DIMENSIONALITY
REDUCTION

Low dimensionality embedding



DIMENSIONALITY
REDUCTION

» Data Mining objective: understand our data

» We get a dataset composed of many features
- Or worst, complex object (image, sound, graph...)
» How to understand the organization of our data!

» How to perform clustering?



VISUALIZATION

* Your data Is perfectly fine, but you want to inturtively
understand how It Is organized

» Are there groups of similar objects?
» Are my clusters meaningful?
» Is my classification/clustering on some types of elements and not others.
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CURSE OF DIMENSIONALITY

* Having hundreds/thousands of attributes Is a problem for data

analysis.

» e.g.: medicine: blood analysis, genomics.. ..
» e.g.: cooking recipes: each column an ingredient...

* We want to reduce number of attributes while keeping most
of the information

» Scalability



CORRELATION

- Assume that you have correlated features such as age, height
and weight.

» Linear regression will attribute the coefficients somewhat randomly between
them

» Decision tree will spend a lot of time choosing between them for no reason

 Dimensionality reduction can create a single variable to
capture what 1s common

» The rest can be lost or captured by another feature,
- I.e, height - average height for that age, “residuals”
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» PCA: Principal Component Analysis

R Rc="heV/ dimensions that are linear
combinations of inrtial dimensions

» Objective: concentrate the variance on some
dimensions

- So that we can keep only these ones.
- Those we remove contain low variance, thus low information

* Similar principle than the Fourier transform
technigue for image compression




&

» Algorithm:
\ i e . ) : 350000 -
» [)Find an “axis”, a unit vector defining a line
In the space ey
- That minimizes the variance=>the squared £ 200000 -

distance from all points to that line
150000 -

100000 A

* 2)For d in (initial_d- 1) om0
» Find another axis, with two constraints: R

- Orthogonal to all previous axis
- Among those, minimize the variance

@ ine end, keep the ftirst k

dimensions
» Some Information is lost 0
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Covariance matrix (pca)

[ 1.98675899e+00, 0],
[0, 1.32410092e-02]

Sum of variance
2

Variance by dimension
1.98675899 0.01324101

Explained variance(ratio) [0.9933795, 0.0066205]



control

' HD

09 o082 47 08 45 Q4 03 L2 A (1) 01

02 03 04 05 08 07 08 od
OPLS 1

Component 2(8.29% )




CHOOSING COMPONENTS

 How to choose k!

» Elbow method

» OR fix beforehand a min threshold of explained variance, e.g.: 80%
- We are fine with losing 20% of information

Scree Plot

Explained
variance

Component Number



COMPUTATION IN PRACTICE

* Find the eigenvectors of the covariance matrix of centered
data

» If you want k new dimensions, pick the k eigenvectors
associated with the k largest eigenvalues

» Eigenvalues = explained variance

» [ he eigenvectors corresponding to the top eigenvalues are
coefficients of the linear transformation



FCA POPULARFEE

* Why 1s PCA popular?

* Similar reasons than linear regression:

Historically important

Analytical solutions
- Guarantee to find the global minimum of the objective

v

v

- Could be done before modern computers
Interpretable solution

Inturtively pleasant

v

v

* No reason to consider it ‘'better’ than other methods...
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MANIFOLDS



MANIFOLDS

» Manifolds are another approach to dimensionality reduction

* [ he general principle is to

» | )Define a notion of distance between elements in the original space
» 2)Define a notion of distance between elements in a reduced, target space
» 3)Minimize the difference between distances in original and target space

* In many cases, the process Is honlinear, 1.e., we choose
distances such as

» We care more about preserving close proximity than exact distance for nodes
that are “far’ from each other



Intersecting
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Manifold Learning with 1000 points, 10 neighbors

LLE (0.12 sec) LTSA (0.27 sec) Hessian LLE (0.32 sec) Modified

LLE (0.24 sec)

T T T

T

T T T

Isomap (0.58 sec) MDS (3 sec) SpectralEmbedding (0.17 sec) t-SNE (22 sec)

T T T T T T T T T T T T T

Manifold Learning with 1000 points, 10 neighbors
LLE (0.086 sec) LTSA (0.17 sec) Hessian LLE (0.23 sec) Modified LLE (0.18 sec)

Isomap (0.32 sec)
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* MDS: Multi-dimensional Scaling:

» SImply minimize distance between original space and target space
- e.g, d-dimensional forced to 2-dimensional

* How to do 1t!
» [ )Compute all pairwise distances between Objects=>similarity matrix

- n X f matrix => n x n matrix
» 2)Compute PCA on this similarity matrix

- PCA preserves columns information => preserve distance on a similarity matrix

* Problems:

- Very costly (nb features=nb elements), n*
- Try to preserve all distances, therefore extremely constrained
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SO

* Variation of MDS

MAP

» |)VWe define a graph such as two elements are connected Iif they are at
distance<threshold. (Alternative: fixed number of neighbors)

- Put a weight on edges=euclidean distance

» 2)Compute a similarity matrix, such as distance= weighted shortest path

distance
» 3)Apply MDS on it

» Computing shortest paths on a graph Is fast

» Floyd—Warshall algorithm

ERNEIE Iess constralnts

Isomap (0.58 sec)

