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An introduction



WHO AM I ?

• Associate professor (Maître de conférences) at LIRIS lab, 
UCBL, Lyon University

• Working on 
‣ Complex Networks 
‣ Complex Systems
‣ Data Mining/Machine Learning



OUTLINE

• Introduction

• Analyzing graphs as a whole

• Analyzing nodes and edges

• Complexifying Complex Networks

• Machine Learning with graphs



COMPLEX NETWORKS



COMPLEX NETWORKS

• Difference with “graph theory”:
‣ Difference of vocabulary, scientific communities
‣ Study real data from the real world
‣ Not regular (grid…), not Random …
‣ Not the same questions (node coloring, counting cliques, complexity…)

• What about “networks” ?
‣ Maybe to avoid confusion with the computer science term…



COMPLEX NETWORKS

• Complex networks can be:
‣ Directed (one-directional edge)
‣ Weighted (nodes/edges have different weights)
‣ Attributed (nodes/edges have properties)
‣ Dynamic (nodes/edges/properties change)
‣ Spatial (nodes/edges have locations in a space)
‣ Multigraph (multiple edges between same nodes)
‣ Multiplex (Edges different nature, i.e. several networks with same nodes)
‣ Multipartite (Nodes of different nature, e.g. products and individuals)
‣ …

• Think of the representation of a street network…



COMPLEX NETWORKS

• Big questions:
‣ Important nodes ?  (centrality)
‣ Important edges ?
‣ Diffusion/Flows on the network ?
‣ Organisation of the network (clusters, core-periphery…) ?
‣ Resilience (robust to default)
‣ Micro/Meso/Macro properties (clustering, degree distribution…)
‣ …



COMPLEX NETWORKS

• Machine learning on graphs 
‣ Mainly using graph embedding
‣ Machine learning usually => predict properties from properties
‣ On graph: predict structure from properties, properties from structure, etc.

• Machine Learning (AI) tasks:
‣ Classification of nodes or edges

- Supervised, unsupervised
‣ Prediction of values of nodes or edges
‣ Prediction of properties of incoming nodes
‣ …



COMPLEX SYSTEMS

• Examples of complex systems:
‣ Societies
‣ Economies
‣ Human body
‣ Brain
‣ Ecosystems
‣ Cities
‣ Public Transportation Systems
‣ Traffic
‣ etc.



COMPLEX SYSTEMS

• Complex systems often have common phenomenons:
‣ Emergence of macro phenomenons
‣ Chaotic behaviour (“Butterfly effect”)
‣ Modular organisation
‣ Multi-Scale organisation
‣ “phase transition” or “percolation effect”
‣ …

• Think of traffic jams, trip patterns (holidays, commute), incidents impact on the 
system, …



GRAPHS: INTRODUCTION



GRAPHS ?

• A graph can be represented as:
‣ A list of edges : [{v1,v2}, {v1,v3}, {v5,v7},… ]
‣ A neighborhood list: {v1:{v2,v3},v2:{v1},v5:{v7},…}
‣ An adjacency matrix



SIZE
• A network is composed of nodes and edges. 

• Size: How many nodes and edges ?

#nodes #edges
Wikipedia HL 2M 30M
Twitter 2015 288M 60B

Facebook 2015 1.4B 400B
Brain c. Elegans 280 6393

Roads US 2M 2.7M
Airport traffic 3k 31k



DENSITY 

#nodes #edges Density avg. deg
Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416
Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 
Elegans

280 6393 0.16 46
Roads Calif. 2M 2.7M 6x10-7 2.7

Airport 
traffic

3k 31k 0.007 21

Defined as: 
Directed

Undirected

Often more relevant: average degree ( 2|E| / |V| )



DEGREE DISTRIBUTION

• In a fully random graph (Erdos-Renyi), degree distribution is a 
normal distribution centered on the average degree 

• In real graphs, in general, it is not the case:
‣ A high majority of small degree nodes
‣ A small minority of nodes with very high degree (Hubs)

• Often modeled by a power law



DEGREE DISTRIBUTION
Power law/Scale free distribution:

[Quanta magazine
2018]



DEGREE DISTRIBUTION
Power law/Scale free distribution:



CLUSTERING COEFFICIENT

Triplet: set of 3 nodes connected by 2 or 3 edges

Global clustering coefficient

Average Clustering Coefficient

Clustering coefficient of a node:

Average CC:



CLUSTERING COEFFICIENT

The higher the value, 
the more locally dense is the network.

