FREQUENT PATTERN MINING

FREQUENT PATTERN MINING

- Frequent Pattern mining/ FP discovery
 - Objective: find items that occur frequently together in a database
 - Algorithmically difficult problem
- Association Rule Learning
 - From frequent patterns,
 - Identify statistically relevant associations

MARKET BASKET ANALYSIS

- Typical example: Market Basket Analysis
 - Database: people buying products
 - One reason why supermarkets/shops propose Loyalty programs
- If you buy tomatoes, onions and hamburger patties, you will probably buy hamburger breads
- Famous unexpected association:
 - Beers and Diapers
 - (Probably a legend...)

MARKET BASKET ANALYSIS

• Usage of market basket analysis:

- Put one object on sale, to favor selling the other ones
 - Sales on burger breads=>consumer buy tomatoes, onion and beef patty
- Put products close/far away
 - Men buying diapers tempted to buy beers ? Put beers close to diapers
- Relevant in other contexts of course
 - Relation between medical condition and life habits
 - Smoking + cholesterol=>heart disease...
 - High pH + bacteria I => mosquito development

DATASETS

- Type of data: list of itemsets
 - I = {milk, bread, fruit}
 - > 2={butter,eggs,fruit}
 - > 3={beer,diapers}
 - 4={milk, bread, butter,eggs,fruit}
 - > 5={bread}

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
1	1	1	0	0	0	0	1
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

DEFINITIONS

• **Items**: $I = \{i_1, i_2, ..., i_n\}$

Unique item (butter, milk, etc)

Transaction

- $(t_i \subseteq I)$, arbitrary size

• **Database** $D = \{t_1, t_2, ..., t_m\}$

Collection of transactions

- **Itemset**: set of items of arbitrary size $(X \subseteq I)$
 - A subset we are interested in

DEFINITIONS

- Absolute Support of itemset X in D:
 - Number of transactions containing X (i.e., $| \{t \in D/X \subseteq t\} |$)
- Relative support (or simply Support)
 - Fraction of transactions containing X abs_support(X)
 - Estimation of P(X)
 - Probability for a random transaction to contain X

• Frequent itemset:

Itemset with support ≥ min_supp

SUPPORT

- Support {Milk,bread} ?
- Support {diapers,beer} ?

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	
2	0	0		0	0		
3	0	0	0			0	0
4				0	0		
5	0		0	0	0	0	0

SUPPORT

- Support {Milk,bread} = 2/5
- Support {diapers,beer}=1/5

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	
2	0	0		0	0		
3	0	0	0			0	0
4				0	0		
5	0		0	0	0	0	0

DEFINITIONS

- Association rule : rule of the form
 - $\bullet \ X \to Y$
 - $X \subseteq I, Y \subseteq I$
 - $-X \cap Y = \emptyset$
 - Meaning: If X is in a transaction, then Y too
- Support of $X \to Y$:
 - => Support of itemset $W = X \cup Y$
- For an association to be interesting, we further look at interest scores
 - Else, risk of finding spurious associations

SCORES OF INTEREST

CONFIDENCE

•
$$\operatorname{conf}(X \Rightarrow Y) = P(Y|X) = \frac{\operatorname{supp}(X \cap Y)}{\operatorname{supp}(X)} = \frac{\operatorname{number of transactions containing } X \text{ and } Y}{\operatorname{number of transactions containing } X}$$

- Fraction of transactions containing X that also contains Y
 - An itemset/rule can be frequent because its elements are frequent
 - We want to know if Y is frequent when we have X
- Non-symmetric

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	I
2	0	0		0	0		
3	0	0	0			0	0
4				0	0		I
5	0		0	0	0	0	0

- Confidence Milk=>bread
- Confidence bread=>milk
- Confidence diapers=>beer
- Confidence beer=>diapers

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	
2	0	0		0	0		I
3	0	0	0		I	0	0
4				0	0		I
5	0		0	0	0	0	0

- Confidence Milk=>bread = 2/2=1
- Confidence bread=>milk = 2/3
- Confidence diapers=>beer=1/1
- Confidence beer=>diapers= 1/1

LIFT

- If Y has high confidence, but is also frequent, confidence is not enough.
 - If both are frequent, by chance, they appear frequently together confidence $(X \Rightarrow Y)$

$$lift(X \Rightarrow Y) = \frac{connection(X \to Y)}{supp(Y)},$$

- Compares Y presence when X with Y in general

$$lift(X \Rightarrow Y) = \frac{\operatorname{supp}(X \cap Y)}{\operatorname{supp}(X) \times \operatorname{supp}(Y)}$$

- Compares observed co-presence with expected co-presence

- [0,+inf]
 - X and Y are independent: lift=1

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	
2	0	0		0	0		
3	0	0	0			0	0
4				0	0		
5	0		0	0	0	0	0

- Lift Milk=>bread?
- Lift beer=>diapers?

