NETWORK DATA MINING
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« Structured data

» ext
- Sequence. Each item is before or after the other ones. And It is important

s £ ¥ B ¥ 2 3 »

- | D organisation
» Images

- Each pixel has a position in 2D grid, it is on the left, right, top or bottom compared
with the other ones. And it is important

- 2D organisation
» Variants:Video (3D), time series (1D continuous), spatial (2D/3D continuous),
etc.

» Networks: Neighbornoods are not constrained. The graph is the structure
- Generalization of discrete structures (text, images, videos)



NETWORKS/GRAPHS
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NETWORKS ARE
EVERYWHERE
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Materials

Pop-science books

"Actgssibla and engaging A good introdustion to the topic.” —Nature

S1X

DEGREES

Albert-Laszlo
Barabasi

/i The/New Science
of Nétwo'r_ks
g ) \ {H

e e

A

SMALL WORLDS and the '
Groundbreaking
SCIENCE OF NETWORKS

THE SCIENCEOF
A-CONNECTED AGE

WITH ATNEW,CHAPTER

DUNCAN 'Ju WATTS

' How Everything is Connected to Everything Else

~—KIRKUS REVIEWS

r r r -
Albert-Laszlo Barabasi
NICHOLAS A. CHRISTAKIS, MD, PhD

AND JAMES H. FOWLER, PhD I

Guido Caldarelli & Michele Catanzaro

NETWORKS
A Very Short |lj|tl'0gl{?ti0n — “’." ;
i > *

_
Connecdcted
THE UNIVERSAL

The Surprising Power of Our Social Networks LAws 0 F s u c c Es s

and How They Shape Our Lives

< THE SCIENCE BENIND WHY PLOPLE SUCCEED O FAILD
OXFORD

Copyrighted Material Cagyrightd Matorol

I have a copy I can lend



GRAPHS & NETWORKS

Networks often refers to real systems
" WWW,

»social network

* metabolic network.

- Language: (Network, node, link)

Graph is the mathematical
representation of a network
*Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

N

person | friendship

neuron | synapse
Website | hyperlink
company jownership
gene | regulation



NETWORK REPRESEN TATIONS

Networks: Graph notation

Graph notation: G = (V, F)
Vv set of vertices/nodes.
E set of edges/links.
u eV a node.
(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V =1{1,2,3,4,5,6}
E={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5), (5,5), (4,3)}




Node degree

Number of connections of a node
« Undirected network

* Directed network

2 0
1 \
In degree

1 1

1
. N\,
Out degree




DENSITY

Network descriptors 1 - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically
(k) < mn. Increases slowly with network size, eg., d ~

log(m)

(k) = ="

Density: Fraction of pairs of hodes connected by an edge in
G.

0h = Jb D




#nodes ~__Densite  Deg. Moyen
Wikipedia ~ 15x105 30

.........................................................................................................................................................................

Twitter 2015  1.4x106 416

.........................................................................................................................................................................

Facebook | - 4x109 570

Brain c. 0.16 46

.........................................................................................................................................................................

Roads Calif. | - ex107 27

.........................................................................................................................................................................

Airport 0,007 21

Attention: Densite difficile a comparer entre des
oraphes de tallle différente



DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

>

P(V) (humber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)



CLUSTERING COEFFICIENT

* Clustering coefficient or triadic closure

* Iriangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles Is a big difference between real and random networks



CLUSTERING COEFFICIENT

C'.. - Node clustering coefficient: density of the subgraph induced by the

neighborhood of u, C',, = d(H (N, ). Also interpreted as the fraction of all

possible triangles in N, that exist, %

u

O
U O Triangles=2
4
Possible triangles= <2> =6
Edges: 2 C,=2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3




EEUS | ERING COERFICIERNSS

(C') - Average clusterlng coefficient: Average clustering coefficient of all
nodes in the graph, C = = > uev C

Be careful when interpreting this value, since all nhodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C value Is very sensitive, l.e., for a node u of de-
gree 2, Cy, € 0,1, while nodes of higher degrees tend to
have more contrasted scores.

