
COMMUNITY DETECTION
(GRAPH CLUSTERING)



COMMUNITY DETECTION
• Community detection is equivalent to “clustering” in 

unstructured data

• Similar problems: what is a good community ?



COMMUNITY DETECTION

• Community detection:
‣ Find groups of nodes that are:

- Strongly connected to each other
- Weakly connected to the rest of the network
- Ideal form: each community is 1)A clique, 2) A separate connected component

‣ No formal definition 
‣ Hundreds of methods published since 2003



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• If you plot the graph of your facebook friends, it looks like this



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• Connections in the brain ?



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• Phone call communications in Belgium ?

3. Results: division of the Belgian telephone territory

3.1 Division based on the frequency of calls

Figure 2 illustrates the groups obtained based on the frequency of telephone com-
munications between municipalities. The colours are of no particular significance 
and are simply intended to facilitate the reading of the map. 

Our main comments may be summarised in four points:

(1) Without having fixed the number of groups or their size, the optimal groups ob-
tained are spatially balanced: 17 ‘telephone areas’ composed of 15 to 66 munici-
palities appear ‘naturally’. This result is different from the division in labour pools (47 
pools defined by de Wasseige et al., 2000) and, without being identical, resembles 
the urban hierarchy of Van Hecke et al. (2007). To this effect, we have indicated on 
the map in Figure 2 the regional cities and the major cities as defined in Van Hecke 
et al. (2007). Note that certain telephone areas encompass two cities (for example, 
the Belgian coast forms a telephone area in itself and groups the cities of Ostend 
and Bruges; other examples: Hasselt and Genk or Mechelen and Leuven), whilst 
other telephone areas do not correspond to a ‘regional city’ as defined by Van 
Hecke et al. (2007) (for example Aalst to the west of Brussels is a telephone area, 
whereas Aalst is not considered as a ‘regional city’; the same is true for the province 

of Luxembourg). 

(2) Surprisingly, the groups of municipalities 
are always made up of adjacent municipali-
ties. As the grouping method does not im-
pose constraints regarding proximity or 
contiguity of municipalities in groups, the 
results could have revealed groups com-
posed of separate parts, but this is not the 
case for the groups obtained. 

(3) The linguistic border is followed by the 
limits of the ‘telephone areas’, with the ex-
ception of the area of Brussels (in red on 
the map) and the municipalities with facili-
ties Espierre-Helchin, Comines-Warneton, 
Herstappe and Fourons. Language there-
fore seems to be a strong barrier in terms 
of telephone communications: this confirms 
the former results of Klaassen et al. (1972), 
Rossera (1990) and Rietveld and Janssen 
(1990). However, it should be noted that 
the barrier around the German-speaking 
region is less clearly marked.

(4) The biggest area obtained (66 munici-
palities) corresponds – not surprisingly – to 
the biggest city: Brussels. Figure 3 presents  
a zoom-in of Figure 2 centred on Brussels. 
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Figure 2: ‘Telephone areas’ defined based on the frequency of communica-
tions between municipalities. We also indicate (1) = regional city (2) major 
city (definitions from Van Hecke et al., 2007) and (3): provincial borders.

Vilvoorde, Zaventem, Tervuren, Braine-l’Alleud, Ottignies-Louvain-la-Neuve, Wavre, 
Perwez and Jodoigne. However, Leuven is not included and is part of another tele-
phone area with Mechelen (see Figure 2). The Brussels telephone area resembles its 
urban area: it covers a much bigger area than the 19 municipalities of the Brussels-
Capital Region, all around the capital with a stronger spatial extension towards the 
south.

3.2 Division based on the average duration of communications

The municipalities are grouped here using the same method, according to the aver-
age duration of communications. The results are illustrated in Figures 4 (national 
scale) and 5 (a zoom-in on Brussels) and lead to two main commentaries:

(1) the method leads naturally to the constitution of two groups: one to the north 
and the other to the south of the country (Figure 4). Among the more than 200 mil-
lion communications analysed, only 1.05% are from the group in the north to the 
group in the south, and 1.04% are from the group in the south to the group in the 
north. In other words, almost 98% of telephone communications take place be-
tween customers within the same group. Let us note that the municipalities in the 

German-speaking 
community do not 
form a separate 
group, but are part 
of the group in the 
south of the country.

