
A RESEARCH QUESTION
Communities in degenerate link streams





DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Facebook friendship 

- People joining/leaving
- Friend/Unfriend

‣ Twitter mention network
- Each mention has a timestamp
- Aggregated every day/month/year => still dynamic

‣ World Wide Web
‣ Urban network
‣ …



DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Nodes can appear/disappear
‣ Edges can appear/disappear
‣ Nature of relations can change

• How to represent those changes?

• How to manipulate dynamic networks?



SEVERAL FORMALISMS

	

represented by an horizontal solid line parallel to the two dotted lines of involved nodes,
and a vertical solid line joining these two dotted lines (marked with bullets) when the
two nodes start interacting. In Figure 1, for instance, in S (leftmost example) the node a
arrives at time 0 and stays until time 10, and so [0, 10]⇥ {a} ✓ W , i.e. Ta = [0, 10]. This
is represented by a dotted line from time 0 to 10 in front of a in the drawing. Likewise, b
arrives at time 0, then leaves at time 4, joins again at time 5 and stays until time 10, and
so ([0, 4] [ [5, 10])⇥ {b} ✓ W , i.e. Tb = [0, 4] [ [5, 10]. This is represented by a dotted line
from time 0 to 4 and another one from time 5 to 10 in front of b. These two nodes interact
from time 1 to time 3 and from time 7 to time 8, and so ([1, 3] [ [7, 8]) ⇥ {ab} ✓ E, i.e.
Tab = [1, 3] [ [7, 8]. This is represented by a solid line at time 1 between the dotted lines
of a and b, with an horizontal line starting from its middle until time 3, and another such
solid line at time 7 with an horizontal line until time 8.
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Figure 1: Simple examples of stream graphs and link streams. Left: a stream
graph S = (T, V,W,E) with T = [0, 10] ✓ R, V = {a, b, c, d}, W = [0, 10]⇥ {a} [ ([0, 4] [
[5, 10]) ⇥ {b} [ [4, 9] ⇥ {c} [ [1, 3] ⇥ {d}, and E = ([1, 3] [ [7, 8]) ⇥ {ab} [ [4.5, 7.5] ⇥
{ac} [ [6, 9] ⇥ {bc} [ [2, 3] ⇥ {bd}. In other words, Ta = [0, 10], Tb = [0, 4] [ [5, 10],
Tc = [4, 9], Td = [1, 3], Tab = [1, 3] [ [7, 8], Tac = [4.5, 7.5], Tbc = [6, 9], Tbd = [2, 3], and
Tad = Tcd = ;. Right: a link stream L = (T, V, E) with T = [0, 10] ✓ R, V = {a, b, c, d},
and E = ([0, 4] [ [6, 9])⇥ {ab} [ [2, 5]⇥ {ac} [ [1, 8]⇥ {bc} [ [7, 10]⇥ {bd} [ [6, 9]⇥ {cd}.
In other words, Ta = Tb = Tc = Td = T and Tab = [0, 4] [ [6, 9], Tac = [2, 5], Tbc = [1, 8],
Tbd = [7, 10] and Tcd = [6, 9].

Given a stream graph S = (T, V,W,E), we define Gt = (Vt, Et), the graph induced
by S at time t. In Figure 1, for instance, we obtain for S at time 2 the graph G2 =
({a, b, d}, {ab, bd}).

We also define G(S) = ({v, Tv 6= ;}, {uv, Tuv 6= ;}) = (
S

t2T Vt,
S

t2T Et) the graph
induced by S: its nodes are those present in S and they are linked together in G(S)
if there exists a time instant in T such that they are linked together in S. In other
words, it is the graph where there is a link between two nodes if they interacted at
least once. In Figure 1, for instance, G(S) = ({a, b, c, d}, {ab, ac, bc, bd}) and G(L) =
({a, b, c, d}, {ab, ac, bc, bd, cd}). One may in addition associate to each node v or link uv a
weight capturing a quantity of interest, like for instance their presence duration |Tv| and
|Tuv|.

Stream graphs model interactions between nodes over time, as well as the dynamics of
nodes themselves. For instance, nodes may represent individuals present in a given building
and links may represent contacts between them. Nodes may represent on-line computers
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TEMPORAL NETWORK
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Time u v

