Gender, Revenue, Birth Date, Address, etc.
- House/Apartment
- Surface area, Floor,Address, \# of rooms, \# ofWindows, Elevator, etc.
- Types of features?

DATA TYPES

- Nominal
- From "names". No order between possible values
- Color, Gender, Animal, Brand, etc. (Numbers:Participant ID, class...)
- Ordinal
- Order between values, but not numeric
- Size[small, medium, large], [Satisfied, ..., Unsatisfied]
- Interval
- Ratio

INTERVAL

- Numeric values, Difference is meaningful
- $\mathrm{T}^{\circ}: 30^{\circ}-20^{\circ}=15^{\circ}-5^{\circ}$, But $30^{\circ} \neq 2 * 15^{\circ}$
- 2022-2020=|789-|787, but I0 I I $\neq 2022 / 2$
- $=>0$ is not a meaningful value, is arbitrary
- No multiplicative relation, no ratio => You should not log-transform...
- Logl0: Increasing the value by I means multiplying by 10 . But multiplying is wrong!

RATIO

- Numerical values, all operations are valid
- Height, Duration, Revenue...
- $=>0$ means "absence of value".

OTHERTYPES

- Real Data can have many other forms
- Textual
- Relational (networks)
- Complex objects (picture, video, software...)

TRICKY CASES

- Real life is complex
- You will have to do modeling choices (feature engineering...)
- Possibles values: Blue, Cyan, White, Yellow, Orange, Red.
- Nominal or Ordinal ?
- Survey: "rate X on a scale from 0 to 5"
- What if labels are associated ? ("Bad", "average", ...)

TRAPS

- Latitude and Longitude
- Hours expressed between 0 and I2/24, day of month, etc.
- Convert in time since beginning of dataset ?
- => Space and Time often handled with specific ML methods

MISSING VALUES

- Real life datasets are full of missing values
- Impossible data: hair color for a bald person
- More generally, failed to obtain them
- Few ML methods can deal with missing values
- =>Imputation
- Naive: fill with average value
- Use ML to fill missing values (other problems, introduce biases...)
- Large literature, no good solution

DATA QUALITY

- Data coming from the real world is often incorrect
- Malfunctioning sensors (T°, speed...)
- Human error or falsification (e.g., entered I 00 instead of I.00)
- Undocumented change (e.g., Bicycle sharing station was moved...)
- If the data is plausible, no simple solutions
- Two common problems can be detected
- Out-of-range values (e.g., a person's weight is negative or above 1000 kg ...)
- Zeros. (Weight of the person is 0 . But in many cases, zero is possible too...)
- Variant: Ol/0I/I970...

UNIVARIATE / MULTIVARIATE

- Single feature: univariate
- Age
- Real life: multivariate.
- 2D (age, weight)
- 3D (age, weight, height)
- 4D (age, weight, height, genre)

DESCRIBING A VARIABLE

DESCRIBING VALUES

- Mean / Average
- Be careful, not necessarily representative !
- Median
- Be careful, not necessarily representative !
- Mode
- Not necessarily representative
- Min/Max
- ...

DISTRIBUTION

-What is a distribution?

- A description of the frequency of occurence of items
- A generative function describing the probability to observe any of the possible events
- Discrete or continuous

EMPIRICAL DISTRIBUTIONS

THEORETICAL DISTRIBUTIONS

- Normal distribution
- Many real variables follow it approximately (height, weight, price of a given product in various locations...
- Random variations around a well-defined mean
- Central limit theorem: average of many samples of a random variable converges to a normal distribution

THEORETICAL DISTRIBUTIONS

- Power Law distribution
- A relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one quantity varies as a power of another.
- e.g., earthquakes 10 times more powerful are x times less frequent.
- e.g., cities 10 times bigger are x time less frequent

THEORETICAL DISTRIBUTIONS

- Power Law distribution

DISTRIBUTION COMPARISON

- Statistical test
- P-value: The probability that my observed data could be observed if it were generated by the theoretical distribution $X X X$ (null hypothesis)
- Normality: Shapiro-Wik, etc.
- Categorical variables: Chi-squared χ^{2}
- Etc. (search for the right test if you need it)
- High p-value: high probability to come from the null hypothesis
- We usually set a p-value threshold, i.e., 0.05 . (5\% chance)

- IF the p-value is below it, I can conclude that it is unlikely that my data has been generated by this exact null model (I can never be l00\% sure)
- IF the p-value is above, I can say that it is possible that it has been generated by it. However, it could also have been generated by another null hypothesis that I have not tried. I cannot conclude.
P-VALUE INTERPRETATION

0.07	HIGHLY SUGGESTIVE
0.08	SIGNIFICANT AT THE
0.09	P<0.10 LEVEL
0.099	HEY, LO
≥ 0.1	THI
	SUBGROUP ANALYSIS

WE FOUNDNO
LINK BETWEEN PRACH JEUY BEANS AND ANE
$(p>0.05)$. ($\mathrm{P}>0.05$

WE FOUNDNO
LINK BETWEEN LINK BETNEEN
TEAL JEWY
BEANS ANDAO BEANS ANDAONE
$(P>0.05)$ ($p>0.05$).