(2) Figure 4 shows 
that the north-south 
division follows the 
linguistic border with 
a few exceptions. 
Not surprisingly, 
these exceptions are 
all municipalities 
with facilities. With 
the exception of 
Wemmel, the mu-
nicipalities with facili-
ties in the outskirts 
of Brussels (Dro-
genbos, Kraainem, 
Linkebeek, Rhode-
Saint-Genèse, 
Wezembeek-
Oppem) are all 
grouped with the 
municipalities in the 
south of the country 
(see Figure 5 for a 
zoom-in). Three 
other municipalities 
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Figure 4: ‘Mobile telephone areas’ defined based on the average duration of communications.



FIRST METHOD BY GIRVAN & 
NEWMAN

• 1)Compute the betweenness of all edges

• 2)Remove the edge of highest betweenness

• 3)Repeat until all edges have been removed
‣ Connected components are communities

• => It is called a divisive method

• =>What you obtain is a dendrogram

• How to cut this dendrogram at the best level ?



FIRST METHOD BY GIRVAN & 
NEWMAN

Maximal 
modularity



FIRST METHOD BY GIRVAN & 
NEWMAN

• Introduction of the Modularity

• The modularity is computed for a partition of a graph
‣ (each node belongs to one and only one community)

• It compares :
‣ The observed fraction of edges inside communities 
‣ To the expected fraction of edges inside communities in a random network



MODULARITY

Original formulation



MODULARITY

Sum over all pairs of nodes



MODULARITY

1 if in same community



MODULARITY

1 if there is an edge between them



MODULARITY

Probability of an edge in 
a configuration model

(Edges at random, keeping degrees)



MODULARITY

Network Science

Cheatsheet

Made by
Remy Cazabet

Community Structure

Blocks and Communities: De�nition

The general idea of blocks and communities is that nodes of a
network can be grouped together in homogeneous sets, based
on the network topology. The problem of automatically discover-
ing those groups is one of the most studied problem of network
science, but also one of the most di�cult to properly de�ne.

Partitions/Overlap

Wemust di�erentiate two types of node grouping:

�. A Partition of a graph is a division of its nodes such as each
of them belongs to one and only one group.

�. Overlapping communities/blocks allow, on the contrary,
nodes belonging to several groups. Unless speci�ed dif-
ferently, they also allow nodes to belong to no group.

Algorithms searching partitions are much more common than
those searching for overlapping groups, due to the increased
complexity of the later task. Overlapping community detection
is, nevertheless, an active �eld of research.

Community structure

The idea of having a network structured in communities is de�ned
as an analogy with communities in social networks. Communi-
ties are therefore de�ned (informally) as groups of nodes that are
strongly connected between themselves (high internal density)
and more weakly connected to the rest of the network low exter-

nal density.
This de�nition however cannot be translated unambiguously into
a mathematical formulation. The problem of community detec-

tion, or community discovery, is therefore complex to de�ne.

Block structure

The general idea of the block structure is that the probability to
observe an edge between two nodes is a function of the blocks
they belong to. Usually, no assumption is made apriori about
those probabilities: they can be high between nodes belonging
to the same blocks or to di�erent blocks, and can di�er for each
pair of block.

De�nition

C a community partition, or, more generally, a set of set
of nodes

ci community i, a set of nodes

Modularity

The most famous quality function to measure the quality of par-
titions is called the Modularity. Introduced ina, it is de�ned for a
partition C and a graph G as the di�erence between the fraction
of observed internal edges and the expected fraction of internal
edges if G were rewired according to a con�guration model, i.e.,
preserving the degrees of nodes.
More formally,

Q =
1

L

|C|X

i=1

(Li �
1

2
K

2
i )

with Li = L(H(ci)) the number of edges inside community i and
Ki =

P
u2ci

ku the sum of degrees of nodes in community i.
The original formulation of modularity, often found in the litera-
ture, is:

Q =
1

2L

X

uv


Auv �

kukv

2L

�
�(cu, cv)

with �(cu, cv) the kronecker delta between communities, i.e.,
�(cu, cv) = 1 if nodes u and v belongs to the same community,
� otherwise.

aGirvan and Newman ����.