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	I
2	0	0		0	0		I
3	0	0	0			0	0
4				0	0		I
5	0		0	0	0	0	0

- Lift Milk=>bread
 - ► (2/5)/(6/25)=1.666
 - ► (|)/(3/5)=1.666
- Lift beer=>diapers
 - (1/5)/(1/25)=5
 - ► (|)/(|/5)=5

LEVERAGE

- levarage($A \rightarrow C$) = support($A \rightarrow C$) support(A) × support(C), range: [-1,1]
 - Difference between the observed frequency of A and C appearing together and the frequency that would be expected if A and C were independent
- 0 indicates independence
- =>Take also into account how frequent the items are
 On top of how exceptionally frequent

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	
2	0	0		0	0		
3	0	0	0			0	0
4				0	0		
5	0		0	0	0	0	0

- Leverage Milk=>bread
- Leverage beer=>diapers

transaction ID	milk	bread	butter	beer	diapers	eggs	fruit
			0	0	0	0	
2	0	0		0	0		
3	0	0	0		I	0	0
4				0	0		
5	0		0	0	0	0	0

- Leverage Milk=>bread
 - ► (2/5)-(6/25)=0.16
- Leverage beer=>diapers
 - ► (1/5)-(1/25)=0.16

SCORES

- Other scores exist:
 - Conviction
 - zhangs metric

• • • • •

 https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/ association_rules/

FREQUENT ITEMSET OBJECTIVE

- Objective: limit the number of rules found
 - Given a minimum support threshold min_sup
 - Given a minimum confidence threshold min_conf
 - ▶ Find all association rules with support ≥ min_sup and confidence ≥ min_conf

FREQUENT ITEMSET EXTRACTION

NAIVE APPROACH

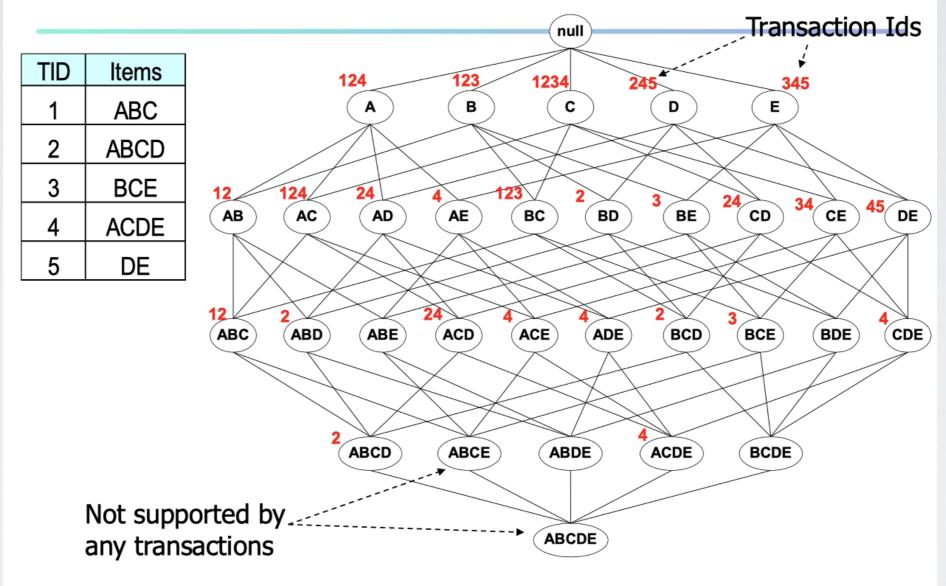
- Naive approach
 - I)Generate all possible itemsets (size 1, 2, 3, 4 etc.)
 - 2)Compute their support from the database
- Problem: explosion of possible combinations
 - 1000 items
 - 1000 itemsets of size 1
 - 1000*999/2 itemsets of size 2
 - ...
 - 2¹⁰⁰ combinations

SUPPORT PROPERTY

- Anti-monotonic property of support
 - If X_1 is frequent, then $X_2 \subset X_1$ is frequent
 - If X_1 is not frequent, then X_2 , $X_1 \subset X_2$ is not frequent
- Computation trick:
 - I)Find frequent I-itemsets
 - 2)Find frequent 2-itemsets
 - Among those that contains only frequent I-itemsets
 - 3) Repeat for all size (or until reaching a threshold)