Collected dataset, for instance in (t,u,v) format

Examples: 
-SocioPatterns

-Enron
-…
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represented by an horizontal solid line parallel to the two dotted lines of involved nodes,
and a vertical solid line joining these two dotted lines (marked with bullets) when the
two nodes start interacting. In Figure 1, for instance, in S (leftmost example) the node a
arrives at time 0 and stays until time 10, and so [0, 10]⇥ {a} ✓ W , i.e. Ta = [0, 10]. This
is represented by a dotted line from time 0 to 10 in front of a in the drawing. Likewise, b
arrives at time 0, then leaves at time 4, joins again at time 5 and stays until time 10, and
so ([0, 4] [ [5, 10])⇥ {b} ✓ W , i.e. Tb = [0, 4] [ [5, 10]. This is represented by a dotted line
from time 0 to 4 and another one from time 5 to 10 in front of b. These two nodes interact
from time 1 to time 3 and from time 7 to time 8, and so ([1, 3] [ [7, 8]) ⇥ {ab} ✓ E, i.e.
Tab = [1, 3] [ [7, 8]. This is represented by a solid line at time 1 between the dotted lines
of a and b, with an horizontal line starting from its middle until time 3, and another such
solid line at time 7 with an horizontal line until time 8.
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Figure 1: Simple examples of stream graphs and link streams. Left: a stream
graph S = (T, V,W,E) with T = [0, 10] ✓ R, V = {a, b, c, d}, W = [0, 10]⇥ {a} [ ([0, 4] [
[5, 10]) ⇥ {b} [ [4, 9] ⇥ {c} [ [1, 3] ⇥ {d}, and E = ([1, 3] [ [7, 8]) ⇥ {ab} [ [4.5, 7.5] ⇥
{ac} [ [6, 9] ⇥ {bc} [ [2, 3] ⇥ {bd}. In other words, Ta = [0, 10], Tb = [0, 4] [ [5, 10],
Tc = [4, 9], Td = [1, 3], Tab = [1, 3] [ [7, 8], Tac = [4.5, 7.5], Tbc = [6, 9], Tbd = [2, 3], and
Tad = Tcd = ;. Right: a link stream L = (T, V, E) with T = [0, 10] ✓ R, V = {a, b, c, d},
and E = ([0, 4] [ [6, 9])⇥ {ab} [ [2, 5]⇥ {ac} [ [1, 8]⇥ {bc} [ [7, 10]⇥ {bd} [ [6, 9]⇥ {cd}.
In other words, Ta = Tb = Tc = Td = T and Tab = [0, 4] [ [6, 9], Tac = [2, 5], Tbc = [1, 8],
Tbd = [7, 10] and Tcd = [6, 9].

Given a stream graph S = (T, V,W,E), we define Gt = (Vt, Et), the graph induced
by S at time t. In Figure 1, for instance, we obtain for S at time 2 the graph G2 =
({a, b, d}, {ab, bd}).

We also define G(S) = ({v, Tv 6= ;}, {uv, Tuv 6= ;}) = (
S

t2T Vt,
S

t2T Et) the graph
induced by S: its nodes are those present in S and they are linked together in G(S)
if there exists a time instant in T such that they are linked together in S. In other
words, it is the graph where there is a link between two nodes if they interacted at
least once. In Figure 1, for instance, G(S) = ({a, b, c, d}, {ab, ac, bc, bd}) and G(L) =
({a, b, c, d}, {ab, ac, bc, bd, cd}). One may in addition associate to each node v or link uv a
weight capturing a quantity of interest, like for instance their presence duration |Tv| and
|Tuv|.

Stream graphs model interactions between nodes over time, as well as the dynamics of
nodes themselves. For instance, nodes may represent individuals present in a given building
and links may represent contacts between them. Nodes may represent on-line computers
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SLOWLY EVOLVING 
NETWORKS 

(SEN)



SLOWLY EVOLVING NETWORKS 

• Edges change (relatively) slowly

• The network is well defined at any t
‣ Nodes/edges described by (long lasting) intervals
‣ Enough snapshots to track nodes 

• A static analysis at every (relevant) t gives a dynamic vision

• No formal distinction with previous case (higher observation 
frequency)



• Visualization
‣ Problem of stability of node positions

SLOWLY EVOLVING NETWORKS 



• Global graph properties

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data 
(TKDD) 1.1 (2007): 2.

SLOWLY EVOLVING NETWORKS 



UNSTABLE/DEGENERATE 
TEMPORAL NETWORKS

More constrained Shu�ing

Variants of these shu�ings with additional constraints have been
proposed, for instance the Local timeline shu�ing, randomizing
events time edge by edge, or the Weight constrained timeline

shu�ing, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. ����) for details.
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(a)

(b)

FIG. II.7: Illustration of intersections between
shu�ing methods. (a) The most random

link-timeline intersection, P[L, pT (�)], constrains the
static topology redistributes the individual timelines on

the links at random. (b) The most random
timeline-snapshot intersection, P[L, t], conserves the

timestamp of each instantaneous event and redistributes
them at random between the existing links.

3. Intersections of shu�ing methods

As we shall see in the following, several MRRMs ex-
ist which constrain both the content of individual time-
lines, i.e. pL(�), and the static topology, i.e. L. This
makes them intersections (Def. II.9) of link and timeline
shu�ings. They are typically implemented similarly to
link shu�ings by redistributing the timelines between the
links, but without randomizing the static structure.
Example II.10. The intersection between the most ran-
dom link shu�ing, P[pL(�)] and the most random time-
line shu�ing, P[L, E], defines the most random link-
timeline intersection: P[L, pL(�)] [Fig. II.7(a)]. This
model constrains both the static topology and all tempo-
ral correlations on individual links, but destroys correla-
tions between network topology and dynamics.

Other MRRMs constraint both the static topology, i.e.
L, and the timestamps of the events, i.e. t. These are thus
intersections of timeline and snapshot shu�ings. They
are typically implemented by exchanging the timestamps
of the events inside each timeline, or alternatively by re-
distributing events between existing links while keeping
their timestamps unchanged.
Example II.11. The intersection between the most
random timeline shu�ing, P[L, E], and the most ran-
dom snapshot shu�ing, P[t], defines the most random
timeline-snapshot intersection: P[L, t] [Fig. II.7(b)].

4. Compositions of shu�ing methods

The final classes of shu�ing methods that we will en-
counter are methods that generate randomized networks
by applying a pair of di�erent shu�ing methods in com-
position, i.e. by applying the second shu�ing to the ran-
domized networks generated by the first.