Modularity: null model

The modularity as expressed above compares the number of
edges inside communities to the expected number of edges in
a null model, i.e., a randomized version of the graph. In the orig-
inal version, this null model is the con�guration model (as easily
recognized in the kukv

2L of the original formula).
Variants of themodularity have been proposed using di�erent null
modelsa, for instance an ER null model, or a gravity model to take
into account the e�ect of geographic distanceb

aJutla, Jeub, and Mucha ����.
bExpert et al. ����.

Modularity: resolution limit

It is important to remember that the Modularity is (only a) quality
function, not ade�nition of the quality of communities. An impor-
tant drawback of Modularity is known as the limit of resolutiona .
It says that partitions of maximal modularity are biased toward a
particular scale, i.e., for a graph of a give size (#nodes, #edges),
communities smaller or larger than a certain size cannot be found.
The typical example of this limit is the clique-ring structure (set of
cliques connected by a single edge), in which the expected par-
tition is to have one community by clique, while the solution of
highest modularity put several cliques in the same community,
when we increase the number of cliques.

aFortunato and Barthelemy ����.

Modularity and random networks

Another well known limitation of a Modularity maximization ap-
proach is that it �nds communitieswith high scores in randomnet-
works: since it is not adjusted for chance, random �ucutations in
a random network are mistaken for meaningful structure in the
network.

Multi-resolution Modularity

A simple solution has been proposed to the limit of resolution,
consisting in adding a resolution parameter � to tune the desired
resolutiona, i.e., (Li � 1

2K
2
i ) becomes (Li � �

1
2K

2
i ). It raises or

shrinks the expected number of edges inside communities. It re-
quires, however, to choose a proper value for �, i.e., to choose ar-
bitrarily a scale for communities.

aReichardt and Bornholdt ����.

Can also be defined 
as a sum by community



MODULARITY

• Modularity compares the observed network to a null 
model
‣ Usually the configuration model

- Multi-edges and loops are allowed
‣ Other models could be used, such as ER random graphs.

• Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN & 
NEWMAN

• Back to the method:
‣ Create a dendrogram by removing edges
‣ Cut the dendrogram at the best level using modularity

• =>In the end, your objective is… to optimize the Modularity, 
right ?

• Why not optimizing it directly !



MODULARITY MAXIMIZATION 

• From 2004 to 2008: The golden age of Modularity

• Scores of methods proposed to maximize it
‣ Graph spectral approaches
‣ Meta-heuristics approaches (simulated annealing, multi-agent…)
‣ Local/Global approaches…

• => 2008: the Louvain algorithm



LOUVAIN ALGORITHM

• Simple, greedy approach
‣ Easy to implement
‣ Fast

• Yields a hierarchical community structure

• Beat state of the art on all aspects (when introduced)
‣ Speed
‣ Max modularity obtained
‣ Do not fall in some traps (see later)



LOUVAIN ALGORITHM
• Each node start in its own community

• Repeat until convergence
‣ FOR each node:

- FOR each neighbor: 
     if adding node to its community increase modularity, do it

• When converged, create an induced network
‣ Each community becomes a node
‣ Edge weight is the sum of weights of edges between them

• Trick: Modularity is computed by community
‣ Global Modularity = sum of modularities of each community

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



LOUVAIN ALGORITHM

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



ALTERNATIVES

• Most serious alternatives
‣ Infomap (based on information theory —compression)
‣ Stochastic block models (bayesian inference)

• These methods have a clear definition of what are good 
communities. Theoretically grounded



INFOMAP

• [Rosvall & Bergstrom 2009]

• Find the partition minimizing the description of any random 
walk on the network

• We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4 
(2008): 1118-1123.



INFOMAP

Random 
walk

Description 
Without

Communities
With communities

Huffman coding: short codes for frequent items
Prefix free: no code is a prefix of another one (avoid fix length/separators)



The Infomap method

• Minimise the expected description length of the random walk

Algorithm
1. Compute the fraction of time each node is visited by the random walker (Power-

method on adjacency matrix)

2. Explore the space of possible partitions (deterministic greedy search algorithm - similar to 
Louvain but here we join nodes if they decrease the description length)

3. Refine the results with simulated annealing (heat-bath algorithm)

by assigning short codewords to common events or objects and
long codewords to rare ones, much as common words are short
in spoken languages (19). Fig. 1B shows a prefix-free Huffman
coding for our sample network. Each codeword specifies a
particular node, and the codeword lengths are derived from the
ergodic node visit frequencies of an infinitely long random walk.
With the Huffman code pictured in Fig. 1B, we are able to
describe the specific 71-step walk in 314 bits. If we instead had
chosen a uniform code, in which all codewords are of equal
length, each codeword would be log 25! 5 bits long and 71!5 !
355 bits would have been required to describe the walk.

