|

Dimensionality Reduction/Low dimensional Embedding ‘

1 Fundamentals

1. Dimensionality reduction

(a)
(b)

Load the dataset of user votes (simplified I provide) from the class website

We would like to create a map of movies, in which similar movies are close in space. We can use
for this the principle that two movies that are liked by the same people should be similar.

Use pivot pandas function to create a matrix such as movie names are indices and users are
columns, i.e., features. Replace nan by zeros
Use PCA (from sklearn) to embedd directly this data in 2D, and check using plotly scatterplot

that some similar movies are closeby in that space (check for instance movies from well-know series
such as starwars, lord of the rings, harry potter, etc.

Do the same with tSNE (still from sklearn). Vary the perplexity and observe the differences

Now apply first a PCA in 50 dimensions, and then apply a tSNE on the resul in two dimensions.
The structure should be clearer

2. Correlation to network, network to graph embedding

(a)

2

Using sklearn pairwise_distances , compute the cosine similarity between movies. (Note: you
could use another distance measure...)

Use a threshold to keep only strong values of similarity, for instance 0.5 to begin with. You will
have to make several trials with the value after seeing the graph. (Note: you could use backbone
extraction to get a better graph)

Using networkx, create a graph from the thresholded similarity matrix. Don’t forget to add the
node names (you can get them from the pivoted matrix index, for instance)

Remove self-loops, and singletons (nodes without edges)

) Plot the graph (better with Gephi) and check that edges make sense.

Using library karateclub , use node2vec to embed the graph in small dimensions, e.g., 8 dimen-
sions

Use t-SNE or PCA to embed the 8 dimensions in 2, and use an interactive plot to check that you
arrive back to a meaningful map of movies.

Going further

3. Coding your own PCA

(a)

(b
(c)

o

One strength of PCA is that it is very simple to code using linear algebra. We will compute it
manually and check that we get the same results as with the sklearn function

) Start by centering the data, for instance using df-df.mean()

Compute the covariance matrix using np.cov (be careful to compute the covariance between

variables, not elements !)

Compute the eigenvectors of the covariance matrix using numpy LA.eig

Check that the eigenvectors you obtained are similar to the components obtained by sklearn.
Don’t forget that we are looking for those associated with the highest eigenvalues !

You can recompute the final embedding in 2D using a simple matrix multiplication. The result
should be identical to the one obtained by PCA



	Fundamentals
	Going further

