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WHO AM | ?

» Assoclate professor (Maitre de conferences) at LIRIS lab,
UCBL, Lyon University

* Working on

» Complex Networks
» Complex Systems
» Data Mining/Machine Learning



OUTLINE

* Introduction
* Analyzing graphs as a whole
* Analyzing nodes and edges

» Complexifying Complex Networks

» Machine Learning with graphs



COMPLEX NETWORKS

facebook




COMPLEX NETWORKS

» Difference with “graph theory':

» Difference of vocabulary, scientific communities

» Study real data from the real world

N eaicellar (erid.. . ), not Random ...

» Not the same questions (node coloring, counting cliques, complexity...)

* What about “networks™ ?
» Maybe to avoid confusion with the computer science term...



COMPLEX NETWORKS

» Complex networks can be:

» Directed (one-directional edge)

Weighted (nodes/edges have different weights)

Attributed (nodes/edges have properties)

Dynamic (nodes/edges/properties change)

Spatial (nodes/edges have locations in a space)

» Multigraph (multiple edges between same nodes)

» Multiplex (Edges different nature, I.e. several networks with same nodes)
» Multipartite (Nodes of different nature, e.g. products and individuals)

v

v

v

v

* Think of the representation of a street network. ..



COMPLEX NETWORKS

* Big questions:

» Important nodes ! (centrality)

» Important edges !

» Diffusion/Flows on the network ¢

Organisation of the network (clusters, core-periphery...) !
Resilience (robust to default)

Micro/Meso/Macro properties (clustering, degree distribution...)

v

v
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COMPLEX NETWORKS

» Machine learning on graphs

» Mainly using graph embedding
» Machine learning usually => predict properties from properties
» On graph: predict structure from properties, properties from structure, etc.

* Machine Learning (Al) tasks:

» Classification of nodes or edges
- Supervised, unsupervised
» Prediction of values of nodes or edges

» Prediction of properties of incoming nodes

A



EOMPLEX SYS TER

* Examples of complex system:s:

» Socleties

» Economies

» Human body

» Brain

» Ecosystems

Cities

Public Transportation Systems

Traffic
etc.

v

v

N/
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EOMPLEX SYS TER

—~

» Complex systems often have common phenomenons:

» Emergence of macro phenomenons
Chaotic behaviour (“Butterfly effect™)
Modular organisation

Multi-Scale organisation

“phase transition” or “percolation effect”

v

v

v

v

e Think of traffic jJams, trip patterns (holidays, commute), incidents impact on the
Bleien, ...



GRAPHS: INTRODUCTION



GRAPHS ¢

* A graph can be represented as:
R seicdocs v v2E (vl V3t fvd v/, ]
» A neighborhood list: {vI:{v2,v3}v2:{vI}v5{v/},.. .}
» An adjacency matrix
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* A network Is composed of hodes and edges.

* Size: How many nodes and edges !

Wikipedia HL
Twitter 2015

Facebook 2015
Brain c. Elegans
Roads US
Airport traffic




DENSITY

|E|

Directed | °“wvi-y

Defined as:
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Undirected | °~wigvi-y
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WIEEnRmore relevant: average degree ( Z|E[NE s

#nodes  i#edges Density
Wikipedia : :
Twitter 2015
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DEGREE DISTRIBUTION

* In a fully random graph (Erdos-Renyi), degree distribution is a
normal distribution centered on the average degree

* In real graphs, in general, it Is not the case:

» A high majority of small degree nodes
» A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law



DEGREE DISTRIBUTION

Power law/Scale free distribution:

To Be or Not to Be Scale-Free

Random Network
Randomly connected networks have nodes with
similar degrees. There are no (or virtually no) “hulbbs” —

nodes with many times the average number of links.

Most nodes
have a few
links.

The distribution of degrees is shaped roughly
like a bell curve that peaks at the network’s

“characteristic scale.”

Most nodes have a

T degree close to the
P characteristic scale.
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o Twitter’s Scale-Free Network

Most real-world networks of interest are not random.

Some nonrandom networks have massive hubs

with vastly higher degrees than other nodes.

The median active user ———————— -
has about 60 followers. ;

Some users have millions
of followers, forming enormous hulbs.
The degrees roughly follow a power law distribution
that has a “heavy tail.” The distribution has no

characteristic scale, making it scale-free.