C'9 - Global clustering coefficient: Fraction of all possible triangles in the

graph that do exist, C'9 = ABTAaX



CLUSTERING COEFFICIENT

Global CC = Transrtivity

Transitivity vs. Average Clustering Coefficient

Both measure the tendency for edges to form triangles.
Transitivity weights nodes with large degree higher.

* Most nodes have

- \ /
AN  Most nodes have | ,
/A % high LCC . ﬁ\ —  lowLCC
B

* The high degree High degree node
4 vl node has low LCC
N\

have high LCC
—"

Ave. clustering coeff. = 0.93 Ave. clustering coeff. = 0.25
Transitivity = 0.23 Transitivity = 0.86

https:// pyn-e—t_vvo rk.readthedocs.io/en/latest/connectivity.html



CLUSTERING COEFFICIENT

@ lopal CC:

» In random networks, GCC = density
- =>very small for large graphs

Network Size (k) C Crand Reference
WWW, site level, undir. 8187 )] 35.21 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 ).18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225206 61 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 043 1.8X10°* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 0.066 1.1x10> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 0.496 3%X10°* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 059 5.4x107° Barabasi et al., 2001
Neurosci. co-authorship 209 293 51 ULgE 1 Sl ? Barabasi e al., 2001
E. coli, substrate graph 282 T 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph Sl o8 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 Sl 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 22 311 13.48 U7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Rl RELAITED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

¢, .- Distance: The distance between nodes wu, v is the length of the short-
est path




All shortest path algorithm

finding shortest paths in a weighted graph with positive or negative edge weights
(but with no negative cycles)

proc FloydWarshall(G=(V,E,w))
1 // let dist be a |V| x |V| array of minimum distances initialized to ® (infinity)
2 for each edge (u,v)
3 dist[u][Vv] « w(u,v) // the weight of the edge (u,v)
for each vertex v
dist[v][Vv] « O
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][]]
dist[i][j] « dist[i][k] + dist[k][]j]
end if

=0: k=1: k = 4:
Checking and updating all paths going @i@ @_‘L@ﬁ@‘ ‘i‘i@
through nodes k=1, 2, 3, ... , N by @

assuming that:

shp(i.j,k)=
min(shp(i,j,k-1)), shp(i,k,k-1)+shp(k,j,k-1))

P WO 00 J O U &

= O

Complexity: O(n3)




PATH RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
W = n(n — 1) ;dij




AVERAGE PATH LENGITH

* The famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

* Not too sensible to noise

» Tells you If the network Is “'stretched” or “hairball” like



SIDE-STORY: MILGRAM
EAPERIMENTS

B lROrid experiment (60's) | EEEEEEEE \

' ' : North Dakota y
» Give a (physical) mail to random people T

» Ask them to send to someone they don't know =
- They know his city, job

» They send to their most relevant contact

* Results: In average, 6 hops to arrive

Texas




SIDE-STORY: MILGRAM
EAXPERIMENTS

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web



SIDE-STORY: MILGRAM
EAXPERIMENTS
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SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

+ Average distance must be short, i.e., (£) =~ log(N)

-+ Clustering coefficient must be high, i.e.,, much larger than in a ran-
dom network , e.g., C? > d, with d the network density



NETWORK DESCRIPTORS

- Many other network descriptors exist:

» Modularrty (later in community detection class)

» Centralization (comparing the centrality scores between most central and less
central, see later)

» Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf
random network class

» Motif profiles (how often do specific subgraphs appear)
» Network Resilience (see practicals)
Eelic.



SRAPHEE I
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gm‘f)%]& 3-node graphlets 4-node graphlets
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NETWORK DESCRIPTORS

- Many other network descriptors exist:

» Modularrty (later in community detection class)

» Centralization (comparing the centrality scores between most central and less
central, see later)

» Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf
random network class

» Motif profiles (how often do specific subgraphs appear)
» Network Resilience (see practicals)
Eelic.



