FREQUENT PATTERN MINING

FREQUENT PATTERN MINING

- Frequent Pattern mining/ FP discovery
- Objective: find items that occur frequently together in a database
- Algorithmically difficult problem
- Association Rule Learning
- From frequent patterns,
- Identify statistically relevant associations

MARKET BASKET ANALYSIS

- Typical example: Market Basket Analysis
- Database: people buying products
- One reason why supermarkets/shops propose Loyalty programs
- If you buy tomatoes, onions and hamburger patties, you will probably buy hamburger breads
- Famous unexpected association:
- Beers and Diapers
- (Probably a legend...)

प(ल)

MARKET BASKET ANALYSIS

- Usage of market basket analysis:
- Put one object on sale, to favor selling the other ones
- Sales on burger breads=>consumer buy tomatoes, onion and beef patty
- Put products close/far away
- Men buying diapers tempted to buy beers ? Put beers close to diapers
- Relevant in other contexts of course
- Relation between medical condition and life habits
- Smoking + cholesterol=>heart disease...
- High pH + bacterial => mosquito development

DATASETS

- Type of data: list of itemsets
- I=\{milk, bread,fruit\}
- 2=\{butter,eggs,fruit $\}$
- 3=\{beer,diapers\}
- 4=\{milk, bread, butter,eggs,fruit\}
- 5=\{bread $\}$

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
$\mathbf{1}$	1	1	0	0	0	0	1
$\mathbf{2}$	0	0	1	0	0	1	1
$\mathbf{3}$	0	0	0	1	1	0	0
$\mathbf{4}$	1	1	1	0	0	1	1
$\mathbf{5}$	0	1	0	0	0	0	0

DEFINITIONS

- Items: $I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$
- Unique item (butter, milk, etc)
- Transaction
- $\left(t_{i} \subseteq I\right)$, arbitrary size
- Database $D=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$
- Collection of transactions
- Itemset: set of items of arbitrary size ($X \subseteq I$)
- A subset we are interested in

DEFINITIONS

- Absolute Support of itemset X in D :
- Number of transactions containing X (i.e., $|\{t \in D / X \subseteq t\}|)$
- Relative support (or simply Support)
- Fraction of transactions containing X abs_support (X)
- Estimation of $P(X)$
- Probability for a random transaction to contain X
- Frequent itemset:
- Itemset with support \geq min_supp

SUPPORT

- Support \{Milk,bread\} ?
- Support \{diapers,beer\} ?

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	।	।	0	0	0	0	1
2	0	0	1	0	0	।	1
3	0	0	0	1	1	0	0
4	।	।	1	0	0	।	1
5	0	1	0	0	0	0	0

SUPPORT

- Support \{Milk,bread $\}=2 / 5$
- Support $\{$ diapers,beer\} $=$ |/5

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	।	।	0	0	0	0	1
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	।	।	1	0	0	1	1
5	0	1	0	0	0	0	0

DEFINITIONS

- Association rule : rule of the form
- $X \rightarrow Y$
- $X \subseteq I, Y \subseteq I$
- $X \cap Y=\varnothing$
- Meaning: If X is in a transaction, then Y too
- Support of $X \rightarrow Y$:
- => Support of itemset $W=X \cup Y$
- For an association to be interesting, we further look at interest scores
- Else, risk of finding spurious associations

sCORES OF INTEREST

CONFIDENCE

- $\operatorname{conf}(X \Rightarrow Y)=P(Y \mid X)=\frac{\operatorname{supp}(X \cap Y)}{\operatorname{supp}(X)}=\frac{\text { number of transactions containing } X \text { and } Y}{\text { number of transactions containing } X}$
- Fraction of transactions containing X that also contains Y
- An itemset/rule can be frequent because its elements are frequent
- We want to know if Y is frequent when we have X
- Non-symmetric

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	I	I	0	0	0	0	।
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

- Confidence Milk=>bread
- Confidence bread=>milk
- Confidence diapers=>beer
- Confidence beer=>diapers

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	1	1	0	0	0	0	I
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

- Confidence Milk=>bread $=2 / 2=1$
- Confidence bread=>milk $=2 / 3$
- Confidence diapers=>beer=|/|
- Confidence beer=>diapers= |/I

LIFT

- If Y has high confidence, but is also frequent, confidence is not enough.
- If both are frequent, by chance, they appear frequently together
- lift $(X \Rightarrow Y)=\frac{\operatorname{confidence}(X \Rightarrow Y)}{\operatorname{supp}(Y)}$,
- Compares Y presence when X with Y in general
, $\operatorname{lift}(X \Rightarrow Y)=\frac{\operatorname{supp}(X \cap Y)}{\operatorname{supp}(X) \times \operatorname{supp}(Y)}$
- Compares observed co-presence with expected co-presence
- [0,+inf]
- X and Y are independent: $l i f t=1$

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	I	I	0	0	0	0	।
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

- Lift Milk=>bread?
- Lift beer=>diapers?