“Friends of my friends are my friends”

Higher in real networks than random



CLUSTERING COEFFICIENT

• Facebook ego-networks: 0.6

• Twitter lists: 0.56

• California Road networks: 0.04

• Random (ER): =density: very small for large graphs



AVERAGE PATH LENGTH

• Average shortest path between all pairs of nodes

• The famous 6 degrees of separation (Milgram experiment)
‣ In fact 6 hops
‣ (More on that next slide)

• Not too sensible to noise

• Tells you if the network is “stretched” or “hairball” like



SIDE-STORY: MILGRAM 
EXPERIMENT

Facebook



HOMOPHILY/ASSORTATIVITY

• Nodes might have a preference for some other nodes
‣ Similar nodes (age in social networks)
‣ Different nodes (genre in sentimental networks (yes, it has been done!))
‣ Nodes with a particular property

• “Assortativity” alone often used to mean “degree assortativity”
‣ Large nodes are preferentially connected to large nodes

• All this implies: “compared with a random network”



HOMOPHILY/ASSORTATIVITY



HOMOPHILY/ASSORTATIVITY

• Nodes might have a preference for some other nodes
‣ Similar nodes (age in social networks)
‣ Different nodes (genre in sentimental networks (yes, it has been done!))
‣ Nodes with a particular property

• “Assortativity” alone often used to mean “degree assortativity”
‣ Large nodes are preferentially connected to large nodes

• All this implies: “compared with a random network”



EXEMPLE OF GRAPH 
ANALYSIS

• Source: [The Anatomy of the Facebook Social Graph, Ugander 
et al. 2011]

• The Facebook friendship network in 2011



EXEMPLE OF GRAPH 
ANALYSIS

• 721M users (nodes) (active in the last 28 days)

• 68B edges

• Average degree: 190 (average # friends)

• Median degree: 99

• Connected component: 99.91%



EXEMPLE OF GRAPH 
ANALYSIS

Component size
Distribution 



EXEMPLE OF GRAPH 
ANALYSIS

Degree distribution

Cumulative



EXEMPLE OF GRAPH 
ANALYSIS

Clustering coefficient
By degree

Median user : 0.14:
14% of pair friends
Are actually friends



EXEMPLE OF GRAPH 
ANALYSIS

My friends have more
Friends than me!

Many of my friends have the 
Same # of friends than me!



EXEMPLE OF GRAPH 
ANALYSIS

Age homophily



EXEMPLE OF GRAPH 
ANALYSIS

Country similarity

84.2% percent of edges are 

within countries 

(See community 
detection)



DESCRIPTION AT THE MICRO-
LEVEL



MACRO-MICRO

• First part: description of the graph at the macro level

• Second part:
‣ How to describe each element ?
‣ How to find “exceptional” elements ?



NODE

• We can measure nodes importance using so-called 
centrality. 

• Bad term: nothing to do with being central in general

• Common practice: run many centralities and check relation 
between centralities and properties/identity of nodes



NODE DEGREE

• Degree: how many neighbors

• Often enough to find important nodes
‣ Main characters of a series talk with the more people
‣ Largest airports have the most connections
‣ …

• But not always
‣ Facebook users with the most friends are spam
‣ Webpages/wikipedia pages with most links are simple lists of references
‣ …



NODE DEGREE

• In directed networks, degree is split in:
‣ In-degree
‣ Out-degree

• Example: web pages:
‣ Highest out-degree: list of references
‣ Highest in-degree: website that attracts a lot of link: probably interesting



NODE STRENGTH

• Strength: Degree in a weighted network

• Sum of the weight of adjacent edges



NODE CLUSTERING 
COEFFICIENT

• Clustering coefficient: already seen for global analysis

• The local version

• Tells you if the neighbors of the node are connected

• Be careful! 
‣ Degree 2: value 0 or 1
‣ Degree 1000: Not 0 or 1 (usually)
‣ Ranking them is not meaningful 



NODE BETWEENNESS

• Betweenness centrality:
‣ 1)compute all shortest paths between all nodes
‣ 2)count the fraction of them going through the node

• Idea: if the node is “between” many nodes, then it is important.