SUPPORT PROPERTY

Maximal vs Closed Itemsets

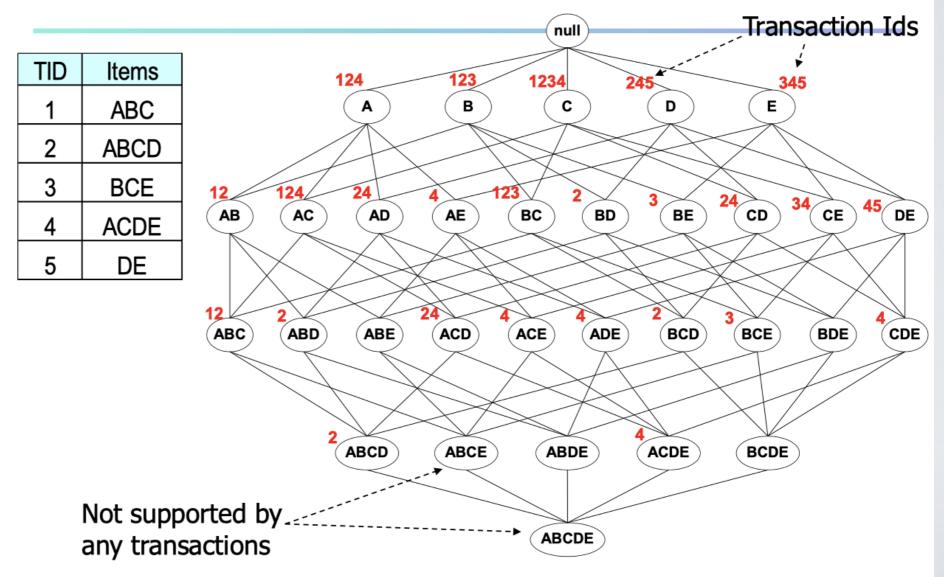


CLOSED AND MAXIMAL

- We define a **closed** pattern as a frequent pattern (support>threshold) with no sub-pattern of <u>equal</u> support
- We defined a **maximal** pattern as a frequent pattern that has no frequent sub-pattern