Most nodes have a low degree.
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o) Giant hubs form
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Scientists study complex networks by looking at the distribution of the number of links (or “degree”) of each node.

Some experts see so-called scale-free networks everywhere. But a new study suggests greater diversity in real-world networks.

0 Facebook's In-Between Network
Researchers have found that most nonrandom
networks are not strictly scale-free. Many have

a weak heavy tail and a rough characteristic scale.

The medion ———

Facebook user

has about 200 —
friends.

Smaller

A few have
Facebook's limit
of 5,000 friends. oo

This network has fewer and smaller hubs than
in a scale-free network. The distribution of nodes

has a scale and does not follow a pure power law.

Most nodes have a low

T degree and most users
" cluster near the median.
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w
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>
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[Quanta magazine
2018]



To Be or Not to Be Scale-Free

Scientists study complex networks by looking at the distribution of the number of links (or “degree”) of each node.

Some experts see so-called scale-free networks everywhere. But a new study suggests greater diversity in real-world networks.

Random Network

Randomly connected networks have nodes with

similar degrees. There are no (or virtually no) “hulos” —

nodes with many times the average number of links.

Most nodes
have a few
links.

The distribution of degrees is shaped roughly
like a bell curve that peaks at the network's

“characteristic scale.”

Most nodes have a

T degree close to the

n characteristic scale.
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o Twitter’s Scale-Free Network

Most real-world networks of interest are not random.

Some nonrandom networks have massive hubs

with vastly higher degrees than other nodes.

The median active user
has about 60 followers.

Some users have millions
of followers, forming enormous hubs.

.....

The degrees roughly follow a power law distribution
that has a “heavy tail.” The distribution has no

characteristic scale, making it scale-free.

Most nodes have a low degree.

Giant hubs form

a heavy fail.
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o Facebook'’s In-Between Network
Researchers have found that most nonrandom
networks are not strictly scale-free. Many have

a weak heavy tail and a rough characteristic scale.

The medion ——
Facebook user

has about 200
friends.

A few have
Facebook's limit
of 5,000 friends.

This network has fewer and smaller hubs than
in a scale-free network. The distribution of nodes

has a scale and does not follow a pure power law.
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CLUSTERING COEFFICIENT

Global clustering coefficient

C— number of closed triplets

number of all triplets (open and closed)

IREIERSc ol 5 hodes connected by 2 or Siedses

Average Clustering Coefficient

2|{€jk PV, VU € Niaejk S E}|

Clustering coefficient of a node:| ¢i = b (k1)

Average CC:| €= %Z:C

T —




CLUSTERING COEFFICIENT

Ihe higher the value,
the more locally dense is the network.

“Friends of my friends are my friends”

Higher In real networks than random




CLUSTERING COEFFICIENT

* Facebook ego-networks; 0.6

o Twitter lists: 0.56

« California Road networks: 0.04

» Random (ER): =density: very small for large graphs g

C =



AVERAGE PATH LENGTH

» Average shortest path between all pairs of nodes

* [he famous 6 degrees of separation (Milgram experiment)
» In fact 6 hops
» (More on that next slide)

« Not too sensible to noise

» lells you If the network Is “stretched” or “hairpall” like



SIDE-STORY: MILGRAM
cXPERIMEN T
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HOMOPRILY/ASSORTATIVITY

* Nodes might have a preference for some other nodes

» Similar nodes (age In social networks)
» Different nodes (genre in sentimental networks (yes, it has been donel))
» Nodes with a particular property

» “Assortativity’ alone often used to mean “"degree assortativity”
» Large nodes are preferentially connected to large nodes

» All this implies: “compared with a random network”



HOMOPRILY/ASSORTATIVITY

The Structure of Romantic and Sexual Relations at "Jefferson High School™ |
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Each cirele represents a student and lines connecting students represent romantic relatiens occuring within the 6 months
preceding the interview. Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
paurs unconnccted to anyone clse)

e — ——



HOMOPRILY/ASSORTATIVITY

* Nodes might have a preference for some other nodes

» Similar nodes (age In social networks)
» Different nodes (genre in sentimental networks (yes, it has been donel))
» Nodes with a particular property

» “Assortativity’ alone often used to mean “"degree assortativity”
» Large nodes are preferentially connected to large nodes

» All this implies: “compared with a random network”