Not all compositions generate a microcanonical RRM
however. They are e.g. not guaranteed to sample the
randomized networks uniformly. But as we will show in
Section V, compositions between link shu�ings and time-
line shu�ings and between sequence shu�ings and snap-
shot shu�ings always result in a MRRM. Several such
compositions have been used in the literature to produce
MRRMs that randomize both topological and temporal
aspects of a network at the same time (we describe and
characterize them in Section VC).
Example II.12. The composition of the link shu�ing
P[pL(�)] with the timeline shu�ing P[L, E] results in the
MRRM P[L,E] which randomizes both the static topol-
ogy and the temporal order of events while conserving the
number of links L = |L| in the static graph. The compo-
sition of the sequence shu�ing P[pT (�)] with the snap-
shot shu�ing P[t] results in the MRRM P[p(A)] which
randomizes both the topology of snapshots and their tem-
poral order while conserving the multiset of the number
of events in each snapshot, p(A) = [|Et|]t�T .

III. SURVEY OF APPLICATIONS OF
RANDOMIZED REFERENCE MODELS

The applications of MRRMs for temporal networks are
manifold, but all follow two main directions: (i) study-
ing how the network and ongoing dynamical processes are
controlled by the e�ects of temporal and structural cor-
relations that characterize empirical temporal networks,
(ii) highlighting statistically significant features in tem-
poral networks.

(i) Dynamical processes have been studied by using
data-driven models, where temporal interactions are ob-
tained from real data, while the ongoing dynamical pro-
cess is modeled by using any conventional process def-
inition [45, 73] and typically simulated numerically on
the empirical and randomized temporal networks [73, 74].
One common assumption in all these models is that infor-
mation can flow between interacting entities only during
their interactions. This way the direction, temporal, and
structural position, duration, and the order of interac-
tions become utmost important from the point of view
of the dynamical process. MRRMs provide a way to sys-
tematically eliminate the e�ects of these features and to
study their influence on the ongoing dynamical process.
This methodology has recently shown to be successful in
indicating the importance of temporality, bursty dynam-
ics, community structure, weight-topology correlations,
and higher-order temporal correlations on the evolution
of dynamical processes, just to mention a few examples.

(ii) MRRMs have commonly been used as null models
to find statistically significant features in temporal net-
works (often termed interaction motifs) or correlations
between the network dynamics and node attributes. This
approach is conceptually the same as using the configura-
tion model to detect overrepresented subgraphs (termed
motifs) in static networks [39, 75, 76]. The di�erence here
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UNSTABLE TEMPORAL 
NETWORK

• The network at a given t is not meaningful

• How to analyze such a network?



UNSTABLE TEMPORAL 
NETWORK



UNSTABLE TEMPORAL 
NETWORK

• Common solution: transform into SEN using aggregation/ 
sliding windows
‣ Information loss
‣ How to chose a proper aggregation window size?

• New theoretical tools developed to deal with such networks

Network Science

Cheatsheet

Made by
Remy Cazabet

Dynamic Networks

Disclaimer

Dynamic network analysis as introduced here is a recent and
still not fully mature �eld, with a large number of contributions,
for which we cannot know yet which one will stand the test of
time. This is therefore my vision of the dynamic network �eld
as of today.

Ubiquity of Dynamic Networks

Most real networks are in fact dynamic: nodes and edges appear
and disappear with time. Think of friendship in social networks,
�ight routes or any human interactions. Networks are often an-
alyzed as static objects because �)it’s harder to obtain dynamic
information, �)Taking dynamic into account makes some analysis
more di�cult.
While more and more aspects of our life become linked to digital
technology, datasets with �ne temporal information also become
more and more common.

Snapshots & Aggregated Networks

Static networks representing dynamic information can be ob-
tained by two processes:

• Snapshots correspond to the state of a network at a partic-
ular point in time, e.g., all follower/followees relationship
at a particular second

• Aggregated Networks are obtained by cumulating infor-
mation over a period of time, e.g., in a phone call network,
in the snapshot representing year ����, an edge exists
between two individuals if they called each other at least
once over the year ����.

Interactions or Relation?

Dynamic networks can be used to represent di�erent types of real
data. In particular, they can be used to represent networks of re-
lations and networks of interactions. For instance, friendships, ac-
quaintances, physical wires, roads, etc. can be thought as rela-
tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-

dependent

• If edges have weights, they can be constant or time-

dependent

Vocabulary

Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien ����)

• Temporal Networks, Contact Sequences and Interval

Graphs (Holme and Saramäki ����)

• Time Varying Graphs (Casteigts et al. ����)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period �.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V, W, E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes

W Vertices presence time V ⇥ T
E Edges presence time V ⇥ V ⇥ T

aLatapy, Viard, and Magnien ����.
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STREAM GRAPHS
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tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
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• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-

dependent

• If edges have weights, they can be constant or time-
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Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs
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• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
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• Temporal Networks, Contact Sequences and Interval
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• Time Varying Graphs (Casteigts et al. ����)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period �.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V, W, E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes

W Vertices presence time V ⇥ T
E Edges presence time V ⇥ V ⇥ T

aLatapy, Viard, and Magnien ����.



STREAM GRAPHS
SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.
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Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}N = 2



STREAM GRAPHS
SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time
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Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

L = 1

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}

In the following, we will use , as in Latapy et al.L3
max



STREAM GRAPHS

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}

N = 2 L = 1

d =
3
6

=
1
2

d =
3
4

d =
3
3

= 1



STREAM GRAPHS
SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10 = 1.25.

