
GRAPH NEURAL NETWORKS

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Zhang, Z., Cui, P., & Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint arXiv:1812.04202.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
1

WHY GRAPHS

• Graphs are everywhere!
‣ Molecules: atoms as nodes and bonds as edges

- Analyze molecular structure
‣ Knowledge Graphs

- Discover new facts or missing relationships between entities
‣ Recommender Systems

- Bipartite graphs, User/Item
‣ Traffic/Transport networks

- Predict traffic jams, impact of an exceptional event, etc.

WHY GRAPHS

• Graph tasks
‣ Link prediction (follow recommendation, drug/illness relationship…)
‣ Node classification (bot detection in social media)
‣ Attribute regression (age of individuals in a social media…)
‣ Link classification/regression (relationship is: friend/colleague/lover ?)
‣ Graph classification (Molecule classification)
‣ Community detection
‣ …

WHY NN

• Neural networks are especially useful with structured data
‣ Images (each pixel has left/right/top/bottom pixels)
‣ Text (each word has a specific position in a sentence)

• Graphs are pure structure!

GRAPH CONVOLUTION

• GCN : Graph Convolutional Network
‣ An adaptation of the Convolution used on images to graphs
‣ Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907.

CONVOLUTION

‣ Extract “features” of “higher level”
- Pixels => lines, curves, dots => circles, long lines, curvy shapes => eye, hand, leaves =>

Animal, Car, sky …

6

CONVOLUTION

• A convolution is defined by the
weights of its kernel

• Which kernel(s) should we use?

• Weights of the kernel can be
learnt, too

https://en.wikipedia.org/wiki/Kernel_(image_processing)
7

CONVOLUTIONAL NEURAL
NETWORK

8

CONVOLUTIONAL NEURAL
NETWORK

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/

• Convolution on a picture can be
seen as a special case of a graph
operation:
‣ Combine weights of neighbors
‣ With an image represented as a regular

grid

9

DIFFERENCES
• In networks, number of neighbors different for each node

‣ Impossible to have a “fix” convolution kernel

• Matrix representations of images vs graphs
‣ Same object, completely different interpreation
‣ Graphs: position in the matrix (row, column) has no meaning

- Invariance to node ordering

Recap01

PROBLEMS:

■ Different sizes

■ NOT invariant to nodes ordering

𝙂

𝙂’

𝙂 = 𝙂’

Adj(𝙂)

Adj(𝙂’)

Adj(𝙂)≠ Adj(𝙂’)

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.11

GRAPH CONVOLUTION
• Message passing interpretation

‣ Each node sends its information to its neighbors
‣ Nodes “combine” (convolution) their neighbors’ information (+ their own) to

construct new features

• Tell me who your friends are, I’ll tell you who you are

• Can be related to:
‣ Information Diffusion on Networks
‣ PageRank
‣ Label propagation algorithms
‣ …

GCN LAYER INTUITION

• Convolution in images:
‣ 1)Computes directly a weighted sum of neighbors’ values

- Learn the proper weights
‣ 2)Often followed by pooling

• Convolution in graphs:
‣ Weights cannot be learned directly
‣ 1)Average the neighbors’ features (pooling-like)

- Using fix, predefined weights
‣ 2)Computes the weighted sum of neighbors’ values

- Learn the proper weights

GCN LAYER INTUITION

• A graph convolution can be understood as a linear (fully
connected) layer, with:
‣ As input the average features of the neighbors
‣ As output an embedding in the desired number of dimensions

- Equivalent to the number of neurons in a linear layer
- But also intepratable as the number of channels in Conv layer

GRAPHS INDEPENDENT
ITEMS DATASET

≠

• Graphs are inherently different from image/tabular datasets
‣ Images/tabular

- Each item is independent of the others
- => We train for each item independently
- => The test set is composed of new, never-seen items

‣ Graphs (general case)
- A single graph, composed of (connected) nodes
- =>Each node is treated as an independent item
- =>But all nodes features are used in training
- =>Only target can be split in training/test
- =>”Semi-supervised learning”

GRAPHS INDEPENDENT
ITEMS DATASET

≠

• Example: Network of Twitter users
‣ Nodes: users
‣ Edges: followers

• Attributes: date joined, likes, geographical position, keywords,…

• Target: Male/Female, Left/Right, etc.
‣ We know it for some users, but not all

• Using all users’ properties to guess the target for some users,
training on the known one

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 5

Graph

&

'()* '()*
Outputs

Gconv

…

Gconv

…

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

GconvGraph

Readout

Gconv

Pooling
3456789

:

… …

MLP =

∑

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer is followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

!	