Although in this example we assign actual codewords to the
nodes for illustrative purposes, in general, we will not be
interested in the codewords themselves but rather in the theo-
retical limit of how concisely we can specify the path. Here, we
invoke Shannon’s source coding theorem (17), which implies that
when you use n codewords to describe the n states of a random
variable X that occur with frequencies pi, the average length of
a codeword can be no less than the entropy of the random
variable X itself: H(X) ! "#1

n pi log(pi). This theorem provides
us with the necessary apparatus to see that, in our Huffman
illustration, the average number of bits needed to describe a
single step in the random walk is bounded below by the entropy
H(P), where P is the distribution of visit frequencies to the nodes
on the network. We define this lower bound on code length to
be L. For example, L ! 4.50 bits per step in Fig. 1B.

Highlighting Important Objects. Matching the length of codewords
to the frequencies of their use gives us efficient codewords for
the nodes, but no map. Merely assigning appropriate-length
names to the nodes does little to simplify or highlight aspects of
the underlying structure. To make a map, we need to separate
the important structures from the insignificant details. We
therefore divide the network into two levels of description. We
retain unique names for large-scale objects, the clusters or
modules to be identified within our network, but we reuse the
names associated with fine-grain details, the individual nodes
within each module. This is a familiar approach for assigning
names to objects on maps: most U.S. cities have unique names,
but street names are reused from one city to the next, such that
each city has a Main Street and a Broadway and a Washington
Avenue and so forth. The reuse of street names rarely causes
confusion, because most routes remain within the bounds of a
single city.

A two-level description allows us to describe the path in fewer
bits than we could do with a one-level description. We capitalize
on the network’s structure and, in particular, on the fact that a
random walker is statistically likely to spend long periods of time
within certain clusters of nodes. Fig. 1C illustrates this approach.
We give each cluster a unique name but use a different Huffman
code to name the nodes within each cluster. A special codeword,
the exit code, is chosen as part of the within-cluster Huffman
coding and indicates that the walk is leaving the current cluster.
The exit code always is followed by the ‘‘name’’ or module code
of the new module into which the walk is moving [see supporting
information (SI) for more details]. Thus, we assign unique names
to coarse-grain structures (the cities in the city metaphor) but
reuse the names associated with fine-grain details (the streets in
the city metaphor). The savings are considerable; in the two-
level description of Fig. 1C the limit L is 3.05 bits per step
compared with 4.50 for the one-level description.

Herein lies the duality between finding community structure
in networks and the coding problem: to find an efficient code, we
look for a module partition M of n nodes into m modules so as
to minimize the expected description length of a random walk.
By using the module partition M, the average description length
of a single step is given by

L$M% ! q! H$"% " !
i!1

m

p@
i H$# i% . [1]

This equation comprises two terms: first is the entropy of the
movement between modules, and second is the entropy of
movements within modules (where exiting the module also is
considered a movement). Each is weighted by the frequency with
which it occurs in the particular partitioning. Here, q! is the
probability that the random walk switches modules on any given
step. H(Q) is the entropy of the module names, i.e., the entropy
of the underlined codewords in Fig. 1D. H(P i) is the entropy of
the within-module movements, including the exit code for
module i. The weight p@

i is the fraction of within-module
movements that occur in module i, plus the probability of exiting
module i such that #i!1

m p@
i ! 1 & q! (see SI for more details).