MDS (3 sec) Spe




1-SNE



1-SNE

» t-SNE : t-distributed stochastic neighbor embedding
* Non-linear dimensionality reduction

» Currently the most popular method for visualizing data in low
dimensions



1-SNE

» General principle:

» Define a notion of similarity p;; in the high dimensional space P
- Based on normal distribution
» Define a notion of similarity g;; in the low dimensional space O

- Based on student-t distribution, tends to “exaggerate” differences
» For each point of initial coordinates x; find a new coordinate y; In the lower
dimensional space, such as to minimize the difference between P and Q

ViiPjli ® jl



S N E Euclidean
2: i
Normal °
| | I I 0.2 1 l.
» Distance in the original space P g

» To compute how farJj is from i, consider a normal distribution centered in j
with variance o

lx; — ;112
» Mathematically: the raw distance is given as Sﬁ)l- =e 27
2
i

s Al e
k#i "jlk

- Normalizes the similarity by sum of similarity to all other points.
- With proper o, local definition of similarity



1-SNE: PERPLEXITY

* [here Is a perplexity parameter o: It controls how much each
point cares more about close neighbors compared with
farther neighbors

» Low o: Preserve mostly local distances
» High 0: Give more importance to long-range distances

- More expensive, more similar to a PCA



INFLUENCE OF PERPLEXITY
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LOW DIMENSIONAL
EMBEDDINGS



EMBEDDINGS

* A recent usage of low dimensional embeddings Is to encode

complex objects as vectors

» Words as Vector => Word2Vec
» Nodes (of graph) as Vectors => Node2Vec
» Documents as Vectors => Doc2Vec

MRoS L



WORD EMBEDDING



WORD EMBEDDING

* Words can be understood as a (very) high dimensional space
» Using One Hot encoding: vocabulary of 1000 words=>[000 columns

» Could we assign a vector In “low dimension”, encoding the
“semantic’’ of a word!

» Two words with similar meanings should be close



SKIPGRAM

Word embedding
Corpus => Word = vectors
Similar embedding= similar context

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

[http://mccormickml.com/2016/04/ | 9/Wc3>6rd2vec—tutoria|—the—s|<ip—gram—model/]



SKIPGRAM

Output Layer
Softmax Classifier

Hldden Layer Probability that the word at a
Linear Neurons /;
Input Vector Ay /

> randomly chosen, nearby
position is “abandon”

pr—— ‘//' /
10 | v il )
[0 _ AL
0 ~ Vs —— .. “ability”
il W=
0 N7 e
0 ) /
. 7~ :;/ // 4
0 =\l AT
Bl Tl
/ P ~ “, 27
A ‘1’ in the position 0 \ 7 > .. “able
corresponding to the — \\ /XS
word “ants” 0 \ y
P / / !
0] X / |
: e / 3
10,000
positi
—> ..“zone”
10,000
neurons

Output weights for “car”

Word vector for “ants”

I X

300 features

Probability that if you
randomly pick a word
nearby “ants”, that it is “car”

300 features

https://towardsdatascience.com/word2vec-skip3iram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM

Output
Input softmax
A 7 )
X110 Hidden O /I
X2| O N /Khl\ 0 |¥Y2
; hs v :
Vector of word i
h3 2
- g
P Matrix W = X Matrix W’ e |V =
: 2
Xi| 1 8_ 1 Y;
' Context matrix
h
Embedding matrix ~—\_ /
Xv! 0 N-dimension vector 0 |yv
N N

N=embedding size. V=vocabulary size

https://towardsdatascience.com/word2vec-skip3gram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

| https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|
40


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

PRE- [ RAINED

* You can easlly train word2vec on your own dataset, but it
needs to be large enough

» https://radimrehurek.com/gensim/models/word2vec.html

* YOU can use pre-trained embeddings, trained on enormous
corpus (Iwitter, Wikipedia...)

» e.g., Glove: https://nlp.stanford.edu/projects/glove/



https://nlp.stanford.edu/projects/glove/

USAGE

* Single words=> Use directly vectors

» Short texts=> Weighted average vectors (more welights to
i@ Impertant words, e.g,, rare words: I F-IDE.

* Long texts=> More tricky. Need other approaches (Doc2vec,
RNN)



USAGE

R lrAmeters:

» Embedding dimensions d
B Giicdt size



GRAPH EMBEDDING



GENERIC “SKIPGRAM”

» Algorithm that takes an input:

» The element to embed
» A list of “context’’ elements

* Provide as output:

» An embedding with interesting properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

255



DEEPWALK

» Skipgram for graphs:

» | )Generate “sentences’” using random walks
» 2)Apply Skipgram

* Parameters:

» Same as Skipgram
- Embedding dimensions d
- Context size

» Parameters for “sentence’” generation: length of random walks, number of walks
starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



NODE2VEC

» Use biased random walk to tune the context to capture

*what we want™®

» "“Breadth first” like RW => local neighborhood (edge probability ?)
» “Depth-first” like RW => global structure ¢ (Communities ?)
» 2 parameters to tune:

- Pp: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in nodeZvec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases c.

| T— m—

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



EMIBEDDING ROLES



STRUC2VEC/ROLE2ZVEC

* In node2vec/Deepwalk, the context collected by RWV contains
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
SINBNEES I avallable, or computed attributes (degrees .