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	I	I	0	0	0	0	।
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

- Lift Milk=>bread
- (2/5)/(6/25)=1.666
- $(1) /(3 / 5)=1.666$
- Lift beer=>diapers
- $(1 / 5) /(1 / 25)=5$
- $(1) /(1 / 5)=5$

LEVERAGE

- levarage $(A \rightarrow C)=\operatorname{support}(A \rightarrow C)-\operatorname{support}(A) \times \operatorname{support}(C), \quad$ range: $[-1,1]$
- Difference between the observed frequency of A and C appearing together and the frequency that would be expected if A and C were independent
- 0 indicates independence
- => Take also into account how frequent the items are
- On top of how exceptionally frequent

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	I	I	0	0	0	0	।
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

- Leverage Milk=>bread
- Leverage beer=>diapers

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	I	I	0	0	0	0	।
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

- Leverage Milk=>bread
- $(2 / 5)-(6 / 25)=0.16$
- Leverage beer=> diapers
- (I/5)-(I/25)=0.16

SCORES

- Other scores exist:
- Conviction
- zhangs metric
- https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/ association_rules/

FREQUENT ITEMSET OBJECTIVE

- Objective: limit the number of rules found
- Given a minimum support threshold min_sup
- Given a minimum confidence threshold min_conf
- Find all association rules with support \geq min_sup and confidence \geq min_conf

FREQUENT ITEMSET EXTRACTION

NAIVE APPROACH

- Naive approach
- I)Generate all possible itemsets (size I, 2, 3, 4 etc.)
- 2) Compute their support from the database
- Problem: explosion of possible combinations
- 1000 items
- 1000 itemsets of size ।
- 1000*999/2 itemsets of size 2
- 2^{100} combinations

SUPPORT PROPERTY

- Anti-monotonic property of support
- If X_{1} is frequent, then $X_{2} \subset X_{1}$ is frequent
- If X_{1} is not frequent, then $X_{2}, X_{1} \subset X_{2}$ is not frequent
- Computation trick:
- I)Find frequent I-itemsets
- 2)Find frequent 2-itemsets
- Among those that contains only frequent I-itemsets
- 3) Repeat for all size (or until reaching a threshold)

SUPPORT PROPERTY

Maximal vs Closed Itemsets

CLOSED AND MAXIMAL

- We define a closed pattern as a frequent pattern (support>threshold) with no sub-pattern of equal support
- We defined a maximal pattern as a frequent pattern that has no frequent sub-pattern

SUPPORT PROPERTY
 Minimum support $=2$

Maximal vs Closed Itemsets

SUPPORT PROPERTY

Maximal vs Closed Frequent Itemsets

ALGORITHM:APRIORI

APRIORI

Apriori(T, ε)

$\mathrm{L}_{1} \leftarrow\{$ frequent 1-itemsets $\}$
$k \leftarrow 2$
while $\mathrm{L}_{\mathrm{k}-1}$ is not empty
$C_{k} \leftarrow$ Apriori_gen $\left(L_{k-1}, k\right)$ for transactions t in T
$D_{t} \leftarrow\left\{c\right.$ in $\left.C_{k}: c \subseteq t\right\}$
for candidates c in D_{t}
count [c] ↔ count [c] + 1
$L_{k} \leftarrow\left\{c\right.$ in $C_{k}:$ count $\left.[c] \geq \varepsilon\right\}$
$\mathrm{k} \leftarrow \mathrm{k}+1$
return Union(L_{k})

```
Apriori_gen(L, k)
    result \leftarrow list()
```



```
        c = p U {q|k-1 }
        if u G L for all u\subseteqc where |u| = k-1
            result.add(c)
    return result
```


APRIORI

Apriori(T, ε)

$\mathrm{L}_{1} \leftarrow$ \{frequent 1-itemsets $\}$
$\mathrm{k} \leftarrow 2$
while L_{k-1} is not empty
Start at level 2 of the tree
$C_{k} \leftarrow$ Apriori_gen($\left.L_{k-1}, k\right)$ Generate candidates at current level for transactions t in T
$D_{t} \leftarrow\left\{c\right.$ in $\left.C_{k}: c \subseteq t\right\}$
for candidates c in D_{t} count [c] + count $[c]+1 \quad$ Compute support

$$
\begin{array}{ll}
L_{k} \leftarrow\left\{c \text { in } C_{k}: \text { count }[c] \geq \varepsilon\right\} & \text { Check threshold } \\
k \leftarrow k+1 & \text { Go to next level }
\end{array}
$$

return Union(L_{k})

```
Apriori_gen(L, k) L=frequent sets at previous level k=current level
    result \leftarrow list()
    for all p \in L, q \in L where p p = q1, p p = q2, ..., pk-2 = qk-2 and p pk-1 < qk-1
        c = p U {qqk-1 } c=new candidate
        if u G L for all u\subseteqc where |u| = k-1 Pruning: Also check that
            result.add(c)
    return result
```


APRIORI

- Limits: multiple scans over the dataset
- Each level
- Many alternatives
- FP-Growth
- ECLAT
- PrefixSpan
- Distributed approaches (Spark...)
- ...

GOING FURTHER

- Many other works in this domain
- Sequential Pattern Mining:Take order into account
- If we first buy a printer, then we will buy ink (and not the opposite)
- Numeric target value: Find relevant intervals
- If $\{a, b\}=>z \in[12,25]$, if $\{a, c\}=z \in[25,32]$
- Subgraph frequent itemsets
- e.g.: Common substructures across a database of chemical compounds
- Spatial frequent itemsets
- Supermarkets close to schools...

FREQUENT PATTERN=>GRAPHS

- Frequent patterns can represent another way to do data transformation:
- Extract rules such as iteml => item2
- Consider this information as an edge
- Create a network out of it
- Can be more relevant than a simple distance