For all but the smallest networks, it is infeasible to check all
possible partitions to find the one that minimizes the description

L = 2.67 bits/step
Q = 0.25 Q = 0.50

L = 4.13 bits/step

Q = 0.00
L = 2.73 bits/step L = 4.68 bits/step

Q = 0.56

Map equation
ytiraludoMytiraludoM

Map equation

Map equation
Modularity

Map equation
Modularity

B

A

Fig. 2. Mapping flow highlights different aspects of structure than does
optimizing modularity in directed and weighted networks. The coloring of
nodes illustrates alternative partitions of two sample networks. (Left) Parti-
tions show the modular structure as optimized by the map equation (mini-
mum L). (Right) Partitions show the structure as optimized by modularity
(maximum Q). In the network shown in A, the left-hand partition minimizes
the map equation because the persistence times in the modules are long; with
the weight of the bold links set to twice the weight of other links, a random
walker without teleportation takes on average three steps in a module before
exiting. The right-hand clustering gives a longer description length because a
random walker takes on average only 12/5 steps in a module before exiting.
The right-hand clustering maximizes the modularity because modularity
counts weights of links, the in-degree, and the out-degree in the modules; the
right-hand partitioning places the heavily weighted links inside of the mod-
ules. In B, for the same reason, the right-hand partition again maximizes
modularity, but not so the map equation. Because every node is either a sink
or a source in this network, the links do not induce any long-range flow, and
the one-step walks are best described as in the left-hand partition, with all
nodes in the same cluster.

1120 " www.pnas.org#cgi#doi#10.1073#pnas.0706851105 Rosvall and Bergstrom

Expected decryption 
length of partition M

Entropy of movement between 
modules, i.e. the frequency weighted 
average length of codewords

Entropy of movement inside modules, i.e. the 
frequency weighted average length of 
codewords in the module codebook

probability of between modules 
movements of a RW, i.e. the rate of 
usage of the index codebook

probability of within modules movements 
of a RW, i.e. the rate of usage of the 
module codebook
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The unrecorded visit rates on links q�!� and nodes p� can now be expressed:

q�!� = p
⇤
�p�!� (5)

p� =
X

�

q�!� . (6)

This so called smart teleportation scheme ensures that the solution is independent of where the random walker starts in
directed networks with minimal impact on the results from the teleportation parameter. A typical value of the teleportation
rate is � = 0.15, but in practice the clustering results show only small changes for teleportation rates in the range � 2 (0.05,0.95)
(24). For example, for undirected networks the results are completely independent of the teleportation rate and identical to
results given by Eq. (2). For directed networks, a teleportation rate too close to 0 gives results that depend on how the random
walker was initiated and should be avoided, but a teleportation value equal to 1 corresponds to using the link weights as the
stationary distribution. Accordingly, the unrecorded teleportation scheme also makes it possible to describe raw �ow given by
the links themselves without �rst inducing dynamics with a random walker. The Infomap code described in Sec. 2.2 can use
any of these dynamics described above, but we recommend the unrecorded teleportation scheme proportional to link weights
for most robust results.

The map equation is free from external resolution parameters. Instead the resolution scale is set by the dynamics. The
dynamics described above correspond to encoding one node visit per step of the random walker, but the code rate can be set
both higher and lower (26). A higher code rate can be achieved by adding self-links and a lower code rate can be achieved
by adding non-local links to the network (26). A higher code rate gives smaller modules because the random walker becomes
trapped in smaller regions for a longer time. The Infomap code allows to increase the code rate from the natural value of
encoding one node visit per step of the random walker.

2.1.2. Basic information theory
While the map equation gives the theoretical lower limit of a modular description of a random walker on a network, the
interactive map equation demo illustrates the description with real codewords. We use Hu�man codes (27), which are optimal
in the sense that no binary codes can come closer to the theoretical limit. However, for identifying the optimal partition of the
network, we are only interested in the compression rate and not the actual codewords. Accordingly, the Infomap algorithm
only measures the theoretical limit given by the map equation.

Shannon’s source coding theorem (28) states that the per step theoretical lower limit of describing a stream of n indepen-
dent and identically-distributed random variables is given by the entropy of the probability distribution. That is, given the
probability distribution P = {pi } such that

P
i pi = 1, the lower limit of the per-step codelength is given by

L(P) = H (P) ⌘ �
X

i
pi logpi , (7)

with the logarithm taken in base 2 to measure the codelength in bits. In other words, no codebook with codewords for the
events distributed according to P can use fewer bits on average.

