A RESEARCH QUESTION

Communities in degenerate link streams
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DYNAMIC NETWORKS

» Most real world networks are dynamic

» Facebook friendship

- People joining/leaving

- Friend/Unfriend

Twitter mention network

- Each mention has a timestamp

v

- Aggregated every day/month/year => still dynamic
VWorld Wide Web

Urban network
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DYNAMIC NETWORKS

» Most real world networks are dynamic

» Nodes can appear/disappear
» Edges can appear/disappear
» Nature of relations can change

* How to represent those changes!

* How to manipulate dynamic networks?
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TEMPORAL NETWORK

Collected dataset, for instance in (t,u,v) format
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Snapshots
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TEMPORAL NETWORK

Interval Graph
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SLOWLY EVOLVING
NETWORKS
(SEN)



SLOWLY EVOLVING NETWORKS

* Edges change (relatively) slowly

* The network is well defined at any t

» Nodes/edges described by (long lasting) intervals
» Enough snapshots to track nodes

* A static analysis at every (relevant) t gives a dynamic vision

* No formal distinction with previous case (higher observation
frequency)



SLOWLY EVOLVING NETWORKS

= [slalization

» Problem of stability of node positions




SLOWLY EVOLVING NETWORKS
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Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data
(TKDD) 1.1 (2007): 2.



UNSTABLE/DEGENERATE
TEMPORAL NETWORKS

Matthieu Latapy, Tiphaine Viard, and Cléemence Magnien.
‘Stream graphs and link streams for the modeling of inter-
actions over time". In: Social Network Analysis and Mining 8.1
(2018), p. 61.



UNSTABLE TEMPORAL
NETWORK

* The network at a given t Is not meaningful

* How to analyze such a network!?
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UNSTABLE TEMPORAL
NETWORK

» Common solution: transform into SEN using aggregation/
sliding windows

» Information loss
» How to chose a proper aggregation window size!

- New theoretical tools developed to deal with such networks

- Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien 2018)

- Temporal Networks, Contact Sequences and Interval
Graphs (Holme and Saramaki 2012)

- Time Varying Graphs (Casteigts et al. 2012)



CENTRALITIES
&
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S TREAM GRAPHS

Stream Graph (SG)- Definition

Stream Graphs have been proposed in? as a generic formalism -
It can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or redefining

typical notions of graphs on dynamic networks, including degen-
erate ones.

Let's define a Stream Graph
S=((T,V,W, E)

Set of Possible times (Discrete or Time intervals)
Set of Nodes

Vertices presence time V x T

Edges presencetime V x V x T

9Latapy, Viard, and Magnien 2018,




S TREAM GRAPHS

SG - Time-Entity designation

It Is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:

Nodes At Time: set of hodes present at time ¢
Edges At Time: set of edges present at time ¢
Snapshot: Graph at time t, G¢ = (V4, Et)
Node-time: v; exists if node v Is present at time ¢
Edge-time: (u, v); exists if edge (u,v) is present at
time ¢t

Times Of Node: the set of times during which u Is
present

Times Of Edge: the set of times during which edge
(u, v) Is present




ST REAM GRAPHS

Node presence: The fraction of the total time during

which u Is present in the network ||7;’:L||

Edge presence: The fraction of the total time during

which (u,v) is present in the network |T§;"|)|




S TREAM GRAPHS

SG - Redefining Graph notions

The general idea of redefining static network properties on Stream
Graphs is that If the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.




STREAM GRAPHS

The number/quantity of nodes in a stream graph is defined as the
total presence time of nodes divided by the dataset duration. In
general, it isn't an integer.

More formally:

For instance, N = 2 if there are 4 nodes present half the time, or
two nodes present all the time.
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S TREAM GRAPHS
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S TREAM GRAPHS

The number of edges is defined as the total presence of edges
divided by the total dataset duration.
More formally:

E|
L= ), bww =75,

(u,v),u,veEV

For instance, L = 2 if there are 4 edges present half the time, or
two edges present all the time.




S TREAM GRAPHS
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S TREAM GRAPHS

SG - Edgedomain - L, ..

In Stream Graphs, several possible definitions of Ly, ax could exist:

- Ignoring nodes duration: LL . = |V|?

max

- Ighoring nodes co-presence L2 ., = N?

max

- Taking nodes co-presence into account:
i Z(u,v),u,vev T () T |




S TREAM GRAPHS

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

- - 3
In the following, we will use L) .,

as In Latapy et al.



S TREAM GRAPHS




S TREAM GRAPHS

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have defined
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C' is as subset of W, and the cor-
responding (induced) substream S(C) = (T,V,C, E(C)), with
E(C) ={(, (u,v)) € E, (t,u), (¢,v) € C}.

Example of subgraph (red,left) and induced substream (right).




S TREAM GRAPHS

SG - Cliques

Having defined substreams and density, we can now naturally de-
fine a clique by analogy with static networks as a substream of
density 1. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.