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T ⇥ V ⇥ V such that t0 � ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

Examples of two paths from (node �, t=�.�) to (node �, t=�). The
left one starts at �, arrives at �, has length � and duration �. The
right one starts at �, arrives at �.�, has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in � weakly connected
components (including one composed of the singleton node �)

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4



STREAM GRAPHS

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

in S then X necessarily is a clique in G(S). However, if [b, e] � X is maximal in S then
X is not necessarily maximal in G(S), see for instance [0, 4] � {a, b} in Figure 4 ({a, b}
is a clique in G(S) but it is included in its other clique {a, b, c}). Conversely, if a cluster
X of G(S) is a clique then in general there is no [b, e] such that [b, e] � X is a compact
clique in S. Finally, if one considers a graph-equivalent stream, then its maximal cliques
are necessarily compact, and they correspond exactly to the maximal cliques of its induced
graph.

8 Neighborhood and degree

In the graph G = (V, E), the neighborhood N(v) of v � V is the cluster N(v) = {u, uv � E},
and the degree d(v) of v is the number of nodes in this cluster, which is equal to the number
of links involving v. We then have

�
v2V d(v) = 2 · m.

The average degree in G is d(G) = 1
n ·

�
v2V d(v), and the following relation between

density and average degree holds: �(G) = d(G)
n�1 .

In a stream graph S = (T, V, W, E), we define the neighborhood of a node v as the
following cluster:

N(v) = {(t, u), (t, uv) � E}
and the degree d(v) of v as the number of nodes in this cluster. As with graphs, this is
equal to the number of links involving v:

d(v) =
|N(v)|

|T | =
�

u2V

|Tuv|
|T | =

�

u2V

muv.

With this definition, each node u contributes to the degree of v proportionally to the
duration of its links with v. See Figure 5 for an illustration.

As with graphs, the sum of the degree of all nodes in S is equal to twice the number of
links in S:

�
v2V d(v) =

�
v2V

�
u2V

|Tuv |
|T | = 2 · m.

a
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Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1, 3] � [7, 8]) � {b} � [4.5, 7.5] � {c} is in blue, leading to d(a) = 3

10 + 3
10 = 0.6.

Right: N(c) = [2, 5] � {a} � [1, 8] � {b} � [6, 9] � {d} is in blue, leading to d(c) = 13
10 = 1.3.

We now define the average node degree of S as follows:

d(V ) =
1

n
·
�

v2V

nv · d(v) =
�

v2V

|Tv|
|W | · d(v)
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Example, the neighborhood of node c is highlighted in blue.
k(c) = 1.3

(|[�,�]|+|[�,�]|+|[�,�]|).

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V, N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cient C(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, u1, v1), ..., (tk, uk, y)of
elements of T ⇥ V ⇥ V such that t0  ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

(hence vi�1 = ui = vj = uj+1) then P � = (u0, v0), . . . , (ui�1, vi�1), (uj+1, vj+1), . . . , (uk, vk)
also is a path from u to v. If one iteratively removes the cycles of P in this way, one
eventually obtains a simple path from u to v.
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vk = v, t0 � �, tk � �, for all i, ti � ti+1, vi = ui+1, and (ti, uivi) � E, [�, t0] � {u} � W ,
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Figure 13: Paths in a stream graph. Left: a path P1 from (1, d) to (9, c):
P1 = (2, d, b), (3, b, a), (5, a, c). This path has length 3 and duration 3. Center:
another path P2 from (1, d) to (9, c): P2 = (2, d, b), (3, b, a), (7.5, a, b), (8, b, c). This
path has length 4 and duration 6. Right: a path P3 from (0, b) to (8, a): P3 =
(2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a). This path has length 4 and duration 5.5.

If there exists a path from (�, u) to (�, v) in S, we say that (�, v) is reachable from
(�, u), which we denote by (�, u) ��� (�, v). Notice that reachability is asymmetric: if
(�, u) ��� (�, v) then in general (�, v) ���� (�, u) (in particular this is always true if � �= �).
We say that v is reachable from u if there exists � and � such that (�, u) ��� (�, v), which
we also denote by u ��� v. Reachability is asymmetric in this case too: in Figure 13, for
instance, d ��� c (through P1) but c ���� d. We discuss reachability in more details and we
give more complex examples in Section 15.

A subpath Q of path P is a subsequence (ti, ui, vi), (ti+1, ui+1, vi+1), . . . , (tj, uj, vj) of
the sequence defining P , with j � i. Then, Q is a path from (ti, ui) to (tj, vj). In Figure 13,
for instance, Q1 = (5, a, c), Q2 = (3, b, a), (7.5, a, b) and Q3 = (5, a, c), (6.5, c, b), (7.5, b, a)
are subpaths of P1, P2 and P3, respectively.

The path P is a cycle if u = v and [�, �] � {v} � W . In other words, it is a path from
v at time � to itself at time � such that v is present at all times from � to �. This means
that there is a path of length and duration 0 (i.e. the empty sequence) from (�, v) to (�, v)
in S. For instance, Q3 defined above is a cycle, but Q2 is not since b is not present from
time 3 to time 7.5.
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Examples of two paths. The left one starts at �, arrives at �, has
length � and duration �. The right one starts at �, arrives at �.�,

has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

paths have the same length. As a consequence, the distance between two nodes is the same
in the stream and its corresponding graph, and a path is a cycle in the stream if and only
if the corresponding path is a cycle in the graph.