EXEMPLE OF GRAPH
ANALYSIS

» Source: [ The Anatomy of the Facebook Social Graph, Ugander
st 2l AR

* The Facebook friendship network in 201 |



EXEMPLE OF GRAPH
ANALYSIS

» /21 M users (nodes) (active in the last 28 days)
e ocdocs
» Average degree: |90 (average # friends)

SRlcclian desree: 99

BEifiected component: 99.9 1%



EXEMPLE OF GRAPH
ANALYSIS
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Fraction
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EXEMPLE OF GRAPH

ANALYSIS
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EXEMPLE OF GRAPH

ANALYSIS
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EXEMPLE OF GRAPH
ANALYSIS
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Fraction
0.00 0.05 0.10 0.15 0.20

EXEMPLE OF GRAPH
ANALYSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

20 40 60 80 100
Neighbor’s age




EXEMPLE OF GRAPH
ANALYS\S

g%

Country similarity

84.2% percent of edges are

within countries

(See community
detection)
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MACRO-MICRO

* First part: description of the graph at the macro level

= ccond part:

» How to describe each element !
» How to find “exceptional” elements ?



NODE

* We can measure nodes importance using so-called
centrality.

» Bad term: nothing to do with being central in general

» Common practice: run many centralities and check relation
between centralities and properties/identity of nodes



INODE DEGREE

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

A

» But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

1SN



INODE DEGREE

* In directed networks, degree Is split in:
» In-degree
» Out-degree

* Example: web pages:
» Highest out-degree: list of references
» Highest in-degree: website that attracts a lot of link: probably interesting



NODE STRENGT

* Strength: Degree in a weighted network

» Sum of the welght of adjacent edges



NODE CLUS TERING
EOEFHICIERNES

* Clustering coefficient: already seen for global analysis
» The local version %
- Tells you If the neighbors of the node are connected 7y

* Be careful!

» Degree 2:value O or | c=1/3

» Degree [000: Not O or | (usually) \
» Ranking them Is not meaningful 5

=30

e




NODE BETWEENNESS

- Betweenness centrality:

» [)compute all shortest paths between all nodes
» 2)count the fraction of them going through the node

» |dea: If the node Is "between’ many nodes, then It Is iImportant.

« Related to the notion of "flow’ of information in the network



NODE BETWEENNESS

- Betweenness centrality:

Amsterdam Betweenness no limit

Betweennes

B o - 1945724

B 1945724 - 4393830

1 4393830 - 7638822
7638822 - 12495980
12495980 - 19088726
19088726 - 27886000

P 27886000 - 43568276

B 43568276 - 65663810

I 65663810 - 111707392

I 111707392 - 206674924

/

()

:J AN\

-

ac.

o

| |

]

- L

o0 r\-%

- an —

d - — E=n
1.: {5

i ol A 7

- ;.nl I
o T = )
i) Eal Wit | (gallg=>
nEg = 1SNiH 4. ==
1! '.. ’gLr:k =22 ’LLI«_.".'!. ‘.l'-j}\‘{:_ 7 \
i = A B F
I' E= MR |
¥ -




NODE BETWEENNESS

- Betweenness centrality:
» Computationally intractable

» Common approximation:
» Compute random paths between k nodes (e.g. k=100)



NODE PAGERANK

The PageRank Citation Ranking:
Bringing Order to the Web

by
Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd




NODE PAGERANK

* |[dea: ranking webpages by relevance

* Problems with In-degree:

» Easy to fool
» Where the link comes from Is ignored



NODE PAGERANK

» Solution: Give a score of “authority’” to each node determining
the score of other nodes

* Interpretation:
» Likelihood to reach a particular page by clicking links at random

B iemieter:
» Probability of random hop anywhere to avoid dead end biases

» Computation:

» Principal eigenvector of the normalized link matrix (including random hops)
» Power method: random walks on the graph



NODE PAGERANK

* Interpretation: A node I1s important if many important nodes
are linking to It.

» Often correlated with In-degree

» Allow to find tops In hierarchical structures:

» Commoners talk to local deputy, deputy talk to ministers, ministers talk to the
president: the president has low Iin-degree, but high pagerank.



NODE PAGERANK

* Then how do Google rank when we do a research?

» Create a subgraph of documents related to our topic

» Compute pagerank

REIEcolirse now It Is much more complex...)