S TREAM GRAPHS

SG - Neighborhood N (u)

The neighborhood N (u) of node w is defined as the cluster com-
posed of node-times such as an edge-time exists between it and
a hode-time of , i.e,

N(u) = {vt, (u,v)t € £}

SG - Degree k(u)

The degree k(u) of node wu is defined as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = [N (u)|
3 +
. e —
5° (N —— - —
21 — I 1
r—T———~—"—~"~"7""7"7"7"7°
0 l It

Example, the neighborhood of node 2 is highlighted in grey.

) — e Lo




S TREAM GRAPHS

SG - Ego-network

The Ego network G, of hode w is defined as the substream in-
duced by its neighborhood, i.e., G, = (T, V, N(u), E(N(u))).

SG - Clustering coefficient

The clustering coefficient C'(u) of node u is defined as the density
of the ego-network of u, i.e.

C(u) = d(N(u))




RANDOM MODELS FOR
DYNAMIC NETWORKS

Laetitia Gauvin et al. “Randomized reference models for temporal networks”. In: SIAM Review 64.4 (Nov. 2022)



RANDOM MODELS

* In many cases, In network analysis, useful to compare a
network to a randomized version of It

» Clustering coefficient, assortativity, modularity, ...

* In a static graph, 2 main choices:

» Keep only the number of edges (ER model)
» Keep the number of edges and the degree of nodes (Configuration model)

* In dynamic networks, it Is more complex...



RANDOM MODELS

Snapshot Shuffling Sequence Shuffling

Snapshot Shuffling keeps the order of snapshots, randomize
edges inside snapshots. Any random model for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

Sequence Shuffling keeps each snapshot identical, switch ran-
domly their order.
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RANDOM MODELS

Link Shuffling

Link Shuffling keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node

pairs, e.g..

t={1,3,5,6}

t=(2,3,4} t={1,2,3,4} E> t={5,6}

Link Shuffling
t={5.6} t=(2,3,4}

t={1,2,3,4} Q
B

t={1,3,5,6}

Timeline Shuffling

Timeline Shuffling keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
IS to redistribute randomly activation period among all edges, e.g.:

t={1,2,3} t={1,"}
A
t={7,8} t={1,2,5, E> t={1,3,7} t={2,3,7}
Timeline Shufflin
© t={",7} 9 © t={2,",8}
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BlAR@HE®

Rossetti, G., & Cazabet, R. (2018). Community discovery
in dynamic networks: a survey. ACM Computing Surveys
(CSUR), 51(2), 1-37.

Cazabet, R., Boudebza, S., & Rossetti, G. (2020). Evaluating community detection
algorithms for progressively evolving graphs. Journal Of Complex Networks



EOMMUNITY DE | EC THEHS.

Static networks Dynamic Networks

Clusters: Sets of nodes Clusters: Sets of time-nodes,
.e., pairs (node,time)

Bi



EOMMUNITY DE | EC THEHS.

Static networks Dynamic Networks

Clusters: Sets of nodes Clusters: Sets of time-nodes,
.e., pairs (node,time)
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DYNAMIC COMMUNITIES ?

More than 50 methods published, broad categories

(A) Instant Optimal (B) Temporal Trade-Off (C) Cross-Time

(A1) Iterative, (B1) Update by Global Optimization

Similarity Based

(C1) Fixed Memberships,

Fixed Properties
(B2) Informed CD by

(A2) Iterative, Multi-Objective Optimization
Core-Node Based

(C2) Fixed Memberships,

Evolving Properties
(B3) Update by Set of Rules

(A3) Multi-Step Matching

(C3) Evolving Memberships,
Fixed Properties

(B4) Informed CD by Network Smoothing

(C4) Evolving Memberships,
Evolving Properties

Clusters at t depends only on the current state

of the network Clusters at t depends on current and past

Clusters are non-temporally smoothed states of the network Clusters at t depends on both past and future
(Communities labels, however, can be Clusters are incrementally temporally states of the network

smoothed) smoothed Clusters are Completely temporally smoothed

55—

Rossetti, G., & Cazabet, R. (2018). Community discovery
in dynamic networks: a survey. ACM Computing Surveys
(CSUR), 51(2), 1-37. 4o



CATEGORIES

* Instant optimal:

» Allows reusing static algorithms
» No partition smoothing

» Labels can be smoothed

» Simple to parallelize

il



CATEGORIES

* lemporal trade-off

» Cannot be parallelized (iterative)
» => Best suited for real-time analysis / tasks

M@ ress- ['ime

» Requires to know the whole evolution in advance

» => Not surted for real-time analysis, potentially the best smoothed (a
posteriori interpretation)

250)



WAl MAKES DCES
INTERES TING

NARRATIVES ?



SMOOTHNESS / STABILITY

* No Smoothness: Partition at € should be the same as found by
a static algorithm.

* Smoothness: Partition at € Is a trade-off between “good”
communities for the graph at € and similarity with partrtions at
different times

44



COMMUNITY EVENTS
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PROGRESSIVE EVOLU TION

Lo o 0. D0 eeD 0. oo,

) communities

” | community

Intermediate state

How to track communities, giving a coherent dynamic structure !

46



ONGOING WORK |

How to adapt modularity for link streams!?