• Related to the notion of “flow” of information in the network



NODE BETWEENNESS
• Betweenness centrality:



NODE BETWEENNESS

• Betweenness centrality:

• Computationally intractable

• Common approximation:
‣ Compute random paths between k nodes (e.g. k=100)



NODE PAGERANK



NODE PAGERANK

• Idea: ranking webpages by relevance

• Problems with in-degree: 
‣ Easy to fool
‣ Where the link comes from Is ignored



NODE PAGERANK
• Solution: Give a score of “authority” to each node determining 

the score of other nodes

• Interpretation:
‣ Likelihood to reach a particular page by clicking links at random

• Parameter:
‣ Probability of random hop anywhere to avoid dead end biases

• Computation:
‣ Principal eigenvector of the normalized link matrix (including random hops)
‣ Power method: random walks on the graph



NODE PAGERANK

• Interpretation: A node is important if many important nodes 
are linking to it.

• Often correlated with in-degree

• Allow to find tops in hierarchical structures:
‣ Commoners talk to local deputy, deputy talk to ministers, ministers talk to the 

president: the president has low in-degree, but high pagerank.



NODE PAGERANK

• Then how do Google rank when we do a research?

• Create a subgraph of documents related to our topic

• Compute pagerank

• (Of course now it is much more complex…)



EIGENVECTOR CENTRALITY

• Corresponding value of the eigenvector corresponding to the 
highest eigenvalue of the adjacency matrix

• Crude version of the PageRank



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality

Katz centrality of node i=



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality

Repeat for all distances as long 
As possible (convergence)



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality

Sum for each node j



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality

Alpha is a parameter.
Its strength decreases at 

each iteration



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality

Number of different paths from I to j
of length k  



KATZ CENTRALITY
• Variant of the PageRank & Eigenvector centrality

Sum of paths to all other nodes at each 
distance multiplied by a factor decreasing 

with distance



NODE CLOSENESS

• Farness: sum of length of shortest paths to all other nodes.

• Closeness: inverse of the Farness

‣ Highest closeness = More central



NODE CLOSENESS



HARMONIC CENTRALITY

• Harmonic centrality related to closeness centrality

Closeness



OTHERS

• Many other centralities have been proposed

• The problem is how to interpret them ?

• Can be used as supervised tool:
‣ Compute many centralities on all nodes
‣ Learn how to combine them to find chosen nodes
‣ Discover new similar nodes
‣ (roles in social networks, key elements in an infrastructure, …)



? Which is which

Harmonic 
Closeness

Betweenness
Eigenvector

Katz
Degree



A: Betweenness
B:Closeness

C:Eigenvector
D:Degree

E:Harmonic 
F: Katz



Try again :)

Degree
Betweenness

Closeness
Eigenvector



Try again :)

A: Degree
B:Closeness

C: Betweenness
D: Eigenvector



 EDGES CENTRALITIES



EDGES

• Most centralities can be computed for edges

• Methods based on flow are more natural for edges:
‣ Edge betweenness centrality: how many shortest paths go through the 

edge

sigma: shortest paths



EDGES

Can you guess the edges of
highest betweenness in 

the European rail network ?



K-PATH EDGE CENTRALITY

s: source node

K-path: random walk of distance k



CURRENT-FLOW 
BETWEENNESS

Analogy with electrical circuit

How much voltage at the node if unit injected at random 
node and collected at other random node (average)

The current flowing through the ith vertex is given by a half of the sum of the absolute values of the 
currents flowing along the edges incident on that vertex 

Average current flow for all pairs



CURRENT-FLOW 
BETWEENNESS

Also called Random walk betweenness

Average probability to go through the edge
 in a random walk from 

U to V for all pairs of nodes (U,V)



