
CLASSIFICATION



CLASSIFICATION

• Objective: predict the class of an item

• Methods for regression can be reused with some adaptations
‣ Binary Classification is usually simple
‣ Multiclass Classification might require more changes

• Evaluation is different



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface

Classified as 1Classified as 0

MSE 0.06361520558572538 
RMSE 0.2522205494913636 
MAE 0.20506852857512292 
R2 0.7455391776570985



LINEAR CLASSIFICATION
• Weaknesses: Outliers



LINEAR CLASSIFICATION
• Weaknesses: Class imbalance



LINEAR CLASSIFICATION
• More generally, inadapted objective: 

‣ The relation is not linear
‣ We minimize a cost function (MSE) which is not meaningful: 

- Some predictions go beyond possible values (prediction less than 0 or more than 1 adding 
error



SIGMOID/LOGISTIC 
FUNCTION

lim
t→+∞

sig(t) = 1lim
t→−∞

sig(t) = 0 sig(0) = 0.5



LOGISTIC REGRESSION

̂y = β0 + β1xi + β2x2 + . . . + βnxn

P(y = 1) = Sig(β0 + β1xi + β2x2 + . . . + βnxn)

Sig(x) =
1

1 + e−x

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

Linear regression:

Logistic 
Regression:

Logisitic (Sigmoid) function:



LOGISTIC REGRESSION
P(y = 1) =

1
1 + e−β0+β1xi+β2x2+...+βnxn

1
P(y = 1)

= 1 + e−β0+β1xi+β2x2+...+βnxn

1 − P(y = 1)
P(y = 1)

= e−β0+β1xi+β2x2+...+βnxn

P(y = 1)
1 − P(y = 1)

= eβ0+β1xi+β2x2+...+βnxn

ln(
P(y = 1)

1 − P(y = 1)
) = β0 + β1xi + β2x2 + . . . + βnxn



LOGISTIC REGRESSION
P(y = 1)

1 − P(y = 1)
= eβ0+β1xi+β2x2+...+βnxn

probability to happen / probability not happening =>odds (FR: cote)

Get a 6 in a dice : odds =  1:5=0.2
Get a 5 or 6: odds = 2:4 =0.5

Get everything but a 1: odds = 5:1=5



LOGISTIC REGRESSION

P(y = 1)
1 − P(y = 1)

= eβ0eβ1xieβ2x2( . . . )eβnxn

/!\ multiplicative relation between variables
Interpretation as odd ratios: 

in  =>odds multiplied by +1 xi eβi

https://christophm.github.io/interpretable-ml-book/logistic.html



MULTICLASS
LOGISTIC REGRESSION

• In many cases, we have more than 2 classes
‣ e.g.: {house, apartment, office, industrial}. {cat,dog,horse,…}
‣ Categories are unordered=> conversion to numeric would be catastrophic

• Simple solution: one VS all
‣ Train a logistic classifier on one class VS all other classes.
‣ Pick the class with the largest confidence

- e.g.: house: 20%. Apartment: 30%. Office: 70%. Industrial: 80%=>Industrial.

• Alternative approach: softmax regression



SOFTMAX

• Softmax is a generalization of Logistic/Sigmoid to Multiclass
‣ Takes several outputs with arbitrary values 
‣ Convert into a set of (positive) probabilities summing to 1.

•

‣ : vector of real numbers
‣ Exponential convert Real into 
‣ Division by the sum normalizes (sum of values =1). 