« =>Nodes with a same context will be nodes In a same
“position” In the graph

» =>(apture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data M%?ng (pp- 385-394). ACM.
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Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data MiI@ng (pp- 385-394). ACM.



DEEP LEARNING
AND
EMBEDDINGS



ERIALLOVY 1O DEER

* Deep neural networks are also commonly used to produce

complex data embedding
» Skipgram/Word2Vec/Node2Vec are just particular cases of a general principle

» After each layer of a DNN, items are represented as vectors

» Usually, at some steps, those layers are low-dimensional
» Often, the last step or the middle step
» [hese can be used as embedding for other tasks



ERIALLOVY 1O DEER
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APPLICATIONS

* Image modification: modify some values of the embedding of
an object (Image, music, graph...) to reconstruct a slightly
different version of It

» Clustering

» Train a DNIN on image classification task, then use clustering on the
embeddings to discover similar images

* \VIsualization

» Using Tsne on an embedding, we can have a global view of the organization of

our data
- Music, photos, graphs, books. ..



OBJECTS/VECTORS
&
GRAPHS



GRAPH<->VECTORS

» Graph Embedding: Graph->Vectors

* What about Vectors->Graphs

» Simple approach: Correlation matrix

» =>Represent the relations between features in a dataset
| )Compute the correlation between all variables(spearman/Pearson)
- 2)Keep only correlations above a threshold
- 3)Correlation values can be represented as weights
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[ TEM-ITEM GRAPH

* We can use graphs as an alternative to dimensionality

reduction for visualization

» PCA /tSNE: project items in 2D, close items are similar
- Some impossibllities, e.g., palm (part of the hand, tree)
» Networks can also be viewed In 2D and preserve the similarity information

» Approach:
» | )Compute a distance between elements
- Euclidean

- Cosine (In recommendation settings for instance)
» 2)Keep as edge values above a threshold



[ TEM-ITEM GRAPH




[ TEM-ITEM GRAPH

- lypical application case: Brain signal analysis

» Distance 1s computed as signal correlation on MR, I.e., regional brain activity

A Time series B

Association matrix

" > “h’f“t&'i ')‘}IJ‘{ ’L |"~s'.\‘ W I~ ASR/Correlation

,, W" k_




BACKBONE EXTRACTION

* In many cases, the network created might be too dense to be

analyzed properly

» Too low threshold: everything is connected
» Too high: disconnected graph

* A solution Is to use Backbone extraction

» Methods that retain only the most important edges, based on different
principles
» e.g., https:/gitlab.liris.cnrs.fr/coregraphie/netbone



https://gitlab.liris.cnrs.fr/coregraphie/netbone

BACKBONE EXTRACTION
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PROJECT



OBJECTIF

 Rendre un dossier court (6 Pages maximum+ Figures)

» De qualité professionnelle

» => Article de data-journalisme

» => Article scientifique decrivant une étude empirique
» => Rapport pour un client, un employeur

* Faire parler les données

 Utllisation des outils vus en cours, mais d'autres outils sont

autorisés

» Interdiction de se concentrer sur une tache supervisé (Pas I'objectif de ce
cours)



OBJECTIF

» Quelques exemples



ENERGY

Increasing energy prices

in US cities have increased by almost 40%.

@ Uutility (piped) gas price per therm (2.83 cubic metres)

$16
COVID-19 declared
a pandemic
$14
52% price increase
$12 '
Russia's
invasion
of Ukraine
$1.0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

@ Electricity price per kWh

$0.16 22% price increase
$0.14
$0.12

$0.10
2012 2013 2014 20015 206 20017 2018 2019 2020 202) 2022 2023

)OO Source: United States Bureau of Labor Statistics,
CETM™ United States Energy Information Administration | January 27,2023

During the past three years, average utility company prices for electricity and gas

The average US home
monthly consumption

NOV 2019
ENERGY BILL

Gas

75Therms  $79.40
Electricity

886 kWh $N780

Total  $197.20

Novzozz@

ENERGY BILL

Gas
75Therms  $121.20

Electricity
886 kWh  $144.40

Total  $265.80

@AJLabs

UNITED STATES

Average winter temperatures

The average temperature across the US in December was 1C (33F), with many
parts of the Midwest dropping below -17C (OF).

Average temperatures
A\
7C(OF) 10C (50F) 37C (100F) ‘{/{&)

Source: Climate.gov, National Centers for Environmental Information | January 27, 2023 @AJLabs

https:.//www.aljazeera.com/features/longtorm/2023/1/27/
staying-warm-this-winter-how-cold-affects-those-most-

vulnerable
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https://www.kagsle.com/code/ekamib6/detalled-exploratory-
data-analysis-with-python



Figure 1: Clusters of Voting Profiles in Palm Beach County Florida, 2000
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(B) Among Gore Voters (N = 210,640)
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