EIGENVECTOR CENTRALITY

» Corresponding value of the eigenvector corresponding to the
highest eigenvalue of the adjacency matrix

» Crude version of the PageRank



AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

S

00
k
C'Katz E : x
k=1
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T —




AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

Katz centrality of node 1=



AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

N ‘ ¥ 4

Repeat for all distances as long
As possible (convergence)



AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

Sum for each node }



AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

Alpha Is a parameter.
[ts strength decreases at
each rteration



AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

Number ofdifferaths from 1 to }
of length k



AT Z CENTRALTESE

» Variant of the PageRank & Eigenvector centrality

CKatz (Z)

e —

Sum of paths to all other nodes at each
distance multiplied by a factor decreasing
with distance




NODE CLOSENESS

* Farness: sum of length of shortest paths to all other nodes.
e Closeness: inverse of the Farness

» Highest closeness = More central
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HARMONIC CENTRALITY

1

1 ) —
H) =Y -
" Closeness

« Harmonic centrality related to closeness centrality



o TS

» Many other centralities have been proposed
* [ he problem Is how to interpret them ¢

» Can be used as supervised tool:

Compute many centralities on all nodes

Learn how to combine them to find chosen nodes

Discover new similar nodes

(roles In social networks, key elements in an infrastructure, ...)

v

v

v

v



! Which 1s which

Harmonic
Closeness
Betweenness
Figenvector

Katz
Dlegee
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B:Closeness
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EDGES CENTRALITIES



& B8 aie

» Most centralities can be computed for edges

» Methods based on flow are more natural for edges:

» Edge betweenness centrality: how many shortest paths go through the
edge

sigma: shortest paths
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K-PATH EDGE CENTRALITY

1) = 3 77
seV 5

T T— —8

S: source node

K-path: random walk of distance k



CURRENT-FLOW
BE T WEENNESS

Analogy with electrical circurt

How much voltage at the node If unit injected at random
node and collected at other random node (average)

]i(st) _ %ZAUlVi(st) - Vj(sf)l _ %ZAiﬂTis o Tit - Tjs + T_jf|9 for i ;é s. t. (())

The current flowing through the ith vertex is given by a half of the sum of the absolute values of the
currents flowing along the edges incident on that vertex

ZS Il(st) |
La-n  Average current flow for all pairs

2

T ———

b'i —




CURRENT-FLOW
BE T WEENNESS

Also called Random walk betweenness

Average probability to go through the edge
in a random walk from

SRiel/ o 4l palfs of nedes (S




COMMUNICABILITY
BE T WEENNESS CENTRALITY




COMMUNICABILITY
BE | WEENNESS CENTRALITY
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Number of shortest paths of length<'s
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COMMUNICABILITY
BE [ WEENNESS CENTRAUTY

Number of shortest paths of length> s

| G
0 =— prq ,
L C ;; qu

P#*F4,pFr,q#r




COMMUNICABILITY
BE T WEENNESS CENTRALITY

Score for paths going though r
/ scores for all paths



EDGE CENTRALITIES

W hicRer colrse, many more
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WEIGH TS, DIRECTIONS

» Until now, | presented mostly undirected, unwelighted
networks

* Most of what we have seen generalizes naturally to:

» Weighted (value on edges)
» Directed (edges in a single direction)



WEIGHTS

* Degree on a weighted network is called strength
» Sum of weights of edges

- Random walks are biased according to welights

» Sone notions are harder: Clustering Coefficient! Graph
Distance!?



DIRECTIONS

* Degree is split between in-degree and out-degree
» Random walks naturally follow directions

» Shortest paths naturally defined

» Modularity 1s problematic, clustering coefficient has several
definrtions...



MULTI-GRAPHS



MULTIGRAPH

» Multi-graph: several edges allowed between same nodes

» Often used In conjunction with labels:

» One edge for friendship,
» one edge for family,
» one edge for co-worker. ..