∈ (−∞, + ∞)

σ(z)i =
ezi

∑K
j=1 ezj

z
(0, + ∞)



CROSS ENTROPY

• The usual loss function associated with softmax is the cross-
entropy
‣ We have an estimated probability  for each possible outcome , we 

compare with the true distribution (one-hot encoding,  for the true 
label)

•

•  for  =True label

q(i) i
p(i) = 1

H(P, Q) = − ∑
i

p(i) log q(i)

H(P, Q) = − log q(i) i



CLASSIFICATION WITH 
DECISION TREE



DECISION TREE

• Trees can be easily adapted to the classification task
‣ It is even more natural than for regression

• The principle is to divide observations in term of class 
homogeneity
‣ We want items in the same branch/leaf to belong to the same class



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣

Gini Coefficient: 

- : fraction of items of class 
- Min: 0: 1 class only
- Max: 0.5: (2 classes), 0.66(3classes), 0.75 (4classes), 0.875(8classes)

‣ Interpretation:
- If we classify a random item randomly according to class distribution, it is the probability to 

be wrong.

1 − ∑
j

p2
j

pi i



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Entropy: 

- Min: 0: 1 class only
- Max: 1(2 classes), 1.584(3 classes), 2 (4 classes), 3 (8 classes), etc.

‣ Interpretation: average # of bits required to encode the information of the 
class of each item, using optimal coding

pi i

−∑
j

pj ⋅ log2pj



DECISION TREE



CLASSIFICATION EVALUATION



BINARY CLASSIFICATION

• Many scenarios require binary classification
‣ Covid/not covid
‣ Give a credit/do not give credit
‣ Spam/not-spam
‣ Postive sentiment/negative sentiment
‣ Face on a photo/no face
‣ Normal user/bot
‣ Etc.



CLASSIFICATION:
EVALUATION

/!\ Positive=1, not 0.
Results change according to 

which class
Is 1. 



CLASSIFICATION:
EVALUATION

• Precision=
‣ Among those predicted as True, fraction of really 

True

• Recall= 
‣ Among those really true, what fraction did we 

identity correctly

• Non-symmetric 
‣ Precision success != Precision failure. 

TP
TP + FP

TP
TP + FN



ACCURACY

• Accuracy: 

• Fraction of correct prediction, among all predictions
‣ Simple to interpret, symmetric

• Main drawback: class imbalance
‣ Test whole city, 1 000 people, for Covid

- 95% don’t have covid, i.e., 50 people have covid, 950 don’t have it
‣ Our test (ML algorithm) is pretty good: TP: 45 - FN: 5 - TN: 900 -FP: 50

- Accuracy= (45+900)/1 000=0.945
‣ Dumb classifier : Always answer: not covid

- Accuracy: (0+950)/1 000 = 0.95

TP + TN
P + N



F1 SCORE
• F1 score: 

‣ Harmonic mean between precision and recall
- Harmonic mean more adapted for rates.
- Gives more importance to the lower value
- Not symmetric

• Scores for the covid predictor :
- Precision=45/95=0.47
- Recall = 45/50=0.9

‣ F1=0.65

• Score for the naive predictor impossible to compute…
‣ You need at least some TP !
‣ Assuming 1 “free” TP (Precision=1, Recall=1/50)

- => F1=0.04

F1 = 2
precision * recall
precision + recall



RANKING-BASED 
EVALUATION SCORES



RANKING-BASED SCORES

• Most classification methods assign a probability, or score, to 
their prediction.

• If our objective is not really to answer a yes/no question, we 
can use ranking-based approaches
‣ Typical example: recommendation. Will user X buy product Z?

- We are not really interested in having a correct classification(impossible problem), but of 
ranking correctly items.



PRECISION@K

• If we know that we will do exactly k recommendations, 
compute the precision among the k highest scores: 
Precision@k
‣ Typically, search engine-like evaluation

• If we don’t know the exact k-value, but we know we care 
more about the first ones: Average Precision@k
‣ Compute the precision for each value of k, weighted by the gain in recall

-

- It can also be understood as the area under the Precision/Recall Curve

n

∑
i

(Ri − Ri−1)Pi
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AVERAGE PRECISION
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AVERAGE PRECISION
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AVERAGE PRECISION
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AVERAGE PRECISION
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AVERAGE PRECISION
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All correct
Until we got 50% of all P.

