FREQUENT PAT TERN MINING

FREQUENT PAT TERN MINING

R dlienRatiern mining/ FFP discovery

» Objective: find items that occur frequently together in a database
» Algorithmically difficult problem

» Association Rule Learning

» From frequent patterns,
- |dentify statistically relevant associations

MARKET BASKET ANALYSIS

* lypical example: Market Basket Analysis
» Database: people buying products

- One reason why supermarkets/shops propose Loyalty programs

* [f you buy tomatoes, onions and hamburger patties, you will
brobably buy hamburger breads

* Famous unexpected association:

» Beers and Diapers
» (Probably a legend...)

>

Association

MARKET BASKET ANALYSIS

» Usage of market basket analysis:

» Put one object on sale, to favor selling the other ones

- Sales on burger breads=>consumer buy tomatoes, onion and beef patty
» Put products close/far away

- Men buying diapers tempted to buy beers ¢ Put beers close to diapers

« Relevant in other contexts of course

» Relation between medical condition and life habrts
- Smoking + cholesterol=>heart disease...
- High pH + bacterial => mosquito development

DATASETS

* lype of data: list of temsets
| ={milk; bread,fruit}
2={butter,eggs,frurt}
3={beerdiapers}

4={milk, bread, buttereggs,frurt}
>={bread}

v

v

v

v

v

beer diapers eggs fruit

transaction ID milk bread butter

1

DEFINITIONS

 Items: [= {i,,,..., 1,

» Unique item (butter, milk, etc)

e Transaction
- (& C I), aroitrary size

- Database D = {f, 15, ...,1}

» Collection of transactions

- Itemset: set of items of arbitrary size (X C)

» A subset we are interested In

DEFINITIONS

» Absolute Support of itemset X in D:
» Number of transactions containing X (i.e., | {t € D/X C t}|)

» Relative support (or simply Support)
» Fraction of transactions containing X
abs_support(X)
|D|
» Estimation of P(X)

- Probability for a random transaction to contain X

* Frequent itemset:

» [temset with support > min_supp

o101 @06

g ppert {Milkbread} ¢

* Support {diapers,beer} !

0 0 | 0 0 | |
0 0 0 | | 0 0

o101 @06

» Support {Milk,bread} = 2/5

» Support {diapers,beer}=1/5

DEFINITIONS

S s o ddtien rule : rule of the form

» X = Y
- XCLYCI
- XNY=g
» Meaning: If X is In a transaction, then Y too

B spert of X — Y.
» => Support of itemset W=XUY

* For an association to be interesting, we further look at interest
scores

» Else, risk of finding spurious associations

BCORES OF INTERESHE

CONFDENCE

supp(XNY number of transactions containing X and Y
BOee=— — P(Y|X) = pp()= U | ining

supp(X) number of transactions containing X

* Fraction of transactions containing X that also contains Y

» An itemset/rule can be frequent because its elements are frequent
» We want to know If Y Is frequent when we have X

* Non-symmetric

« Confidence Milk=>bread
« Confidence bread=>milk
» Confidence diapers=>beer

» Confidence beer=>diapers

» Confidence Milk=>bread = 2/2=|
» Confidence bread=>milk = 2/3
» Confidence diapers=>beer=1/|

» Confidence beer=>diapers= |/|

il

* If ¥ has high confidence, but Is also frequent, confidence Is not

enough.

» If both are frequent, by chance, they appear frequently together
confidence(X = Y)

ift(X = V) = ,
supp(¥)
- Compares Y presence when X with Y in general
supp(XNY
) N D)
supp(X) X supp(¥’)

- Compares observed co-presence with expected co-presence

|
» X andY are independent: lift=|

 Lift Milk=>bread!?

» Lift beer=>diapers’

e Lift Milk=>bread
» (2/5)/(6/25)=1.666
R C5)=1 666

» Lift beer=>diapers
v (1/5)/(1/25)=5
v (D/(1/5)=5

[EVERAGE

* levarage(A — C) = support(A — C) — support(A) X support(C), range: [—151]

» Difference between the observed frequency of A and C appearing together
and the frequency that would be expected it A and C were independent

* 0 Indicates independence

» =>Jake also Into account how frequent the rtems are
» On top of how exceptionally frequent

» Leverage Milk=>bread

» Leverage beer=>diapers

* Leverage Milk=>bread
» (2/5)-(6/25)=0.16

» Leverage beer=>diapers
» (1/5)-(1/25)=0.16

S URES

« Other scores exist:

» Conviction
» zhangs metric

Ry

* https://rasbt.github.io/mixtend/user_guide/frequent_patterns/
association_rules/

FREQUENT ITEMSET
OB|ECTIVE

» Objective: limit the number of rules found

» Given a minimum support threshold min_sup
» Glven a minimum confidence threshold min_conf

» Find all association rules with support > min_sup and confidence > min_conf

FREOUEN T HTEMSES
EXTRACTION

NAIVE APPROACH

» Nalve approach

» |)Generate all possible itemsets (size 1, 2, 3,4 etc.)
» 2)Compute their support from the database

* Problem: explosion of possible combinations
» 1000 ritems

- 1000 temsets of size |
- |000*999/2 itemsets of size 2

- 2100 combinations

BUPPOR| PROPERTSS

» Anti-monotonic property of support

» It X Is frequent, then X, C X, Is frequent
» It X I1s not frequent, then X,, X; C X, Is not frequent

» Computation trick:

» [)Find frequent |-itemsets
» 2)Find frequent 2-itemsets

- Among those that contains only frequent |-itemsets
» 3) Repeat for all size (or until reaching a threshold)

BUPPOR| PROPERTSS

Maximal vs Closed ltemsets

__Transaction Ids

ltems

ABC

ABCD

BCE

m.hoor\)—\é'

ACDE

DE

CLOSED AND MAXIMAL

- We define a closed pattern as a frequent pattern
(support>threshold) with no sub-pattern of equal support

- We defined a maximal pattern as a frequent pattern that
has no frequent sub-pattern

BUPPOR| PROPERTSS

Minimum support = 2

Maximal vs Closed ltemsets

ltems
ABC
ABCD
BCE
ACDE
DE

Closed =9
Maximal =4

Cn-hwl\.)—‘él

BUPPOR| PROPERTSS

Maximal vs Closed Frequent Iltemsets

4\\9-6
? o
QU

Q«@,

/
i

e

wo
o

8 ¢}
el

R
LR
R

g
0

ALGORITHM: APRIORI

F APRIOR

L, « {frequent 1-itemsets}
K « 2
while L«-1 1s not empty
Ck « Apriori_gen(Lk-1, k)
for transactions t in T
Di « {c in Ck : c ¢ t}
for candidates c in Dx
count[c] « countlc] + 1

Ly « {c in Ck : count[c] = €}
k « K + 1

return Union (L)

Apriori_gen(L, k)
result « list()
for all p € L, q € L where p. = qi, P2 = 02, +s:, Prk2 = Q2 and pixa < gk
c =p U {q1i}
if u € L for all u ¢ c where |u| = k-1
result.add(c)
return result

~ APRICR

L, « {frequent 1-itemsets}

K < 2 : Start at level 2 of the tree
while L«:1 is not empty Treat that level

Ck « Apriori_gen(Lk-1, k) (Generate candidates at current level

for transactions t in T
Di « {c in Ck : c ¢ t}
for candidates c in D+

count[c] < countlc] + 1 Compute support

Lk « {C in Ck : countlc] = E} Check threshold
k « kK + 1

Go to next level

return Union (L)

Apriori_gen(L, k) L =frequent sets at previous level k=current level |
result « list() Generate unique
for all p € L, g € L where p. = qi, P2 = 02, =+, Pr2 = Qk2 anNd P11 < Q-1 combinations

c =p U {qe1} c=new candidate without repetitions
if u € L for all u < c where |u| = k-1 Pruning: Also check that
result.add(c) all subsets are frequent

return result

APRIORI

» Limits: multiple scans over the dataset
» Each level

- Many alternatives
» FP-Growth
=
» PrefixSpan
» Distributed approaches (Spark...)

GOING FURTHER

» Many other works In this domain

» Sequential Pattern Mining: Take order into account

- It we first buy a printer, then we will buy ink (and not the opposite)
Numeric target value: Find relevant intervals

- If {ab}=>z€[12,25], if {a,c}=z€[25,32]

Subgraph frequent itemsets

- e.g. Common substructures across a database of chemical compounds
Spatial frequent itemsets

- Supermarkets close to schools...

v

v

v

FREQUENT
PAT TERN=>GRAPHS

* Frequent patterns can represent another way to do data
transformation:

» Extract rules such as item| => item?2
» Consider this iInformation as an edge
» Create a network out of it

- Can be more relevant than a simple distance