15 Connectedness and connected components

A graph G = (V, E) is connected if for all u and v in V there is a path between u and v in G.
A cluster C is connected if G(C) is connected, and it is a maximal connected cluster if it is
included in no other connected cluster. These clusters are called the connected components
of G, and they form a partition 3 of V . The reachability graph of G is the graph R = (V, E �)
where uv � E � if u— v in G. The connected components of G are exactly but the cliques
of R.

Given a stream graph S = (T, V, W, E), we say that (�, v) is weakly reachable from
(�, u), which we denote by (�, u) - - - (�, v), if there is a sequence (t0, u0, v0), (t1, u1, v1),
. . . , (tk, uk, vk) of elements of T � V � V such that u0 = u, vk = v, for all i, vi = ui+1, and
(ti, uivi) � E, [�, t0] � {u} � W , [tk, �] � {v} � W , and for all i, [ti, ti+1] � {vi} � W .
This sequence is similar to a path from (�, u) to (�, v), except for time constraints: we do
not necessarily have t0 � �, ti+1 � ti, nor � � tk. As a consequence, weak reachability
is symmetric: if (�, u) - - - (�, v) then (�, v) - - - (�, u). In Figure 14 for instance, we have
(9, d) - - - (3, g) through the sequence (8, d, e), (3, e, f), (1, f, g).

We say that S is weakly connected if for all (�, u) and (�, v) in W , (�, u) - - - (�, v).
We say that a cluster C � W is weakly connected if its induced substream S(C) is weakly
connected. It is a weakly connected component of S if it is a maximal weakly connected
cluster of S. Intuitively, this corresponds to the disconnected parts of a drawing of S, see
Figure 14 for an illustration.
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Figure 14: Weakly connected components of a stream graph. This stream graph
has four weakly connected components, each displayed with a di�erent color: [5, 7]�{a, b}
in blue, ([0, 3] � [8, 10]) � {b} � [0, 10] � {c} � [3, 7] � {d} in pink, ([0, 2] � [8, 10]) � {d} �
[0, 10] � {e} � [0, 4] � {f, g} in green, and [7, 10] � {f} � [5, 10] � {g} in orange.

3A partition of a set X into k parts is a family (P1, P2, · · · , Pk) of k subsets of X such that �iPi = X
and Pi � Pj = � for all i �= j.
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Example of a Stream Graph decomposed in � weakly connected
components.

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or the Con�guration Model.

10

models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.
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FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.
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as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:
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as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].
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(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].
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models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.
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FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].
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Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:
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RANDOM MODELS

• In many cases, in network analysis, useful to compare a 
network to a randomized version of it
‣ Clustering coefficient, assortativity, modularity, …

• In a static graph, 2 main choices:
‣ Keep only the number of edges (ER model)
‣ Keep the number of edges and the degree of nodes (Configuration model)

• In dynamic networks, it is more complex…



RANDOM MODELS
SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10 = 1.25.

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T ⇥ V ⇥ V such that t0 � ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

Examples of two paths from (node �, t=�.�) to (node �, t=�). The
left one starts at �, arrives at �, has length � and duration �. The
right one starts at �, arrives at �.�, has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in � weakly connected
components (including one composed of the singleton node �)

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10 = 1.25.

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T ⇥ V ⇥ V such that t0 � ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

Examples of two paths from (node �, t=�.�) to (node �, t=�). The
left one starts at �, arrives at �, has length � and duration �. The
right one starts at �, arrives at �.�, has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in � weakly connected
components (including one composed of the singleton node �)

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4



RANDOM MODELS
Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:

A

C

B

D

t={1,3,5,6}

t={5,6}

t={2,3,4} t={1,2,3,4}

Link Shuffling

A

C

B

D

t={1,3,5,6}t={5,6}

t={2,3,4}

t={1,2,3,4}

Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:

A

C

B

D

t={1,2,3}

t={5,7}

t={7,8} t={1,2,3,5}

Timeline Shuffling

A

C

B

D

t={1,5}

t={2,5,8}

t={1,3,7} t={2,3,7}

More constrained Shu�ing

Variants of these shu�ings with additional constraints have been
proposed, for instance the Local timeline shu�ing, randomizing
events time edge by edge, or the Weight constrained timeline

shu�ing, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. ����) for more.

Going Further

Book: Holme and Saramäki ����
Stream Graph de�nition: Latapy, Viard, and Magnien ����
Transforming dynamic networks into static networks: Kivelä et al.
����
Dynamic Communities: Rossetti and Cazabet ����
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DYNAMIC COMMUNITY 
DETECTION
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COMMUNITY DETECTION

Static networks Dynamic Networks

Clusters: Sets of nodes  Clusters: Sets of time-nodes, 
i.e., pairs (node,time)

156 link streams for modelling interactions over time and application to the analysis
of ip traffic

We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.

a
b
c
d

0 5 time15 2010

e

Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate

Gaumont, N., Viard, T., Fournier-S’Niehotta, R., Wang, Q., & Latapy, M. 
(2016). Analysis of the temporal and structural features of threads in a 
mailing-list. In Complex Networks VII
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COMMUNITY DETECTION

Static networks Dynamic Networks

Clusters: Sets of nodes  

[Viard 2016]

Clusters: Sets of time-nodes, 
i.e., pairs (node,time)
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APPROACHES TO DCD
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DYNAMIC COMMUNITIES ?

Rossetti, G., & Cazabet, R. (2018). Community discovery 
in dynamic networks: a survey. ACM Computing Surveys 
(CSUR), 51(2), 1-37.