COMMUNICABILITY 
BETWEENNESS CENTRALITY



COMMUNICABILITY 
BETWEENNESS CENTRALITY

Number of shortest paths of length< s



COMMUNICABILITY 
BETWEENNESS CENTRALITY

Number of shortest paths of length> s



COMMUNICABILITY 
BETWEENNESS CENTRALITY

Score for paths going though r
/ scores for all paths



EDGE CENTRALITIES

• And of course, many more



COMPLEXIFYING COMPLEX 
NETWORKS



WEIGHTS, DIRECTIONS

• Until now, I presented mostly undirected, unweighted 
networks

• Most of what we have seen generalizes naturally to:
‣ Weighted (value on edges)
‣ Directed (edges in a single direction)



WEIGHTS

• Degree on a weighted network is called strength
‣ Sum of weights of edges

• Random walks are biased according to weights

• Sone notions are harder: Clustering Coefficient? Graph 
Distance?



DIRECTIONS

• Degree is split between in-degree and out-degree

• Random walks naturally follow directions

• Shortest paths naturally defined

• Modularity is problematic, clustering coefficient has several 
definitions…



MULTI-GRAPHS



MULTIGRAPH

• Multi-graph: several edges allowed between same nodes

• Often used in conjunction with labels: 
‣ One edge for friendship, 
‣ one edge for family, 
‣ one edge for co-worker…

• Without labels, can be simplified as a weighted graph



MULTI-PARTITE GRAPHS



MULTI-PARTITE GRAPHS

• Bi-partite: there exists 2 kinds of nodes, and links can be only 
between nodes of different types
‣ Multi-partite: similar but with more than 2 types. Much less common

• Not strictly different from normal graphs: if you don’t know 
the two categories of nodes, it looks like any network

• The problem is that some definitions of normal graphs 
become meaningless
‣ =>Clustering coefficient



MULTI-PARTITE GRAPHS

• Bi-partite networks are quite commonly use
‣ Actors - Films
‣ Clients - Products
‣ Researchers - conferences/institutions
‣ …

• Normal methods work but sometimes give unintuitive results:
‣ Specific variants have been proposed



HYPERGRAPHS



HYPERGRAPHS

• “Generalisation” of graph

• An edge is not limited to 2 extremities



MULTILAYER NETWORKS



MULTILAYER NETWORKS

• Multiplex network 

• Multislice network 

• Multitype network

• Heterogenous information network

[Kivela 2014]



MULTILAYER NETWORKS
• Can be used to represent:

‣ Several types of relations between the same nodes
- Bus transportation network
- Bicycle transportation network
- Car transportation network
- …



MULTILAYER NETWORKS

• Can be used to represent:
‣ Several snapshots of the same network



MULTILAYER NETWORKS

Both/Other



MULTILAYER NETWORKS

• Relations can be:
‣ Only between same nodes in different layers

- Public transport interconnection 
‣ Between different nodes in different layers

- Information transfert form person A on Facebook to person B on Instagram.



MULTILAYER NETWORKS
• All usual definitions on static networks can be extended to 

multilayer networks
‣ Degree, clustering coefficient, community detection…

• The problem is that there are many ways to do it, and it 
depends on what your layers represent
‣ Degree of a person on a multilayer network of facebook, Twitter, Linked-in?

• If you used a multilayer network, it is because it was not well 
summarized by a single network…
‣ Same definition for multilayer dynamic and multilayer different types?



MULTILAYER NETWORKS

A simple idea: multilayers networks can be 
transformed into normal networks



HIGHER ORDER NETWORKS



HIGHER ORDER NETWORKS

• Another relatively recent and very active field of research

• Many networks are built using logs of sequence of items 
encountered by actors
‣ People travelling in public transport go through stations
‣ Consumer buy products on amazon one after the other

• Normal network: we split sequences in pairs
‣ Higher order: conserve the memory of previous items



HIGHER ORDER NETWORKS

• Typical example: air traffic.

• Many cities does not have direct trips
‣ e.g.: Lyon->New York
‣ Flight goes through stopover: Lyon->Paris->New York

• If we want to create a weighted network of trips:
‣ We count the number of trips Lyon->Paris, and Paris->New York
‣ We forget the information of previous/Next step



HIGHER ORDER NETWORKS

• But information of previous steps can be useful!