When we get all Pos.,
precision =50%



AVERAGE PRECISION

36



AVERAGE PRECISION

• Interpretation:
‣ 1: all class 1 ranked first

• Pros:
‣ No need to arbitrarily decide k

• Cons:
‣ Results still depend on the fraction of real positive in the test set:

- The more positive, the easier it is to have a good score
- Imagine 90% of class 1 : random order => value of 0.9
- If 10% of class 1, random order => value of 0.1

37



AUC - AUROC

• AUC: Area Under the Curve. Short name for AUROC (Area 
under the Receiver Operating Characteristic Curve)

• Similar idea than AP, but analyzing the relationship between

‣ True positives rate (recall): 

- Among all really positives, those we labelled correctly

‣ False positives rate :

- Among all really negatives, fraction we mislabelled.

TPR =
TP

TP + FN
= Recall

FPR =
FP

FP + TN

38
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AUC
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50% of pos. without FP

Got all pos. with 50% of FPR



AUC - AUROC
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AUC - AUROC
• Probabilistic interpretation:

‣ If we pick a random positive example and a random negative example, 
probability that the positive one has a higher score 

• Pros: 
‣ Independent on the fraction of positive examples, i.e., an unbalanced test set 

can be used
- If at random we got 30% of all positives, we have also 30% of all negatives

• Cons:
‣ Often high values, (>0.95), thus small (relative) improvements
‣ Not helpful if you care about the first few elements

46



KNN
K nearest neighbors



K-NN

• Extremely simple approach, yet very powerfull in certain cases

• Principle: to classify (or regress) a new observation, we search 
for the closest one(s) in the training set, and assign the same 
class/value average.
‣ K is obviously a parameter



K-NN

https://helloacm.com/a-short-introduction-to-k-nearest-neighbors-algorithm/



Dataset (2D, 3 classes)

1-NN 5-NN



K-NN
• Strength

‣ Extremely efficient with large training set and good covering of the feature 
space
- Shown to outperforms more advanced methods in many applications

‣ Few parameters, simple to understand
‣ No training time (possible precomputation)

• Weaknesses
‣ Finding neighbors is done at evaluation time, which can be a problem with large 

datasets
- Solutions: K-D tree, Ball tree… but keep dataset in memory. Hashing…

‣ Curse of dimensionality=>dimensionality reduction first.
‣ Choice of a proper distance



ML ADVANCED



REGULARIZATION



REGULARIZATION

• We have seen that a drawback of ML methods is that they 
can overfit

• When the ML objective can be clearly expressed, there is a 
generic way to limit overfitting: regularization
‣ Two types of regularization:

- L1 or Lasso regularization
- L2 or Ridge regularization



L2 REGULARIZATION

• L2 or Ridge Regularization  (for linear regression)

‣

‣

‣
Notation: 

ℓ(b, w) =
1
N

N

∑
i

(yi − (b +
p

∑
j

(wjxij)))2 + λ
p

∑
j

w2
j

ℓ(b, w) =
1
N

N

∑
i

(yi − ̂yi)2 + λ
p

∑
j

w2
j

p

∑
j

w2
j = ∥w∥2

2



L2 REGULARIZATION

• Expressed as a general principle

‣

- Some parameters are regularized, and some others might not be (intercept…)

• Intuition: we force coefficients to be small.
‣ If =0, normal regression
‣ If -> , all coefficients tends towards 0
‣ /!\ The magnitude of coefficients depends on the magnitude of variables!

- Important to normalize the variables, else you will constraint more the variables of lower 
amplitude

ℓ(b, w) =
1
N

N

∑
i

f(yi, ̂yi, b, w) + λ
p

∑
j

w2
j

λ
λ ∞



L1 REGULARIZATION

• L1 or Lasso Regularization 
‣ Lasso: Least Absolute Shrinkage and Selection Operator

‣

‣

‣
Notation: 

ℓ(b, w) =
1
N

N

∑
i

(yi − (b +
p

∑
j

(wjxij)))2 + λ
p

∑
j

|wj |

ℓ(b, w) =
1
N

N

∑
i

(yi − ̂yi)2 + λ
p

∑
j

|wj |

p

∑
j

|wj | = ∥w∥1



REGULARIZATION

• Similar methods, different results:
‣ L1 regularization tends to force some values to be 0
‣ L2 regularization tends not to attribute 0

• L1 regularization thus performs variable selection
‣ Variables for which the coefficient is 0 can be discarded



REGULARIZATION
• Why different behaviors ?