More than 50 methods published, broad categories

40



CATEGORIES

• Instant optimal: 
‣ Allows reusing static algorithms
‣ No partition smoothing
‣ Labels can be smoothed
‣ Simple to parallelize

41



CATEGORIES

• Temporal trade-off
‣ Cannot be parallelized (iterative)
‣ => Best suited for real-time analysis / tasks

• Cross-Time
‣ Requires to know the whole evolution in advance
‣ => Not suited for real-time analysis, potentially the best smoothed (a 

posteriori interpretation)
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WHAT MAKES DCD 
INTERESTING

NARRATIVES ?
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SMOOTHNESS / STABILITY

• No Smoothness: Partition at t should be the same as found by 
a static algorithm.

• Smoothness: Partition at t is a trade-off between “good” 
communities for the graph at t and similarity with partitions at 
different times

44



COMMUNITY EVENTS

Growth Contraction
t t+1 t t+1

Merging
t t+1

Splitting
t t+1

Birth
t t+1

Death
t t+1

t t+1 t+nt+n-1

Resurgence45



PROGRESSIVE EVOLUTION

2
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6
… …

2 communities 1 community??
Intermediate state

How to track communities, giving a coherent dynamic structure ?
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ONGOING WORK 1
How to adapt modularity for link streams?



MODULARITY

• Most popular approach in static networks: modularity 
optimization

• Fraction of edges inside communities - Fraction of edges 
expected inside communities according to a null model



MODULARITY

• How to adapt for link streams ?

•

156 link streams for modelling interactions over time and application to the analysis
of ip traffic

We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.

a
b
c
d

0 5 time15 2010

e

Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate



LONGITUDINAL 
MODULARITY

•

• Fraction inside communities=> OK

• Fraction expected?
‣ We need to choose a null model

- Keep node degrees (whole period or locally ?) => Timeline Shuffling => Globally
- How many links are expected between two nodes on an interval  ?

-

156 link streams for modelling interactions over time and application to the analysis
of ip traffic

We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.
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Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate
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Intuitively correct: find communities where
More links than expected by chance



LONGITUDINAL 
MODULARITY

• But… it does not work as expected

• Consider the red communities as a single community or 
separate ones
‣ Number of edges inside does not change
‣ Number of expected edges does not change
-

≈
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MODULARITY

• The problem is a “smoothness” problem
‣ No interest/gain to make a community last longer if it makes it less attractive 

at some point in time

• Solution Proposed:  Work with edge repetitions
‣ Modularity: Fraction of edges inside communities - Fraction of edges 

expected inside communities according to a null model
‣ Lmodularity:  Fraction of edges repetitions inside communities - 

Fraction of edges repetitions expected inside communities according to 
a null model
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• Modularity works thanks to a trade-off between:
‣ Each node added to a community allows to add some edges inside

- Large gain for each edge (1)
- Linear gain

‣ Each node added to a community increases the potential number of edges
- Small penalty for each edge (<<1)
- Quadratic penalty (square of nodes inside the community)

• LM works in a similar way:
‣ Making communities last longer allows to have more edge repetitions

- Large gain for each edge
‣ Making communities last longer increases quadratically the expectation 

of the number of repetitions
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Longitudinal Modularity Formula

Static versus Longitudinal

Static: Q(A, C) =
X

C2C

X

i ,j2C2


Aij

2m
�

kikj
4m2

�

Longitudinal: QL(L, C) =
X

C2C

X

u,v2V 2

"
L2uv2C
2µ

� uv
4µ2

|Tu2C \ Tv2C |2

|T |2

#

Victor Brabant Longitudinal Modularity 13 / 33



ONGOING WORK 2
How to define community events quantitatively?
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The beautiful theory
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Growth Contraction
t t+1 t t+1

Merging
t t+1

Splitting
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Birth
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Death
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Resurgence

3.1. PRELIMINARY RESULTS 19

(a) (b)

Figure 3.1: Temporal evolution of groups with labeled elements. In Figure 3.1a,
each network node is colored according to its categorical attribute, with different overlays
indicating different communities. A unique community in t (Figure 3.1a, left) splits into
two communities in t+1 (Figure 3.1a, right). Concurrently, the communities in t+1 show
an Increase in attribute homogeneity (i.e., the relative frequency of the most frequent node
attribute) w.r.t. the one in t. In Figure 3.1b groups are represented as rectangles, and
lines/flows represent the transition of elements from one group to another in the subsequent
timestamp. All groups’ members are associated with a categorical attribute represented
as a different color. Different colored areas indicate different attribute distributions (e.g.,
group 17_1 is composed of 50% red and 50% blue nodes).

tion/evolution. To this scope, we introduce the following measures: Flow Entropy, which
quantifies the extent to which the target group is composed of elements belonging to one
or many groups in the adjacent time instant; the Contribution Factor, which quantifies the
extent to which the contributing groups provide elements to the target one; the Difference
Factor, that quantifies the percentage of elements in the target group that are not observed
in the adjacent time instant. Note that the same measures can be used to quantify both
forward and backward evolution processes, depending on the temporal direction, i.e., by
relating the target group with those in the previous or next time instant. Starting from
these measures, we define two families of events, namely backward and forward events. We
introduce the possibility of quantifying the extent to which a transformation approximates
prototypical events as a function of Flow Entropy, Contribution Factor, and Difference
Factor (see Table 3.2). For instance, a Merge event maximizes Flow Entropy and Contri-
bution Factor while minimizing the Difference Factor; a Continue event maximizes the

The ugly truth
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• Given the successive partitions of a dynamic graph
‣ How to decide what events take place
‣ For instance to study quantitatively

- Do I have many merges? 
- Many splits? 
- Are large communities splitting more than small ones? 
- etc.