SUPPORT PROPERTY Minimum support = 2

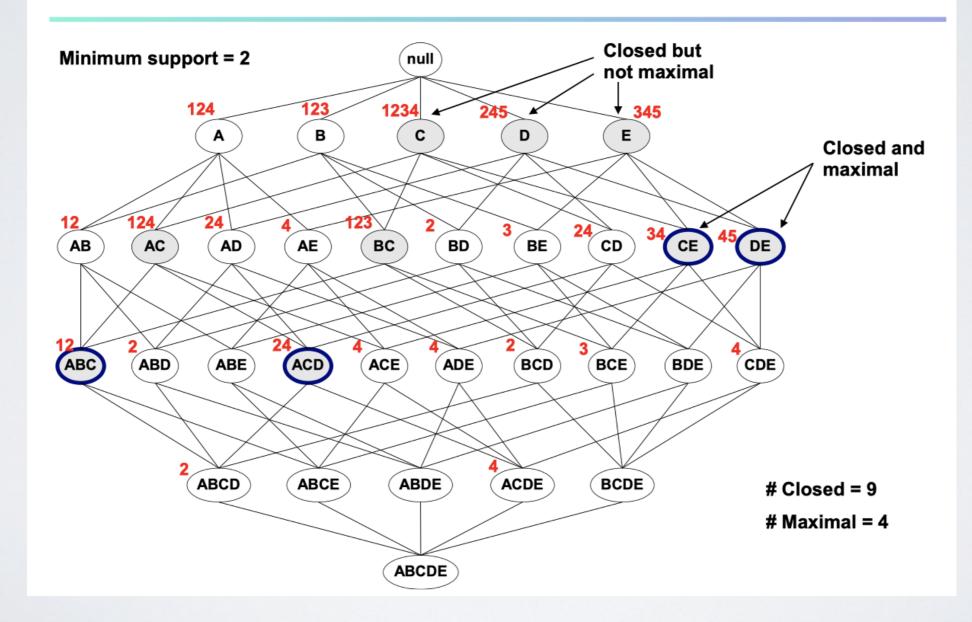
Maximal vs Closed Itemsets



Closed = 9 # Maximal = 4

SUPPORT PROPERTY

Maximal vs Closed Frequent Itemsets

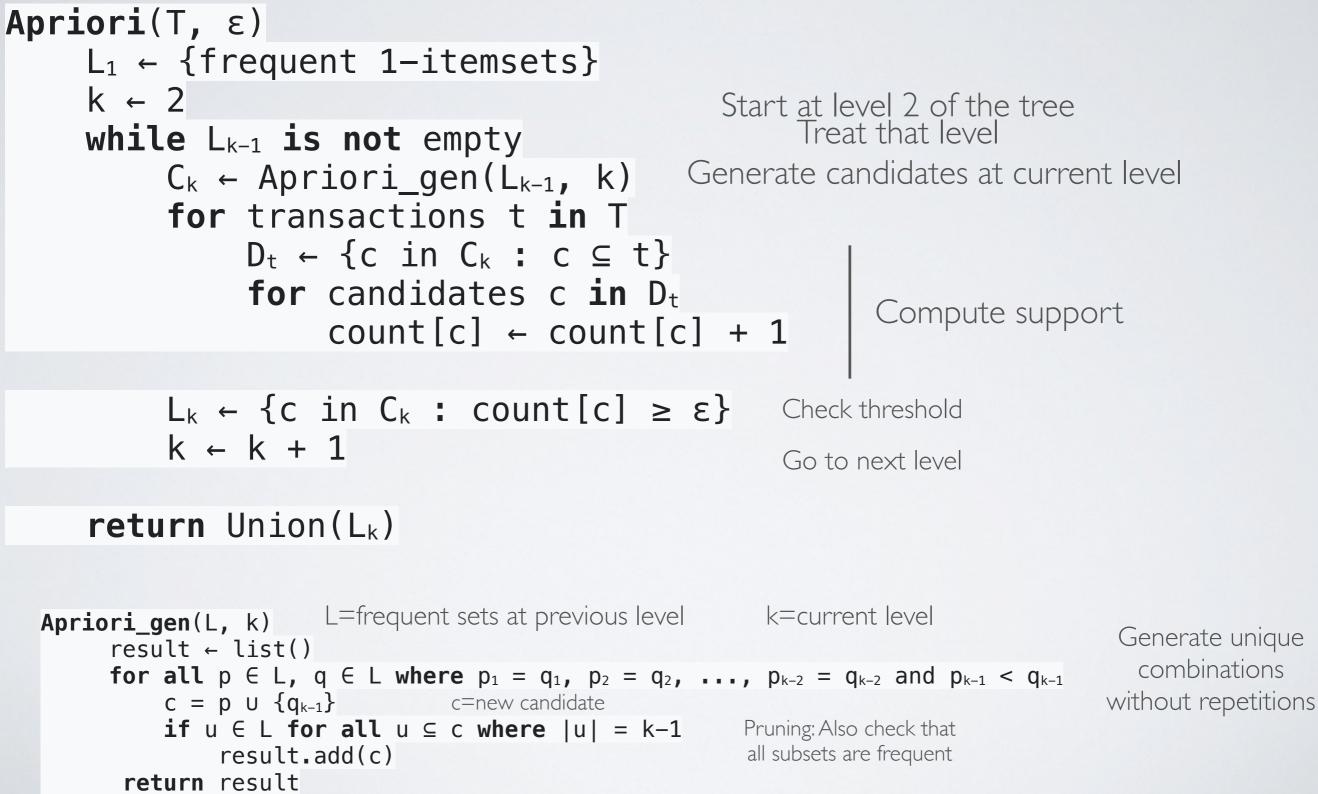


ALGORITHM: APRIORI

APRIORI

```
Apriori(Τ, ε)
       L_1 \leftarrow \{\text{frequent } 1 - \text{itemsets}\}
       k ← 2
       while L<sub>k-1</sub> is not empty
              C_k \leftarrow Apriori_gen(L_{k-1}, k)
              for transactions t in T
                     D_t \leftarrow \{c \text{ in } C_k : c \subseteq t\}
                     for candidates c in D<sub>t</sub>
                            count[c] \leftarrow count[c] + 1
              L_k \leftarrow \{c \text{ in } C_k : count[c] \ge \varepsilon\}
              k ← k + 1
       return Union(L<sub>k</sub>)
   Apriori_gen(L, k)
         result \leftarrow list()
         for all p \in L, q \in L where p_1 = q_1, p_2 = q_2, ..., p_{k-2} = q_{k-2} and p_{k-1} < q_{k-1}
              c = p \cup \{q_{k-1}\}
              if u \in L for all u \subseteq c where |u| = k-1
                  result.add(c)
          return result
```

APRIORI



APRIORI

- Limits: multiple scans over the dataset
 - Each level
- Many alternatives
 - FP-Growth
 - ECLAT
 - PrefixSpan
 - Distributed approaches (Spark...)

٠...

GOING FURTHER

Many other works in this domain

- Sequential Pattern Mining: Take order into account
 - If we first buy a printer, then we will buy ink (and not the opposite)
- Numeric target value: Find relevant intervals
 - If $\{a,b\} = z \in [12,25]$, if $\{a,c\} = z \in [25,32]$
- Subgraph frequent itemsets
 - e.g.: Common substructures across a database of chemical compounds
- Spatial frequent itemsets

. . .

- Supermarkets close to schools...

FREQUENT PATTERN=>GRAPHS

- Frequent patterns can represent another way to do data transformation:
 - Extract rules such as item | => item2
 - Consider this information as an edge
 - Create a network out of it
 - Can be more relevant than a simple distance