• From Paris, 
‣ 10% passengers go to New York
‣ 10% passengers go to Rome

• You know that a passenger comes from Lyon
‣ 10% probability to go to New York
‣ 10% probability to go to Rome
‣ =>Wrong!
‣ If I come from lyon, much more likely to go to New York than Rome!



HIGHER ORDER NETWORKS

[Xu 2016]



HIGHER ORDER NETWORKS
• The big word: Non-markovian process

• Markovian process:
‣ A random process in which the future is independent from the past
‣ Describes a process: Markov chains



HIGHER ORDER NETWORKS

[Rosvall 2014]Round trips



HIGHER ORDER NETWORKS

• How to integrate non-markovian processes in networks?

• We create new nodes
‣ Do not correspond to an element (a city…)
‣ Correspond to an element AND an origin

• A single element of memory: second-order network

• 2? Third-order network

• etc.



HIGHER ORDER NETWORKS



HIGHER ORDER NETWORKS

• Weakness: complexity

• You multiply the number of nodes by the number of possible 
arrival source

• => Can be necessary to ignore rare cases



MANIPULATING GRAPHS:
GEPHI,  NETWORKX



MANIPULATING GRAPHS

• Visualization + simple computations
‣ Gephi
‣ Tulip
‣ …

• Libraries
‣ Networkx  (simple, most complete)
‣ SNAP (fast)
‣ igraph, graph-tools, Apache GraphX, … (useful for specific tasks)



MANIPULATING GRAPHS

• Demo



WHAT IS 
GRAPH EMBEDDING ?



GRAPHS / NETWORKS

Ad Hoc 
Network Algorithms

Link prediction
Community detection
Graph reconstruction
Node classification
…



MACHINE LEARNING

Features as vectors

Prediction

Clustering
…

Classification



Prediction

Clustering
…

Classification

?

?



Graph embedding



Graph embedding Machine Learning

Prediction
Clustering

…
Classification

=
Link prediction

Community detection
Graph reconstruction

Node classification
…

=
=



WHY DOES 
GRAPH EMBEDDING

MATTERS ?



WORD EMBEDDING



WORD EMBEDDING
Word2vec, Skipgram, …



GENERIC “SKIPGRAM”

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


HOW DOES IT WORKS ?



SKIPGRAM
Word embedding

Natural language => vectors

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]



INTUITIVE/NAIVE IDEA 
• Recent methods based on “neural networks”



DEEPWALK

• Skipgram for graphs: 
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters: dimensions d, RW length k



CLIQUE RING
5 cliques or size 20 with 1 edge between them

LE LLE

Spring layout
SDNE



GRAPH FACTORIZATION
• (published: 2013)

Simple main idea: 
Minimize difference between
Weight and cosine similarity

Category Year Published Method Time Complexity Properties preserved

Factorization

2000 Science[26] LLE O(|E|d2)
2001 NIPS[25] Laplacian Eigenmaps O(|E|d2) 1st order proximity
2013 WWW[21] Graph Factorization O(|E|d)
2015 CIKM[27] GraRep O(|V |3)
2016 KDD[24] HOPE O(|E|d2) 1 � kth order proximities

Random Walk
2014 KDD[28] DeepWalk O(|V |d)
2016 KDD[29] node2vec O(|V |d) 1 � kth order proximities,

structural equivalence

Deep Learning
2016 KDD[23] SDNE O(|V ||E|) 1st and 2nd order proximities
2016 AAAI[30] DNGR O(|V |2) 1 � kth order proximities
2017 ICLR[31] GCN O(|E|d2) 1 � kth order proximities

Miscellaneous 2015 WWW[22] LINE O(|E|d) 1st and 2nd order proximities

Table 1: List of graph embedding approaches

G Graphical representation of the data

V Set of vertices in the graph

E Set of edges in the graph

d Number of dimensions

Y Embedding of the graph, |V | ⇥ d

Yi Embedding of node vi, 1 ⇥ d (also ith row of Y)

Ys Source embedding of a directed graph, |V | ⇥ d

Yt Target embedding of a directed graph, |V | ⇥ d

W Adjacency matrix of the graph, |V | ⇥ |V |
D Diagonal matrix of the degree of each vertex, |V | ⇥ |V |
L Graph Laplacian (L = D �W), |V | ⇥ |V |