COMMUNITY EVENTS

• Given the successive partitions of a dynamic graph
‣ How to decide what events take place
‣ For instance to study quantitatively

- Do I have many merges? 
- Many splits? 
- Are large communities splitting more than small ones? 
- etc.

• Actually, the problem is not specific to communities in 
networks
‣ Dynamic clustering
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Following [25], the evolution of X can be quantified by adopting either of two
perspectives. Under the backward perspective, we look at the sets in t � 1 that con-
tribute to X’s formation; thus, imposing R ✓ St�1, we say that X evolves from R.
Conversely, under the forward perspective, we look at the sets in t + 1 that contain
current X members; thus, imposing R ✓ St+1, we say that X evolves into R. For the
sake of clarity, in the following, we will adopt the backward perspective to exemplify
and discuss the framework. Note, however, that the same considerations hold for
the forward perspective, the only di↵erence being the direction in which events are
evaluated (i.e., from the present to the future).

In order to describe the evolution of X from R three factors must be taken into
account: (i) whether elements belonging to X come from one or multiple sets in R;
(ii) the extent to which the contributing sets in R provide elements to X; (iii) whether
there are elements in X that do not belong to R’s subsets. In order to tackle the
first point, we borrow the notion of Normalized Shannon Entropy from information
theory [33].

Definition 1 (Flow Entropy). Let X be the target set, and R = {R1, . . . , R|R|} be
the reference set. Let B =

S
R2R X \ R identify the flow of X, namely the subset of

X shared with any of the elements of R. Let �(b) be a function that maps each b 2 B
to a unique identifier indicating the set R 2 R such that b 2 R. The Flow Entropy is
defined as:

H =

(
�
P

b2B
p(�(b)) log2 p(�(b))

log2 |R| if |R| � 2

0 o/w
(1)

The flow entropy quantifies the extent to which the nodes in X come from one or
multiple sets at time t�1. The flow entropy is bounded in [0, 1] due to the normalizing
factor log2 |R|. The more H approaches 0, the fewer sets contribute to X, and vice
versa. However, two special cases need further discussion:

• When only one set contributes to X, the Normalized Shannon Entropy would imply
a division by log 1 = 0. In such a case we posit H = 0 to describe evolution from a
single set.

• When no sets contribute toX, the Normalized Shannon Entropy would be undefined
due to dividing over log2 0. This case describes a setting where all elements x 2 X
are observed for the first time, which can be thought of as if all elements came from
a single set existing before our observation period. Thus, in this case we also set
H = 0.

Definition 2 (Contribution Factor).

W =
1

|X|

X

R2R
|R \X|

|R \X|

|R|
(2)

W measures the extent to which the target set is composed by the contributing sets
from t�1 provide elements toX (respectively, the extent to whichX provides elements
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COMMUNITY EVENTS
to the sets in t+1). The measure ranges in [0, 1]. W allows us to answer the following
question: How relevant are contributing sets from t�1 – in terms of provided elements
– with respect to the observed composition of X?

Assume that a single set of 10 elements, R, provides elements to X with two
alternative scenarios: a) it provides a single element, and b) it provides 9 out of 10
elements. In the former scenario, the contribution W will approach 0, in the latter it
will approach 1 (reaching those extreme values only when none or all elements of R
are present in X).

Definition 3 (Di↵erence Factor).

D =
|X �

S
R2R R|

|X|
(3)

The di↵erence factor quantifies the fraction of members in X that are not observed
in the previous timestamp, i.e., the new, never-before-seen elements. In the remainder
of this work, we will refer to these new elements as “joining” elements, as opposed to
the elements belonging to the target set’s flow.

To conclude the description of evolutive sets, we introduce the possibility of labeling
the elements in a set with a categorical attribute A such that a(e) 2 A identifies the
categorical attribute value of an element e. We assume the attribute value assigned
to an element to stay the same across time. Again, we can leverage the notion of
Shannon Entropy similarly as used in Definition 1 to quantify changes in group
mixing with respect to the attribute value.

Definition 4 (Attribute Entropy Change). Let the Attribute Entropy of X’s elements
be:

Hatt(X) = �

X

x2X

p(a(x)) log2 p(a(x))

log2 |{a(x)8x 2 X}|
(4)

The attribute entropy change is defined as the di↵erence between the Attribute Entropy
of the current set X and the mean of the Attribute Entropies of the reference sets.
Formally:

�Hatt = Hatt(X)�
1

|R|

X

R2R
Hatt(R) (5)

3.1 Characterizing the temporal evolution of clusters

The measures introduced above describe intuitive quantities that can be used to char-
acterize a group with respect to its evolutionary history, either past or future. Going
further, the evolutionary processes that outline a group’s life cycle can be seen as a
series of prototypical transformations (or, equivalently, events) that the cluster under-
goes. Here we introduce the possibility to quantify the extent to which a group and

7
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its immediate predecessors/successors approximate some prototypical transformations
described below. For the sake of clarity, in the remainder of this section, we will refer
to “prototypical” (or, equivalently, “pure”) events. Thus, we acknowledge that real-
world evolutionary events are rarely found in their “pure”, “prototypical” form, often
manifesting as complex and hybrid processes, often mired in messiness. As such, it is
relevant to characterize these processes as composite, measuring the extent to which
they approximate (one or more) “pure” events.