‣ We minimize the sum of error+constraints
‣ Red lines represent error (every point of a circle have same error)
‣ Similarly for blue.
‣ Intersection is the optimal solution (for that error, minimize constraint)

• => For a same error, L1 favors some variables to 0

https://online.stat.psu.edu/stat508/book/export/html/749

L1 L2



ELASTIC NET

• Best of both worlds :)

• ℓ(b, w) =
1
N

N

∑
i

(yi − ̂yi) + λ1

p

∑
j

|wj | + λ2

p

∑
j

w2
j



ENSEMBLE LEARNING



ENSEMBLE LEARNING

• Ensemble learning is a general principle:
‣ All models have strengths and weaknesses

- e.g., linear models struggle with non-linearities but are good at extrapolation
- Decision trees are good at capturing non-linearities, but struggle with extrapolation

‣ Could we combine the strengths of various models?
- Direct application: Stacking
- Using multiple times the same model: Bagging
- Training models specifically to solve other weaknesses: Boosting



ENSEMBLE LEARNING



STACKING
• In the simplest approach, various models (different approaches, 

same approach with different parameters) are trained on the 
same dataset

• Their predictions are then combined:
‣ Regression: averaging. Average values of the classifiers (possibly weighted)
‣ Classification: 

- Voting: class with the most vote
- Soft / Averaging: average of probabilities yielded by the classifier

• Weaknesses:
‣ What if several models make the same mistake? (Correlation of errors…)
‣ What if we merge good models and poor models?



STACKING

• A possible solution to stacking is to use a meta-model:
‣ The prediction made by each individual model is considered as a feature for 

the meta-model
‣ The meta-model is trained as any ML model with the original target, but using 

sub-models outputs as features.

• Any model can be used as meta-model

• Famous for winning the $1M prize of the 2009 Netflix prize.
‣ 100+ individual predictors 



BAGGING
• Bagging is an ensemble methods, but differ from stacking in 

two main ways:
‣ The various individual predictors are made of the same algorithm
‣ Each algorithm is trained on a subset of the original data

- Different subsets on all variables
- And/Or trained only on some variables
- => Various strategies exist.

• Advantages over stacking:
‣ All models are comparable, less chances to average “good” and “bad” models
‣ Can be understood as “lower the Variance”, i.e., prevent overfit.



BAGGING: RANDOM FOREST

• Random forest is the most famous bagging algorithm
‣ It is based on decision trees (thus the name forest…)
‣ A direct application of bagging 

• Trees are good candidates for bagging because overfit is their 
main problem
‣ What is similar between trees will stay, and when they disagree, taking the 

average of all the errors should get close to right answer.
- Similar to “Wisdom of the crowds”



RANDOM FOREST
• Set 

‣ Parameters of individual trees (not too simple, not too large…)
‣ Averaging function
‣ Nb. of trees

• What is specific is the subsamble strategy
‣ What is key is to avoid correlation between trees, i.e., train on different data
‣ Subsample observations: With replacement. Sample n at random among n 

items
- Variants: m among n. Or without replacement: random samples, or “folds” (each observation 

used in a single tree, but requires lot of data)…
‣ Specific to trees: subsample of variables at each node: to chose the best split, 

restrain to a random fraction of variables.
- Impose diversity in the trees



BOOSTING



BOOSTING
• Again, a general principle

• We train various models in sequence
‣ First, train a normal model

- Usually, this model will be tuned to be relatively simple, and thus underfit=>Weak learners
‣ Then, extract the errors of the model (incorrect classes/residuals). 
‣ Train a second model, focusing on predicting the errors missed by the first model
‣ Update the main model and recompute the errors
‣ Repeat until we cannot improve anymore