< Yi,Y j > Inner product of Yi and Y j i.e. YiYT
j

S Similarity matrix of the graph, |V | ⇥ |V |

Table 2: Summary of notation

3.3.4. Structure Preserving Embedding (SPE)
Structure Preserving Embedding ([33]) is another approach

which extends Laplacian Eigenmaps. SPE aims to reconstruct
the input graph exactly. The embedding is stored as a posi-
tive semidefinite kernel matrix K and a connectivity algorithm
G is defined which reconstructs the graph from K. The ker-
nel K is chosen such that it maximizes tr(KW) which attempts
to recover rank-1 spectral embedding. Choice of the connec-
tivity algorithm G induces constraints on this objective func-
tion. For e.g., if the connectivity scheme is to connect each
node to neighbors which lie within a ball of radius ✏, the con-
straint (Kii + Kj j � 2Ki j)(Wi j � 1/2)  ✏(Wi j � 1/2) produces
a kernel which can perfectly reconstruct the original graph. To
handle noise in the graph, a slack variable is added. For ⇠-
connectivity, the optimization thus becomes max tr(KA) � C⇠
s.t. (Kii + Kj j � 2Ki j)(Wi j � 1/2)  ✏(Wi j � 1/2) � ⇠, where ⇠ is
the slack variable and C controls slackness.

3.3.5. Graph Factorization (GF)
To the best of our knowledge, Graph Factorization [21] was

the first method to obtain a graph embedding in O(|E|) time. To
obtain the embedding, GF factorizes the adjacency matrix of
the graph, minimizing the following loss function

�(Y, �) =
1
2

X

(i, j)2E
(Wi j� < Yi,Yj >)2 +

�

2

X

i

kYik2,

where � is a regularization coe�cient. Note that the summation
is over the observed edges as opposed to all possible edges.
This is an approximation in the interest of scalability, and as
such it may introduce noise in the solution. Note that as the ad-
jacency matrix is often not positive semidefinite, the minimum
of the loss function is greater than 0 even if the dimensionality
of embedding is |V |.

3.3.6. GraRep
GraRep [27] defines the node transition probability as T =

D�1W and preserves k-order proximity by minimizing kXk �
Yk

s YkT
t k2F where Xk is derived from T k (refer to [27] for a de-

tailed derivation). It then concatenates Yk
s for all k to form

Ys. Note that this is similar to HOPE [24] which minimizes
kS � YsYT

t k2F where S is an appropriate similarity matrix. The
drawback of GraRep is scalability, since T k can have O(|V |2)
non-zero entries.

3.3.7. HOPE
HOPE [24] preserves higher order proximity by minimiz-

ing kS � YsYT
t k2F , where S is the similarity matrix. The au-

thors experimented with di↵erent similarity measures, includ-
ing Katz Index, Rooted Page Rank, Common Neighbors, and
Adamic-Adar score. They represented each similarity measure
as S = M�1

g Ml, where both Mg and Ml are sparse. This enables
HOPE to use generalized Singular Value Decomposition (SVD)
[34] to obtain the embedding e�ciently.

4



STRUCT2VEC

• In node2vec/Deepwalk, the context collected by RW contain 
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes: 
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same 
“position” in the graph

• =>Capture the role of nodes instead of proximity



STRUCT2VEC : DOUBLE ZKC



USING EMBEDDINGS



MACHINE LEARNING

• From a set of features
‣ House: # rooms, surface, volume, number of windows, etc.

• Predict a value or a class
‣ Value: Price, construction year, …
‣ Class: Energy efficiency, individual house YES/NO, …

• Using your favorite tool
‣ Linear regression, logistic classifier, decision tree, neural networks…



MACHINE LEARNING

• Graph embedding gives you features to represent the 
structural position of a node

• Features can be combined to represent edges



MACHINE LEARNING

• You can predict things about nodes, edges, or pairs of nodes 
(with/without edge)

• You can combine the embedding information with other 
features

• =>Use embedding + road characteristic to predict the 
probability to have congestion, critical failure, speed limit…

• You can also combine with network properties (centralities…)


