
FREQUENT PATTERN MINING



FREQUENT PATTERN MINING

• Frequent Pattern mining/ FP discovery
‣ Objective: find items that occur frequently together in a database
‣ Algorithmically difficult problem

• Association Rule Learning
‣ From frequent patterns, 

- Identify statistically relevant associations



MARKET BASKET ANALYSIS

• Typical example: Market Basket Analysis
‣ Database: people buying products

- One reason why supermarkets/shops propose Loyalty programs

• If you buy tomatoes, onions and hamburger patties, you will 
probably buy hamburger breads

• Famous unexpected association:
‣ Beers and Diapers
‣ (Probably a legend…)



MARKET BASKET ANALYSIS

• Usage of market basket analysis:
‣ Put one object on sale, to favor selling the other ones

- Sales on burger breads=>consumer buy tomatoes, onion and beef patty
‣ Put products close/far away

- Men buying diapers tempted to buy beers ? Put beers close to diapers

• Relevant in other contexts of course
‣ Relation between medical condition and life habits

- Smoking + cholesterol=>heart disease…
- High pH + bacteria1=> mosquito development



DATASETS
• Type of data: list of itemsets

‣ 1={milk, bread,fruit}
‣ 2={butter,eggs,fruit}
‣ 3={beer,diapers}
‣ 4={milk, bread, butter,eggs,fruit}
‣ 5={bread}

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



DEFINITIONS
• Items: 

‣ Unique item (butter, milk, etc)

• Transaction
- ( ), arbitrary size

• Database 
‣ Collection of transactions 

• Itemset: set of items of arbitrary size ( )
‣ A subset we are interested in

I = {i1, i2, …, in}

ti ⊆ I

D = {t1, t2, …, tm}

X ⊆ I



DEFINITIONS

• Absolute Support of itemset  in :
‣ Number of transactions containing  (i.e., )

• Relative support (or simply Support)
‣ Fraction of transactions containing 

-

‣ Estimation of 
- Probability for a random transaction to contain 

• Frequent itemset:
‣ Itemset with support ≥ min_supp

X D
X |{t ∈ D/X ⊆ t} |

X
abs_support(X)

|D |
P(X)

X



SUPPORT
• Support {Milk,bread} ?

• Support {diapers,beer} ?

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



SUPPORT
• Support {Milk,bread} = 2/5

• Support {diapers,beer}=1/5

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



DEFINITIONS
•  Association rule : rule of the form

‣

-

-

‣ Meaning: If  is in a transaction, then  too

• Support of  :
‣ => Support of itemset 

• For an association to be interesting, we further look at interest 
scores
‣ Else, risk of finding spurious associations

X → Y
X ⊆ I, Y ⊆ I
X ∩ Y = ∅

X Y

X → Y
W = X ∪ Y



SCORES OF INTEREST



CONFIDENCE

•

• Fraction of transactions containing  that also contains 
‣ An itemset/rule can be frequent because its elements are frequent
‣ We want to know if  is frequent when we have 

• Non-symmetric

conf(X ⇒ Y) = P(Y |X) =
supp(X ∩ Y)

supp(X)
=

number of transactions containing X and Y
number of transactions containing X

X Y

Y X



• Confidence Milk=>bread

• Confidence bread=>milk

• Confidence diapers=>beer

• Confidence beer=>diapers

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



• Confidence Milk=>bread = 2/2=1

• Confidence bread=>milk = 2/3

• Confidence diapers=>beer=1/1

• Confidence beer=>diapers= 1/1

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



LIFT
• If  has high confidence, but is also frequent, confidence is not 

enough.
‣ If both are frequent, by chance, they appear frequently together

‣

- Compares  presence when  with  in general

‣

- Compares observed co-presence with expected co-presence

• [0,+inf]
‣ X and Y are independent: lift=1

Y

lift(X ⇒ Y ) =
confidence(X ⇒ Y )

supp(Y )
,

Y X Y

lift(X ⇒ Y ) =
supp(X ∩ Y )

supp(X) × supp(Y )



• Lift Milk=>bread?

• Lift beer=>diapers?