Accordingly, the best compression of random walker dynamics on a network is given by the entropy rate (28)
X

�
p�H (p�!� ), (8)

which corresponds to the average codelength of specifying the next node visit given current node position, averaged over
all node positions. This coding scheme takes advantage of the independent and identically distributed next node visits given
current node position, but can not be used to take advantage of themodular structure of the network. Instead, themap equation
uses the extra constraint that the only available information from one step to the next is the currently visitedmodule, or that the
random walk switches between modules, forcing independent and identically distributed events within and between modules.
From this assumption naturally follows a modular description that is maximally compressed by the network partition that best
represents the modular structure of the network with respect to the dynamics on the network.

2.1.3. The mathematics of the map equation
Given a network partition, the map equation speci�es the theoretical modular description length of how concisely we can
describe the trajectory of a randomwalker guided by the possibly weighted, directed links of the network. We useM to denote
a network partition of the network’s n nodes into m modules, with each node � assigned to a module i . We then seek to
minimize the description length L(M) given by the the map equation over possible network partitions M. Again, network
partition that gives the shortest description length best captures the community structure of the network with respect to the
dynamics on the network.

The map equation can be expressed in closed form by invoking Shannon’s source coding theorem in Eq. (7) for each of

• Shannon’s source coding theorem (Shannon’s entropy)
for a probability distribution P = {pi} such that Σi pi = 1, the 
lower limit of the per-step code-length is

Finding the optimal partition M:

Sum of Shannon entropies of multiple codebooks weighted by the rate of usage



INFOMAP

• To sum up:
‣ Infomap defines a quality function for a partition different than modularity
‣ Any algorithm can be used to optimize it (like Modularity)

• Advantage: 
‣ Infomap can recognize random networks (no communities)



STOCHASTIC BLOCK MODELS

• Stochastic Block Models (SBM) are based on statistical models 
of networks

• They are in fact more general than usual communities.

• The model is:
‣ Each node belongs to 1 and only 1 community
‣ To each pair of communities, there is an associated density (probability of each 

edge to exist)



STOCHASTIC BLOCK MODELS
• SBM can represent different things:

‣ Associative SBM: density inside nodes of a same communities >> density of 
pairs belonging to different communities.



STOCHASTIC BLOCK MODELS

• General idea of SBM community detection:
‣ Specify the desired number of cluster
‣ Find parameters to optimize the maximum likelihood

- Principle: The best parameters are those that allow to generate the observed network with 
the highest probability

• Main weakness of this approach
‣ Number of clusters must be specified (avoid trivial solution)

• MDL (Minimum Description Lenght) approaches exist to 
automatically find the number of blocks



EVALUATION OF 
COMMUNITY STRUCTURE



EVALUATION

• Similar to clustering:
‣ Intrinsic/Internal evaluation

- Partition quality function
- Individual Community quality function 

‣ Comparison of observed communities and expected communities
- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION



INTRINSIC EVALUATION

• Partition quality function
‣ Already defined: Modularity, graph compression, etc.

• Quality function for individual community
‣ Internal Clustering Coefficient 

‣ Conductance:  

- Fraction of external edges

|Eout |
|Eout | + |Ein | :

# of links to nodes inside 
(respectively, outside) the 

community

|Ein | , |Eout |



COMPARISON WITH 
GROUND TRUTH



SYNTHETIC NETWORKS

• Planted Partition models:
‣ Another name for SBM with manually chosen parameters

- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

‣ Problem: how to choose parameters?
- Either oversimplifying (all nodes same degrees, all communities same #nodes, all intern 

densities equals…)
- Or ad-hoc process (sample values from distributions)



SYNTHETIC NETWORKS



SYNTHETIC NETWORKS

• LFR Benchmark [Lancichinetti 2008]
‣ High level parameters:

- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of external edges of each node

‣ Varying the mixing parameter makes community more or less well defined

• Currently the most popular



SYNTHETIC NETWORKS



OTHER TYPES OF 
COMMUNITIES



OVERLAPPING COMMUNITIES

• In real networks, communities are often overlapping
‣ Some of your High-School friends might be also University Friends 
‣ A colleague might be a member of your family
‣ …

• Overlapping community detection is considered much harder
‣ And is not well defined

• Difference between “attributes” and overlapping 
communities ?
‣ Community of Women, Community of 17-19yo, Community of fans of…



HIERARCHICAL 
COMMUNITIES

Lancichinetti, Andrea, et al. "Finding statistically significant communities in networks." PloS one 6.4 (2011): e18961.