» Without labels, can be simplified as a weighted graph



MULTI-PARTITE GRAPHS



MULTI-PARTITE GRAPHS

» Bi-partite: there exists 2 kinds of nodes, and links can be only
between nodes of different types

» Multi-partite: similar but with more than 2 types. Much less common

* Not strictly different from normal graphs: if you don’t know
the two categories of nodes, it looks like any network

* [ he problem is that some definitions of normal graphs

become meaningless
» =>(lustering coefficient



MULTI-PARTITE GRAPHS

» Bi-partite networks are quite commonly use

» Actors - Films
» Clients - Products
» Researchers - conferences/institutions

At

* Normal methods work but sometimes give unintuitive results:
» Specific variants have been proposed



HYPERGRAPHS



HYPERGRAPHS

» “Generalisation” of graph

* An edge Is not limited to 2 extremities




MULTILAYER NETWORKS



MULTILAYER NETWORKS

» Multiplex network
» Multislice network
» Multitype network

» Heterogenous information network

Kivela 20147



MULTILAYER NETWORKS

» Can be used to represent:

» Several types of relations between the same nodes

Bus transportation network

Bicycle transportation network

Car transportation network

Figure 2. Superlayer representation of the Madrid transportation system. The figure represents the three transportation modes
considered: tram (yellow nodes, upper layer), metro (purple nodes, mid layer) and buses (white nodes, bottom layer). See
Tablel for statistics of these layers.




MULTILAYER NETWORKS

M@ fRocNlised to represent:
» Several snapshots of the same network
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MULTILAYER NETWORKS

Both/Other



MULTILAYER NETWORKS

» Relations can be:
» Only between same nodes in different layers

- Public transport interconnection
» Between different nodes in different layers
- Information transfert form person A on Facebook to person B on Instagram.

(a)




MULTILAYER NETWORKS

« All usual definitions on static networks can be extended to
multilayer networks

» Degree, clustering coefficient, community detection...

* [ he problem is that there are many ways to do it, and 1t
depends on what your layers represent

» Degree of a person on a multilayer network of facebook, Twitter; Linked-in?

* If you used a multilayer network;, it Is because it was not well
summarized by a single network...

» Same definrtion for multilayer dynamic and multilayer different types!



MULTILAYER NETWORKS

A simple idea: multilayers networks can be
transformed into normal networks




HIGHER ORDER NETWORKS



HIGHER ORDER NETWORKS

* Another relatively recent and very active field of research

» Many networks are built using logs of sequence of items

encountered by actors

» People travelling in public transport go through stations
» Consumer buy products on amazon one after the other

* Normal network: we split sequences in pairs

» Higher order: conserve the memory of previous items



HIGHER ORDER NETWORKS

* lypical example: air traffic.

» Many crties does not have direct trips

» e.g. Lyon->New York
» Flight goes through stopover: Lyon->Paris->New York

» |[f we want to create a weighted network of trips:

» We count the number of trips Lyon->Paris, and Paris->New York
» We forget the information of previous/Next step



HIGHER ORDER NETWORKS

» But Information of previous steps can be useful!

SNEEen Paris,

» | 0% passengers go to New York
» [0% passengers go to Rome

* You know that a passenger comes from Lyon

| 0% probability to go to New York

| 0% probability to go to Rome

=>Wrong!

It | come from lyon, much more likely to go to New York than Rome!

v

v

v

v



HIGHER ORDER NETWORKS

Raw event sequence data First-order network

@ @ @ @—>® Count number of @\ 50%@

pairwise interactions

@ @ @ @ as edge weights

—_—

H—@—O OGO
O @0 O—®—

Xu 2016]




HIGHER ORDER NETWORKS

* [he big word: Non-markovian process

» Markovian process:

» A random process in which the future Is independent from the past
» Describes a process: Markov chains sunny

!O.G,




HIGHER ORDER NETWORKS

a First-order Markov b Second-order markov

| Chicago

Seattle _ 14%
4N

Seattle

Atlanta \h 18% Atlanta
San Francisco 24% San Francisco
New York New York
44%

e s ‘Rosvall 2014]




HIGHER ORDER NETWORKS

* How to integrate non-markovian processes in networks?

* WWe create new nodes

» Do not correspond to an element (a city...)
» Correspond to an element AND an origin

* A single element of memory: second-order network
» 2! Third-order network

* etcC.