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



• Lift Milk=>bread
‣  (2/5)/(6/25)=1.666
‣ (1)/(3/5)=1.666

• Lift beer=>diapers
‣ (1/5)/(1/25)=5
‣ (1)/(1/5)=5

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



LEVERAGE

•
‣ Difference between the observed frequency of A and C appearing together 

and the frequency that would be expected if A and C were independent

• 0 indicates independence

• =>Take also into account how frequent the items are
‣ On top of how exceptionally frequent

levarage(A → C) = support(A → C) − support(A) × support(C), range: [−1,1]



• Leverage Milk=>bread

• Leverage beer=>diapers

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



• Leverage Milk=>bread
‣ (2/5)-(6/25)=0.16

• Leverage beer=>diapers
‣ (1/5)-(1/25)=0.16

transaction ID milk bread butter beer diapers eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0



SCORES

• Other scores exist: 
‣ Conviction
‣ zhangs metric
‣ …

• https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/
association_rules/



FREQUENT ITEMSET 
OBJECTIVE

• Objective: limit the number of rules found
‣ Given a minimum support threshold min_sup
‣ Given a minimum confidence threshold min_conf
‣ Find all association rules with support ≥ min_sup and confidence ≥ min_conf 



FREQUENT ITEMSET 
EXTRACTION



NAIVE APPROACH

• Naive approach
‣ 1)Generate all possible itemsets (size 1, 2, 3, 4 etc.)
‣ 2)Compute their support from the database

• Problem: explosion of possible combinations
‣ 1000 items

- 1000 itemsets of size 1
- 1000*999/2 itemsets of size 2
- …
-  combinations2100



SUPPORT PROPERTY

• Anti-monotonic property of support
‣ If  is frequent, then  is frequent
‣ If  is not frequent, then   is not frequent

• Computation trick:
‣ 1)Find frequent 1-itemsets
‣ 2)Find frequent 2-itemsets 

- Among those that contains only frequent 1-itemsets
‣ 3) Repeat for all size (or until reaching a threshold)

X1 X2 ⊂ X1
X1 X2, X1 ⊂ X2



SUPPORT PROPERTY



CLOSED AND MAXIMAL

• We define a closed pattern as a frequent pattern 
(support>threshold) with no sub-pattern of equal support

• We defined a maximal pattern as a frequent pattern that 
has no frequent sub-pattern



SUPPORT PROPERTY
Minimum support = 2



SUPPORT PROPERTY



ALGORITHM: APRIORI



APRIORI
Apriori(T, ε)

    L1 ← {frequent 1-itemsets}

    k ← 2

    while Lk−1 is not empty

        Ck ← Apriori_gen(Lk−1, k)

        for transactions t in T

            Dt ← {c in Ck : c ⊆ t}

            for candidates c in Dt

                count[c] ← count[c] + 1


        Lk ← {c in Ck : count[c] ≥ ε}

        k ← k + 1


    return Union(Lk)

Apriori_gen(L, k)

     result ← list()

     for all p ∈ L, q ∈ L where p1 = q1, p2 = q2, ..., pk-2 = qk-2 and pk-1 < qk-1

         c = p ∪ {qk-1}

         if u ∈ L for all u ⊆ c where |u| = k-1

             result.add(c)

      return result



APRIORI
Apriori(T, ε)

    L1 ← {frequent 1-itemsets}

    k ← 2

    while Lk−1 is not empty

        Ck ← Apriori_gen(Lk−1, k)

        for transactions t in T

            Dt ← {c in Ck : c ⊆ t}

            for candidates c in Dt

                count[c] ← count[c] + 1


        Lk ← {c in Ck : count[c] ≥ ε}

        k ← k + 1


    return Union(Lk)

Apriori_gen(L, k)

     result ← list()

     for all p ∈ L, q ∈ L where p1 = q1, p2 = q2, ..., pk-2 = qk-2 and pk-1 < qk-1

         c = p ∪ {qk-1}

         if u ∈ L for all u ⊆ c where |u| = k-1

             result.add(c)

      return result

Treat that level
Start at level 2 of the tree

Generate candidates at current level 

Compute support 

Check threshold

Go to next level

L=frequent sets at previous level k=current level
Generate unique 

combinations 
without repetitionsc=new candidate

Pruning: Also check that 
all subsets are frequent



APRIORI

• Limits: multiple scans over the dataset
‣ Each level

• Many alternatives
‣ FP-Growth
‣ ECLAT
‣ PrefixSpan
‣ Distributed approaches (Spark…)
‣ …



GOING FURTHER

• Many other works in this domain
‣ Sequential Pattern Mining: Take order into account

- If we first buy a printer, then we will buy ink (and not the opposite)
‣ Numeric target value: Find relevant intervals

- If {a,b}=>z [12,25], if {a,c}=z [25,32]
‣ Subgraph frequent itemsets

- e.g.: Common substructures across a database of chemical compounds
‣ Spatial frequent itemsets

- Supermarkets close to schools…
‣ …

∈ ∈



FREQUENT 
PATTERN=>GRAPHS

• Frequent patterns can represent another way to do data 
transformation:
‣ Extract rules such as item1 => item2
‣ Consider this information as an edge
‣ Create a network out of it

- Can be more relevant than a simple distance 