SUPERVISED MACHINE LEARNING1: 
LINK PREDICTION

42



LINK PREDICTION

• Do you know why Facebook “People you may know” is so 
accurate?

• How youtube/Spotify/amazon recommend you the right item?

• =>Link prediction
‣ More generally, recommendation, but link prediction is a popular way to do it

43



LINK PREDICTION

• Observed network: current state

• Link prediction: What edge
‣ Might appear in the future (future link prediction)
‣ Might have been missed (missing link prediction)
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LINK PREDICTION

• Overview: 

• Link prediction based on network structure:
‣ Local: High clustering (friends of my friends will become my friends)
‣ Global: Two unrelated hubs more likely to have links that unrelated small nodes
‣ Meso-scale organisation: different edge probability for nodes in different 

communities/blocks

• Link prediction can also be based on node properties
‣ e.g., age, revenue, genre, etc.
‣ Combining with usual machine learning, outside of the scope of this course
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FIRST APPROACH TO LINK PREDICTION: 

HEURISTIC BASED

(HEURISTICS, NOT SUPERVISED MACHINE 
LEARNING)
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HEURISTICS
• Network science experts can design heuristics to predict 

where new edge might appear/be missing

• Principle: design a score based on network topology f(v1,v2) 
which, given two nodes, express their likeliness of being 
connected (if they aren’t already)
‣ Common neighbors
‣ Jaccard coefficient
‣ Hub promoted
‣ Adamic Adar
‣ Ressource allocation
‣ Community based

Zhou, T., Lü, L., & Zhang, Y. C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623-630.47



COMMON NEIGHBORS

• “Friends of my friends are my friends”

• High clustering in most networks

• =>The more friends in common, the highest probability to 
become friends

Neighbors of xΓ(x) = 48



PREDICTION

• How to predict links based on Common Neighbors (CN)?

A

C

D

E

B

(D,C)=2

(A,E)=1
(D,E)=0

Original Graph Heuristic
(e.g., Common Neighbors)

(D,C)
(A,E)
(D,E)

Node pairs sorted 
by score

Less likely

More likely

… …
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JACCARD COEFFICIENT 

• Used in many applications: 
‣ Measure of similarity of sets of different sizes

• Intuition:
‣ Two people who know only the same 3 people

- =>high probability
‣ Two people who know 1000 people, only 3 in commons

- =>Lower probability 
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HUB PROMOTED

• Intuition:
‣ Normalized by total neighbors
‣ But also the relation can be asymmetric

‣ Two stars have 10 common followers or I have ten friends following a star
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ADAMIC ADAR
• Intuition:

‣ For previous scores: all common nodes are worth the same
‣ For AA: 

- A common node with ONLY them in common is worth the most
- A common node connected to everyone is worth the less
- The higher the size of its neighborhood, the lesser its value
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RESSOURCE ALLOCATION

• Similar to Adamic Adam, penalize more higher degrees
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PREFERENTIAL ATTACHMENT 
• Preferential attachment:

‣ Every time a node join the network, it creates a link with nodes with probability 
proportional to their degrees

‣ In fact, closer to the definition of the configuration model

• Score not based on common neighbors
‣ =>Assign different scores to nodes at network distance >2

• Intuition: Two nodes with many neighbors more likely to have 
new ones than nodes with few neighbors

54



OTHER SCORES

Sorenson Index Salton Cosine Similarity

Hub Depressed Leicht-Holme-Nerman

Examples of other scores proposed
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COMMUNITY STRUCTURE

• General idea:
‣ 1)Compute community structure on the whole graph
‣ 2)Assign high score for 2 nodes in a same community, a low score otherwise

• How to choose the score?
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COMMUNITY STRUCTURE

• For methods based on a quality function optimization 
(Modularity, Infomap’s information compression, etc.)
‣ Assign a score to each pair proportional to the change in quality function 

associated with adding an edge between them

• For instance, Louvain optimize Modularity.
‣ Each edge added between communities:

- Decrease in the Modularity
‣ Edge added inside community:

- Increase in Modularity, depends on properties of the community and nodes

Ghasemian, A., Hosseinmardi, H., & Clauset, A. (2019). Evaluating overfit and underfit in models of network community structure. IEEE 
Transactions on Knowledge and Data Engineering.
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OTHER SCORES

• Distance based:
‣ Length of the shortest path
‣ Probability to reach a node from another on a random-walk of distance k

- See next class on embeddings
‣ Number of paths of length l between the nodes

• Problem: computational complexity

58



WHICH ONE IS BEST?