• Final prediction is the sum of all weak learners (not average: each 
method corrects, complements previous ones) 

FT(x) =
T

∑
t=1

ft(x)



XGBOOST



XGBOOST

• As of today, certainly the most popular method among those 
not using neural networks

• Used in winning solution in countless ML challenges
‣ And at Google, Amazon, Uber…

• Both : 
‣ A method described in a scientific paper
‣ A library developed and improved by a community

- Changes in the ML scientific culture…



XGBOOST

• In a few words:
‣ A tree boosting methods

- Can be used for classification and regression
‣ Weak learners 

- Default to 3 or 6 levels max
‣ Introduces Regularization

- Each new leaf adds some regularization cost
‣ Gradient Boosting method: 

- Explicitly do a gradient-descent-like approach 



GRADIENT BOOSTING

• Gradient boosting is the application of boosting to explicit 
gradient descent



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



GRADIENT BOOSTING

https://medium.datadriveninvestor.com/how-do-boosting-algorithms-work-5d2c734aca4c



XGBOOST IN A NUTSHELL

• In our loss for the tree, we decompose the prediction  as
‣ Prediction given by previous tree + prediction of new tree.
‣  regularization, explained later

̂y

ω

obj(t) =
n

∑
i=1

l(yi, ̂y(t)
i ) +

t

∑
i=1

ω( fi)

=
n

∑
i=1

l(yi, ̂y(t−1)
i + ft(xi)) +

t

∑
i=1

ω( fi)



XGBOOST IN A NUTSHELL

•  : score of a leaf

• Using RMSE as an objective:
‣ : Sum of errors (to residuals)
‣ : Number of items in the leaf
‣ : Regularization parameter

wj

Gj

Hj

λ

wj = −
Gj

Hj + λ



GAIN ON A SPLIT

•

• => Left and Right children

• Sum of regularized averaged error of the children squared, 
minus that of parent, minus regularization 

Gain =
1
2 [ G2

L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ ] − γ

L, R

γ

https://xgboost.readthedocs.io/en/stable/tutorials/model.html



XGBOOST IN A NUTSHELL
• For First tree:

‣ For each leaf
- We compute the gain to find the best possible split,
- If regularization makes the gain negative, do nothing
- If we reach the maximal tree depth, do nothing
- Compute the final score of the leaf : signed error. To add to the final prediction

• Next tree: same process, but compute error relatively to 
previous tree (residuals)

• When finished, for each prediction, sum the (signed) 
prediction of each tree (weighted by learning rate )η



LEARNING RATE

• As in most gradient descent methods, there is a learning rate 
 (eta) parameter, allowing to tune how fast we converge
‣ To avoid the “ping-pong” effect around global minimum
‣ In practice, the prediction of the previous tree is shrinked by 

•

η

η

̂y = η ̂y(t−1)
i + ft(xi)



XGBOOST: EXAMPLE

objective=“reg:squarederror",
learning_rate=0.3,
base_score=np.mean(Ytrain),
max_depth=2



XGBOOST: EXAMPLE

First tree



XGBOOST: EXAMPLE

1 single tree for prediction:
Learning rate effect…



XGBOOST: EXAMPLE
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CLASSIC ML VS DNN

• Until now, I have presented “classic” methods.

• In the news, we hear often about Neural networks methods 
when talking about IA. Are classic obsolete?
‣ DNN are mostly “chained” classic methods. Nothing different in the theory
‣ DNN are good for problems with

- Huge quantity of data
- Huge quantity of attributes
- Attributes being semantically related to each other, but of the same nature (adjacent pixels, 

following words…)
- =>Structured data

‣ If limited data, set of unrelated, loosely known features: XGboost & Co. are the 
most used and usually most efficient methods