9

WE FOUNDNO LINK BETWEEN
YEUOW JELY BEANS AND ACNE
$(P>0.05)$ ($p>0.05$)

WE FOUNDNO
LNK BETWEEN LINK BETWEEN
MAUVE JELYY BEANS AND AONE
$(P>0.05)$. P>0.0

WE FOUNDNO
UNK BETWEEN LINK BETWEEN
ORANGE JEUY ORANGE JELY
BEANS ADD ANE BEANS AND AN
$(P>0.05)$.
(2)

- Variance:
- Expectation of the squared deviation of a random variable from its mean

$$
\operatorname{Var}(X)=\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

Also expressed as average squared distance between all elements

$$
\sigma^{2}=\frac{1}{N^{2}} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}
$$

STANDARD DEVIATION

- Squared root of the Variance

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\mathrm{E}\left[(X-\mu)^{2}\right]}
$$

RELATION WITH NORMAL DISTRIBUTION

VARIABLE INTERACTIONS

COVARIANCE MATRIX

- Covariance matrix K
- Extension of Variance to multivariate data
- $\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]$
$\left[\begin{array}{ccc}\operatorname{Var}\left(x_{1}\right) & \ldots \ldots & \operatorname{Cov}\left(x_{n}, x_{1}\right) \\ \vdots & . & \vdots \\ \vdots & & \vdots \\ \operatorname{Cov}\left(x_{n}, x_{1}\right) & \ldots \ldots & \operatorname{Var}\left(x_{n}\right)\end{array}\right]$
- $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=\mathrm{K}_{\mathbf{X Y}}=\mathrm{E}\left[(\mathbf{X}-\mathrm{E}[\mathbf{X}])(\mathbf{Y}-\mathrm{E}[\mathbf{Y}])^{\mathrm{T}}\right]$
- How much observation X differs from the mean ? And Y ?
- Multiply the respective divergences of X and of Y for each item
- Take the average
- $=>\operatorname{cov}(\mathbf{X}, \mathbf{X})=\operatorname{Var}(\mathbf{X})$
- Covariance is hardly interpretable by itself.
- If >0, divergences tend to be in the same direction
- Normalize it to obtain the "correlation coefficient"

CORRELATION COEFFICIENT

- Pearson correlation coefficient : $\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$
- Normalize the Covariance by the Standard deviation.
- Independent from magnitude, i.e., no need to have normalized data
- Value in $-1,+1$.
- +1 means a perfect positive linear correlation, i.e., $X=a Y$
- - I a negative one, i.e., $X=-b Y$
- 0 can mean many different things

CORRELATION COEFFICIENT

CORRELATION COEFFICIENT

- Other possible interpretation, e.g.
- Cosine similarity of the vectors defined by the observations...
- 0.7 ? Is it a high or low value ?
- It depends.

NONLINEAR RELATIONSHIPS

Linear relationship

$$
Y=a+b X+e
$$

NONLINEAR RELATIONSHIPS

Monotonous, non-linear

NONLINEAR RELATIONSHIPS

Non-monotonous, Non-linear

SPEARMAN'S CORRELATION

- Spearman's rank correlation coefficient
- Assesses how well the relationship between two variables can be described using a monotonic function
- Not assuming a linear relation
- Pearson correlation coefficient between the rank variables
$r_{s}=\rho_{\mathrm{R}(X), \mathrm{R}(Y)}=\frac{\operatorname{cov}(\mathrm{R}(X), \mathrm{R}(Y))}{\sigma_{\mathrm{R}(X)} \sigma_{\mathrm{R}(Y)}}$

SPEARMAN'S CORRELATION

NOTIONS OF DISTANCE

Euclidean Distance

Manhattan Distance

Chebyshev Distance

$\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right| \max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$

FEATURE SCALING

- We want to use euclidean distance to compute the "distance" between 2 people based on attributes age(y), height(m), weight(g).
- $a=(y: 20, m: I .82, g: 80000), b=(y: 20, m: I .82, g: 8 \mid 000), c=(y: 90, m: I .50, g: 80020)$
- $d(a, b)=1000.0005$
- $d(a, c)=72.8$
- That is not what we expected from our expert knowledge!
- We should normalize/standardize data

FEATURE SCALING

- Rescaling (Normalization): $x^{\prime}=\frac{x-\min (x)}{\max (x)-\min (x)}:[0, \mathrm{I}]$
- Mean normalization: $x^{\prime}=\frac{x-\operatorname{average}(x)}{\max (x)-\min (x)}: 0=$ mean
- Standardization (z-score normalization): $x^{\prime}=\frac{x-\bar{x}}{\sigma}$
- 0 : mean, $-1 /+1$: | standard deviation from the mean

SOME "GOLDEN RULES"

SOME "GOLDEN RULES"

- In real life:
- Your data does not follow a normal distribution. Nor a power law, nor any other theoretical distribution
- Your features are always correlated
- You always have non-linear relationships

SOME "GOLDEN RULES"

- GIGO: Garbage in, Garbage out

SOME "GOLDEN RULES"

- Real data is always garbage

SOME "GOLDEN RULES"

- Get to know your data
- Exploratory Analysis

EXPERIMENTS

- Go to the webpage of the class and do today's experiments
- The "Advanced" section is not mandatory, you can do it if you have time