• All scores but PA are based on common neighbors

• =>No links between nodes at graph distance >2

• Inconsistent with observations

• =>We should combine PA and others
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ML APPROACH TO LINK PREDICTION: 

SIMILARITY SCORE, 
SUPERVISED
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SUPERVISED MACHINE 
LEARNING

• Use Machine Learning algorithms to learn how to combine 
heuristics for optimizing predictions

• Two steps:
‣ Training: show features + value to predict
‣ Using/Validating: try to predict value from features
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SUPERVISED MACHINE 
LEARNING

• Our features: similarity indices (CN, AA, PA, …)
‣ One (limited interest) or, obviously, several
‣ Nodes attributes can be added of available (age, salary, etc.)

• Our label/value to predict: Link(1) or No link(0) (2 classes)
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SUPERVISED MACHINE 
LEARNING

A

C

D

E

B

Original Graph

Training set 
With Positive and Negative Examples

…

D,C
D,E

Pair

2
0

H1

4
2

H2

A,C
B,C

1
1

3
4

0
0

Edge

1
1

Node pairs for prediction

…

A,E
B,E

Pair

1
1

H1

3
3

H2

Trained Model
f(H1,H2)->p(1)

ML Algorithm
Logistic, 

Classification Tree, 
Neural Networks, 

etc.

…

A,E
B,E

Pair

1
1

H1

3
3

H2
0.31
0.24

Edge
(A,E)

(B,E)

Node pairs sorted 
by score

Less likely

More likely

…

1 ML training

2 Prediction
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NODE CLASSIFICATION

Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in social networks. In Social network data analytics (pp. 115-148). Springer, Boston, MA.64



NODE CLASSIFICATION

• For the node classification task, we want to predict the class/
category (or numerical value) of some nodes
‣ Missing values in a dataset
‣ Learn to predict, in a social network/platform(Netflix…) individuals’:

- Political position, opinion on a given topic, possible security threat, …
- Interests, tastes, etc.
- Age, genre, sexual orientation, language spoken, salary, etc.
- Fake accounts, spammers, bots, malicious accounts, etc.
- …

‣ Wikipedia article category, types of road in an urban network, etc.
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NODE CLASSIFICATION

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of 
Sciences, 110(15), 5802-5805.

Example of risks

Jernigan, C., & Mistree, B. F. (2009). Gaydar: Facebook friendships expose sexual 
orientation. First Monday, 14(10).
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NODE FEATURES 

• Non-network approach: Use a classification algorithm based 
on features of the node itself (age, salary, etc.)

• The network structure can be integrated using node 
centralities: Degree, clustering coefficient, betweenness, etc.

• But we can do much better :
‣ “Tell me who your friends are, and I will tell you who you are”
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NEIGHBORHOOD BASED 
CLASSIFICATION

• Classification based on the distribution of features in the 
neighborhood

• For each node, compute the distribution of labels in its 
neighborhood (vectors of length m, with m the set of all 
possible labels)
‣ Pick the most frequent

- e.g., political opinions
‣ Train a classifier on this distribution

- e.g., distribution of age, language in the neighborhoods to recognize bots (unexpectedly 
random)
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MORE RECENT METHODS
• In the last 10 years, Deep Neural Networks have been introduced to perform 

ML tasks on networks
‣ Considered state of the art for supervised tasks

• GCN: Graph Convolutional Neural Networks
‣ Link prediction, Node classification, graph classification, etc.

• Variational Graph Autoencoder
‣ Link prediction, graph embedding…

• GAT: Graph Attention Networks
‣ Attention mechanism as in Transformers (ChatGPT) approach for graphs

• DCRNN (Diffusion, Convutionnal, Recurrent NN)
• Dynamic data, e.g., traffic prediction…