EXEMPLE OF GRAPH
FUNALTSIS

» /21 M users (nodes) (active in the last 28 days)
e cdoes
» Average degree: |90 (average # friends)

B dldnidecree: 99

B shinccied component: 99.9 1 7%



Fraction
0.00 0.05 0.10 0.15 0.20

EXEMPLE OF GRAPH
FUNALTSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

(More ReXiaEE

20 40 60 80 100
Neighbor’s age




EXEMPLE OF GRAPH
FINALTSIS

|

800 1000

l

l

Neighbor’s average degree

200 400 600
I

0
l

e Actual
----- Random

- Diagonal

B
\<

I I

friends

0 e Degree 10
g — === Degree 50
Degree 100
=== Degree 500
................................ - B - Random edge
I I I I g i | [ I I I
0 200 400 600 800 1000 1 5 50 500 5000
Degree Neighbor’s degree
e SABRISIAS Many of my friends have the
| :
NEARARIS Same # of friends than me!

Friends t




ADJACENCY MATRIX

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

Multiplying A by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A,?j corresponds to the number of

walks of length 2 from node i to node j, Ag’j to the number of walks of
length 3, etc.

Multiplying A by a column vector W of length 1 x N can be thought as
setting the 7 th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W. This is convenient when working with random walks
or diffusion phenomenon.

Graph

A - Adjacency Mat.

0O 1 0 0 1 1

1 0 1 1 1 1

0O 1 0 1 0 o

O 1 1 0 0 o

1 1 0 0 1 1

1 1 0 0 1 O

A2

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3




CENTRALITIES

Characterizing/Discovering important nodes



PERINESS, CLOSENESS
HARMONIC CENTRALITY



CENTRALITY

- We can measure nodes importance using so-called
centrality.

* Poor terminology: nothing to do with being central in general

Qicaoe:
» Some centralities have straightforward interpretation

» Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)



NODE DEGRES

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

< et

* But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

ST



FARNESS, CLOSENESS

* How close the node Is to all other nodes

» Parallel with the center of a figure:

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighted




FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

Farness(u):N . Z Lo ,v



EEOSENESS CEN TRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =

| e il 11
C.(i) = =— =0.55

Bx1+7%x2+1x%x3) 20



EEOSENESS CENTRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other

nodes in term of shortest paths. AmsterdamPart_CLS_nolimit

Closeness
I 0.000000
N —1
ClOSGI’]eSS(u) = [ 0,000001 - 0,000000
Zv eViu lu U 0,000001 - 0,000000

0,000001 - 0,000000
\ 0,000001 - 0,000000
W Ve I 0.000001 - 0,007673
= I 0007674 - 0034569

I=dll hodes are at distance one

Kilometers




Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of
the inverse of distance to all other nodes (Harmonic mean). Well defined
on disconnected network with é = 0. Its interpretation is the same as the

closeness.
1

1
Harmonic(u) = ——— D
o veV\u

U,V




BE TWEENNESS CENTRALITY

* Measure how much the node plays the role of a bridge

* Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cr (”U) . Z Ust(v)

sFvAteEV O st

with os: the number of shortest paths between nodes s and t and o5+ (v)
the number of those paths passing through wv.

The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: C'X™ (v) = (ijﬁ((ﬁ)_z)-




Betweenness Centrality

Cp(v) = Z 75(v)

Ost

sHEvAtEV
: . ,~ynorm i Cp)
directed graph: C5"" (v) = i (N =)

5% 6+1+-+= 64
Coltt) = 2 E i
11*10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity



BE TWEENNESS CENTRALITY
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EDGE - BETWEENNESS

Same definition as for nodes

R B8 N .l 23 3 N
" By |
- n i
{ TRIZ

? | .' G N YO\/E,ﬁU K ROMANIA '

Can you guess the edge of o ’].! b P
highest betweenness In “A P " \l D
the European rail network ¢ R “tr R . N




RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

* Recursive iImportance:
» Important nodes are those connected to important nodes

« Several centralities based on this idea:

» Eigenvector centrality
» PageRank



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» If every node “sends’’ its score 1o 1ts neighbors, the sum of all scores received
oy each node will be equal to Its original score

@i — i el (1)

& i A 2 normalisation constant



RECURSIVE DEFINITION

» I his problem can be solved by what s called the power
method:

» |) We initialize all scores to random values

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!