MODULARITY

» Most popular approach in static networks: modularity
optimization

* Fraction of edges inside communities = Fraction of edges
expected inside communities according to a hull model



MODULARITY

* How to adapt for link streams ?




LONGITUDINAL
MODULARITY

* Fraction inside communities=> OK

@iEllon expected!

» We need to choose a null model
- Keep node degrees (whole period or locally ¢) => Timeline Shuffling => Globally
- How many links are expected between two nodes on an interval [z, ... t,,.4] !
kK [gars Tendl
T 2m T




LONGITUDINAL
MODULARITY

Inturtively correct: find communities where
More links than expected by chance
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LONGITUDINAL
MODULARITY

* But... it does not work as expected

» Consider the red communities as a single community or

S=pdlfdle ONeS

» Number of edges inside does not change
» Number of expected edges does not change

Wi kukv [tstart’ tend]
2m 15




LONGITUDINAL
MODULARITY

* [he problem Is a “smoothness’ problem

» No Interest/gain to make a community last longer if it makes It less attractive
at some point In time

» Solution Proposed: Work with edge repetitions

» Modularity: Fraction of edges inside communities = Fraction of edges
expected Inside communities according to a null model

» Lmodularity: Fraction of edges repetitions inside communities =
Fraction of edges repetitions expected inside communities according to
a null model



LONGITUDINAL
MODULARITY

» Modularity works thanks to a trade-off between:

» Each node added to a community allows to add some edges Inside
- Large gain for each edge (1)
- Linear gain
» Each node added to a community increases the potential number of edges
- Small penalty for each edge (<<I)
- Quadratic penalty (square of nodes inside the community)

* LM works in a similar way:

» Making communities last longer allows to have more edge repetitions
- Large gain for each edge

» Making communities last longer increases quadratically the expectation
of the number of repetitions



LONGITUDINAL
MODULARITY

Static: Q(A,C)= > [2,77_::2]
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ONGOING WORK 2

How to define community events quantitatively?



COMMUNITY EVENTS
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COMMUNITY EVENTS
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COMMUNITY EVENTS

» Glven the successive partitions of a dynamic graph

» How to decide what events take place

» For instance to study quantitatively
- Do | have many merges!
- Many splits?
- Are large communities splitting more than small ones?
lC



COMMUNITY EVENTS

» Given the successive partitions of a dynamic graph

» How to decide what events take place

» For instance to study quantitatively
- Do | have many merges!
- Many splits?
- Are large communities splitting more than small ones?

- elc.

» Actually, the problem Is not specific to communities in

networks
» Dynamic clustering



COMMUNITY EVENTS

Definition 1 (Flow Entropy). Let X be the target set, and R = {R1,..., Rig|} be
the reference set. Let B = | o X N R identify the flow of X, namely the subset of
X shared with any of the elements of R. Let o(b) be a function that maps each b € B
to a unique identifier indicating the set R € R such that b € R. The Flow Entropy is
defined as:

o(b))lo o(b :
e e p(a( )llg2g|27zp|( (b)) if |IR| > 2 "
0 0/w
The flow entropy quantifies the extent to which the nodes in X come from one or
multiple sets at time ¢t — 1. The flow entropy is bounded in [0, 1] due to the normalizing

factor log, [R|. The more H approaches 0, the fewer sets contribute to X, and vice
versa. However, two special cases need further discussion:



COMMUNITY EVENTS

Definition 2 (Contribution Factor).

1 RN X]|
W=— > |[RNX| (2)
2 = R

YV measures the extent to which the target set is composed by the contributing sets
from t—1 provide elements to X (respectively, the extent to which X provides elements



COMMUNITY EVENTS

Definition 3 (Difference Factor).

X ~Uper R
x|

D (3)

The difference factor quantifies the fraction of members in X that are not observed
in the previous timestamp, i.e., the new, never-before-seen elements. In the remainder
of this work, we will refer to these new elements as “joining” elements, as opposed tc
the elements belonging to the target set’s flow.



COMMUNITY EVENTS

Definition 5 (Backward Event Weights). Let X be the target set and R be the ref-
erence set such that X evolves from R. Backward event weights quantify the extent to
which X’s evolution from R approximates one of the following transformations:

BIRTH = E e (LA )
ACCUMULATION = H-(1-W)-D
CONTINUE = (= TR0 Y (L= 7))
MERGE = H-W-(1-D)
OFFSPRING = 1-H)-1-wW)-(1-D)
REORGANIZATION = Tre (L =A%) (L = 72))
GROWTH = 1-H)-W-D
EXPANSION = H-W-D

Definition 6 (Forward Event Weights). Let X be the target set and R be the reference
set such that X evolves into R. Forward event weights quantify the extent to which
X'’s evolution into R approximates one of the following transformations:

" il DEATH = 1-H)- 1-W):-D
DISPERSION = H-(1-W)-D

CONTINUE = (1-H)-W-(1-D)

g SPLIT = H-W-(1-D)

. ) ANCESTOR = 1—H)- @ —wW)- [ =D)

DISASSEMBLE = H-1-W)-(1-D)

— SHRINK = 1-H)-W-D

REDUCTION = HS e
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