Under the backward perspective, we can do so with the following event weights.

Definition 5 (Backward Event Weights). Let X be the target set and R be the ref-
erence set such that X evolves from R. Backward event weights quantify the extent to
which X’s evolution from R approximates one of the following transformations:

Birth = (1�H) · (1�W) · D

Accumulation = H · (1�W) · D

Continue = (1�H) · W · (1�D)

Merge = H ·W · (1�D)

Offspring = (1�H) · (1�W) · (1�D)

Reorganization = H · (1�W) · (1�D)

Growth = (1�H) · W · D

Expansion = H ·W · D

Birth events are characterized by a high number of joining elements that compose
a set X, thus a pure, prototypical Birth is found when D is maximized. Theoretically,
it is not relevant to look at the past to identify a birth, since the appearance of new
elements is not related to the incoming flow. In real-world events, however, it may
happen that some fluctuating elements in R can join also such newborn sets. Anyway,
we expect a minimal contribution factor from the past sets, thus a pure, prototypical
Birth is observed when W is minimized (or, equivalently, 1�W is maximized). The
level of identity diversity of such few elements joining a newborn set lets us to further
distinguish between a pure Birth – maximizing 1�H – and an Accumulation, i.e.,
a birth from subsets – maximizing H. In this latter case, the high number of joining
elements (D) concurs with several contributing flows (H), that nonetheless contribute
little to the target set (1�W), resulting in a group composed of mostly new elements.

When the past contribution factor is maximized in the absence of new elements, we
characterize a Continue, if 1 � H is maximized, or a Merge, if H is maximized.
Continue events identify elements from a single set that are found together (i.e., in
the same set) in the next timestamp. Merge events identify the case where two or
more sets of similar size join to form a single set in the next timestamp.

8

When the contribution factor is low, and in the absence of new elements, we can wit-
ness an Offspring or a Reorganization, depending on the flow entropy. A pure,
prototypical Offspring is observed when 1 � H is maximized, meaning that just a
portion of a single set is found together in another set. A Reorganization occurs
when H is maximized, meaning that the target set is composed of small portions of
several contributing sets.

When the past contribution factor is maximized in the presence of a high number
of joining elements, we can witness a Growth. A pure, prototypical Growth is a
single set that expands over the next timestamp, thus it is found by maximizing the
following three weights: 1 � H, for identifying single set identity, W, for maximum
contribution from the past sets, and D, for a high fraction of joining elements. By
maximizing H, instead, we can witness an Expansion, i.e., similarly to a Growth

but from several contributing subsets. It should be noted that it is theoretically
impossible to maximize both W and D at the same time. Indeed, D is the fraction
of joining elements over X, which is maximized when all elements are new, i.e., do
not come from the in-flow. W, instead, depends on the fraction of elements in the
flow – that is, on 1 � D. Consequently, W and D are dependent measures since
they are both influenced by the number of joining elements. It can be shown that
W + D  1. This implies that W and D cannot be maximized simultaneously, as a
high value for one will lead to a low value for the other. As a consequence, Growth

and Expansion cannot be maximized. We stress that this aspect must be considered
when characterizing the sets’ evolutive history.

Similarly to Definition 5, other events can be described by adopting the forward
perspective.

Definition 6 (Forward Event Weights). Let X be the target set and R be the reference
set such that X evolves into R. Forward event weights quantify the extent to which
X’s evolution into R approximates one of the following transformations:

Death = (1�H) · (1�W) · D

Dispersion = H · (1�W) · D

Continue = (1�H) · W · (1�D)

Split = H ·W · (1�D)

Ancestor = (1�H) · (1�W) · (1�D)

Disassemble = H · (1�W) · (1�D)

Shrink = (1�H) · W · D

Reduction = H ·W · D
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Fig. 1: Backward and Forward event weights extracted from community 3 3.

show an Event Typicality Index equal to 1 (i.e., prototypical events), while the major-
ity of the instances show T < 0.75 (52%). Similar results are obtained by observing
forward events. Indeed, excluding 19 events detected at the last time instant (neces-
sarily pure Deaths), 10% of the instances are pure, while 49% show T < 0.75. This
hints at the fact that event categorizations, albeit useful to describe general charac-
teristics of the data, may not always fully capture the complexity of real-world events.
In fact, the full picture of a group’s transformations can be obtained by analyzing all
of its event weights. As an example, in Figure 1, we show backward and forward event
weights for community 3 3. The backward event weights highlight a Continue-like
event showing some traits of a Merge (i.e., two contributing sets coming together),
of an Offspring (due to the largest contributing community not coming in full),
and of Reorganization (due to the low contribution of the smaller contributing
community). The forward event weights, instead, describe an event showing traits
of Disassemble, Dispersion, and Reduction due to the disappearance of most
individuals and the separation of the remaining ones into multiple, smaller, groups.

Event weights capture cluster stability during class hours and variance at lunchtime.
In the following, we aim to illustrate how the proposed event categories can be
interpreted to describe real-world system-wide dynamics. For such a purpose, we
characterize each community as the result of the backward and forward events with
the highest score. Figure 2 details the number of individuals involved in each event
across the 10 hours of the school day.

From a backward perspective, most communities are born in the first hours (9:00-
11:00), when students arrive at their classrooms and have the chance to connect. As
expected, from a forward perspective, the communities that are already born continue
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