» Perron-Frobenius theorem (see next slide)
» =>]rue for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

* What we just described Is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a column vector of size n, which can be interpreted as the scores of nodes

* What Perron-Frobenius algorithm says is that the power
method will always converge to the leading eigenvector, I.e., the
elgenvector associated with the highest eigenvalue



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) o b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree)

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-“[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[...], we expect that advertising funded search engines will be inherently biased towards the
advertisers and away from the needs of the consumers.”



PageRank Centrality

& cle hotes)

& Sergey Brin received his B.S. degree in mathematics and computer science

" from the University of Maryland at College Park in 1993. Currently, he is a
Ph.D. candidate in computer science at Stanford University where he received
. his M.S. in 1995. He is a recipient of a National Science Foundation Graduate
Fellowship. His research interests include search engines, information
extraction from unstructured sources, and data mining of large text collections
and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E.
in Computer Engineering at the University of Michigan Ann Arbor in 1995.
He is currently a Ph.D. candidate in Computer Science at Stanford University.
Some of his research interests include the link structure of the web, human
computer interaction, search engines, scalability of information access
interfaces, and personal data mining.




PAGERANK

* 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even If that Is their only in-coming link)
- =>What each node "is worth" Is divided equally among its neighbors (normalization by the

degree)
oL Lz ok t4+1 C,
(0 S A\ v St > CU T Z out + B

UEN’I?:Ln UEN&TL v

With by convention =1 and a a parameter (usually 0.85) controlling the
relative importance of f



PAGERANK

Matrix interpretation (‘f 011 ¢
A= 0 1 0 1 0
Principal eigenvector of the “"Google Matrix': (0 0/ : /1 : /
() 12 1/3 0 1/5

First, define matrix S as:
-Normalization by columns of A
-Columns with only O receives |/n

0 1/3 1/3 1/5
1/2 0 1/3 1/5
0 1/3 0 1/5
0 0 1/3 1/5

W
Il
-
coo~Co

(e) / 0.03 0.455 0.313 0.03 0.2
0.88 0.03 0313 0.313 0.2
G=1 003 0455 0.03 0.313 0.2

' 0.03 0.03 0313 0.03 0.2
‘Fma”}/, Gl] = aSij == (L = @i \ 003 003 003 0313 0.2
- — R

A - Adjacency Mat. Random W. mat.

0100 1 1 050073

1 0 1 1 1 1 1 91111

0 1.0 1 0 0 3 2.2 43

01 10 0 0 0 £ 03500

1 1.0 0 1 1 o

1 100 1 0 ol looo

1100}

L1000



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk
process with restart

Teleportation probability: the parameter a gives the probability that in the next step of
the RW will follow a Markov process or with probability 7-a it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on
this node after an infinite number of hops.



PAGERANK

* Then how do Google rank when we do a research!?

» Compute pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
“Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



o i siss

- Many other centralities have been proposed
* The problem Is how to interpret them ¢

» Can be used as supervised tool:

Compute many centralities on all nodes

Learn how to combine them to find chosen nodes

Discover new similar nodes

(roles In social networks, key elements in an infrastructure, ...)

v

v

v

v
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- S oast Degree
d . Clustering coefficient
Closeness
Harmonic Centrality
Betweenness
Figenvector
PageRank
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Which 1s which ¢

» Degree
ustermg coefficient
| - Closeness

* Harmonic Centrality
Betweenness

X Figenvector
b Page Rank
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Iry again
Blagice
Betweenness
Closeness
Fisenvector
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Try again :)
meDieges
B:Closeness

Betweenness
D: Eigenvector
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