HIGHER ORDER NETWORKS

Raw event sequence data

B—W—® EO—MW—O
B—W— E—M—
B—W—0 —M0w—0O
B—W—® EO—MW—O

Extract higher-order dependencies
from raw event sequences

Higher-order dependencies

75% (X) 25% ,(X)
o=@ o=@
25% (Y) 75% (Y)

First-order network

@)\ 50% (X)

Count number of
pairwise interactions
as edge weights

—_—

Higher-order network
Construct HON

based on the
extracted rules




HIGHER ORDER NETWORKS

* Weakness: complexity

* You multiply the number of nodes by the number of possible
arrival source

» => (an be necessary 1o Ignore rare cases



MANIPULATING GRAPHS:
GEPHI, NETWORKX



MANIPULATING GRAPHS

* Visualization + simple computations
» Gephi
» Tulip

* Libraries

» Networkx (simple, most complete)
» SNAP (fast)
» Igraph, graph-tools, Apache GraphJX, ... (useful for specific tasks)



MANIPULATING GRAPHS

* Demo



WHAT |5
GRAPH EMBEDDING ¢



GRAPHS / NETWORKS

Al =

Network A

oI
oorithms

Link prediction
Community detection

Graph reconstruction
Node classification



MACHINE LEARNING

oo

T — —

Features as vectors

Prediction
»Classiﬂcation

Clustering

)




Prediction
Classification

Clustering




Graph embedding

»»




Graph embedding Machine Learning

L g g
4

= Predcies

Link prediction
Graph reconstruction

Community detection=Clustering
Node classification = Classification



WHY DOES
GRAPH EMBEDDING
A R



WORD EMBEDDING
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WORD EMBEDDING

Word2vec, Skipgram, ...

Vector Math . King

/7% Queen

King - Man Man . -

Woman




GENERIC “SKIPGRAM"

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

|https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|



https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

HOW DOES [T WORKS /¢



SKIPGRAM

VWord embedding
Natural language => vectors

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The

brown |[fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)
(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

[http://mccormickml.com/2016/04/ | 9/word2vec-tutorial-the-skip-gram-model/]



INTUITIVE/NAIVE IDEA

s Recent methods based on ‘neural networks™

®
O
O
Xk [°
O
Output layer
O] )
o o
O O
Xk o o Y
N =
B V-dim
O
O
O
Xq O

| O s




DEEPWALK

» Skipgram for graphs:

» | )Generate “sentences’” using random walks
» 2)Apply Skipgram

» Parameters: dimensions d, RWV length k



CLIQUE RING

5> cliques or size 20 with | edge between them

| E
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GRAPH FACTORIZATION

R Elslished: 20| 5)

To the best of our knowledge, Graph Factorization [21] was
the first method to obtain a graph embedding in O(|E|) time. To
obtain the embedding, GF factorizes the adjacency matrix of
the graph, minimizing the following loss function

1 A
PED =5 ) Wy= <1,V + 2 3 ITIE,
(i,))eE I

where A 1s a regularization coeflicient. Note that the summation
1s over the observed edges as opposed to all possible edges.
This 1s an approximation in the interest of scalability, and as
such it may introduce noise in the solution. Note that as the ad-
jacency matrix is often not positive semidefinite, the minimum
of the loss function is greater than O even if the dimensionality
of embedding is |V]|.

Simple main idea:
Minimize difference between
Weight and cosine similarity



B RUCTZVES

* In node2vec/Deepwalk, the context collected by RW contain
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
attributes It avallable, or computed attributes (degrees, CC, ...)

« =>Nodes with a same context will be nodes In a same
“position’ In the graph

» =>(Capture the role of nodes instead of proximity



BRUC [ 2VEC : DOUBLE ZISS

-2 -1.5 -1 -0.5 0
(c) struc2vec




USING EMBEDDINGS



MACHINE LEARNING

* From a set of features

» House: # rooms, surface, volume, number of windows, etc.

* Predict a value or a class

» Value: Price, construction vear, ...
» Class: Energy efficiency, individual house YES/NG, ...

» Using your favorite tool

» Linear regression, logistic classifier; decision tree, neural networks. ..



MACHINE LEARNING

- Graph embedding gives you features to represent the
structural position of a node

B llies canibe combined to represent edges

Operator Result

Average (a+b)/2

Concat [ T s Dits 5 svess by]
Hadamard [a; xbq,..., ag *by]
Weighted L1 [|a; — b1, ..., lag — byl]
Weighted L2 (a; —by)?%, ..., (ag —by)?]




MACHINE LEARNING

» You can predict things about nodes, edges, or pairs of nodes
(with/without edge)

* YOou can combine the embedding information with other
features

» =>Use embedding + road characteristic to predict the
probability to have congestion, critical failure, speed IImit...

* You can also combine with network properties (centralities. . .)