φ(
!%!

∗)

'

(

')

DecoderEncoder

…

Gconv	Gconv

…

(c) A GAE for network embedding [61]. The encoder uses graph convolutional
layers to get a network embedding for each node. The decoder computes the
pair-wise distance given network embeddings. After applying a non-linear
activation function, the decoder reconstructs the graph adjacency matrix. The
network is trained by minimizing the discrepancy between the real adjacency
matrix and the reconstructed adjacency matrix.

!

"

Ti
me

			Gconv			CNN				Gconv				CNN

… …

MLP 2

Tim
e

(d) A STGNN for spatial-temporal graph forecasting [74]. A graph convolu-
tional layer is followed by a 1D-CNN layer. The graph convolutional layer
operates on A and X

(t) to capture the spatial dependency, while the 1D-CNN
layer slides over X along the time axis to capture the temporal dependency.
The output layer is a linear transformation, generating a prediction for each
node, such as its future value at the next time step.

Fig. 2: Different Graph Neural Network Models built with
graph convolutional layers. The term Gconv denotes a graph
convolutional layer (e.g., GCN [22]). The term MLP denotes
multilayer perceptrons. The term CNN denotes a standard
convolutional layer.

latent representation upon which a decoder is used to re-
construct the graph structure [61], [62]. Another popular
way is to utilize the negative sampling approach which
samples a portion of node pairs as negative pairs while
existing node pairs with links in the graphs are positive
pairs. Then a logistic regression layer is applied after the
convolutional layers for end-to-end learning [42].

In Table III, we summarize the main characteristics of
representative RecGNNs and ConvGNNs. Input sources, pool-
ing layers, readout layers, and time complexity are compared
among various models.

IV. RECURRENT GRAPH NEURAL NETWORKS

Recurrent graph neural networks (RecGNNs) are mostly pi-
oneer works of GNNs. They apply the same set of parameters
recurrently over nodes in a graph to extract high-level node
representations. Constrained by computation power, earlier
research mainly focused on directed acyclic graphs [13], [80].

Graph Neural Network (GNN*2) proposed by Scarselli et
al. extends prior recurrent models to handle general types of
graphs, e.g., acyclic, cyclic, directed, and undirected graphs
[15]. Based on an information diffusion mechanism, GNN*
updates nodes’ states by exchanging neighborhood information
recurrently until a stable equilibrium is reached. A node’s
hidden state is recurrently updated by

h
(t)
v =

X

u2N(v)

f(xv,x
e
(v,u),xu,h

(t�1)
u), (1)

where f(·) is a parametric function, and h
(0)
v is initialized

randomly. The sum operation enables GNN* to be applicable
to all nodes, even if the number of neighbors differs and no
neighborhood ordering is known. To ensure convergence, the
recurrent function f(·) must be a contraction mapping, which
shrinks the distance between two points after mapping. In the
case of f(·) being a neural network, a penalty term has to
be imposed on the Jacobian matrix of parameters. When a
convergence criterion is satisfied, the last step node hidden
states are forwarded to a readout layer. GNN* alternates the
stage of node state propagation and the stage of parameter
gradient computation to minimize a training objective. This
strategy enables GNN* to handle cyclic graphs. In follow-up
works, Graph Echo State Network (GraphESN) [16] extends
echo state networks to improve efficiency. GraphESN consists
of an encoder and an output layer. The encoder is randomly
initialized and requires no training. It implements a contractive
state transition function to recurrently update node states until
the global graph state reaches convergence. Afterward, the
output layer is trained by taking the fixed node states as inputs.

Gated Graph Neural Network (GGNN) [17] employs a gated
recurrent unit (GRU) [81] as a recurrent function, reducing the
recurrence to a fixed number of steps. The advantage is that it
no longer needs to constrain parameters to ensure convergence.

2As GNN is used to represent broad graph neural networks in the survey,
we name this particular method GNN* to avoid ambiguity.

Stacking convolution layers

17

GRAPH CONVOLUTION
• Each convolution layer allows to depend on nodes farther in

the network
‣ Layer 1: results depend only on direct neighbors
‣ Layer 2:

- direct neighbors’ features are result of Layer 1
- =>results depends on nodes at distance 1 and 2

‣ Etc.

• Similar as convolutions in images

GRAPH CONVOLUTION

• Good news: average distance in real graphs is short
‣ 6 degrees of separation

• Even on a large graph, a moderate number of convolutional
layers should allow to have impact from most of the graph

GCN EQUATION

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))
: node features
: adjacency matrix ()

: layer index
: Degree matrix (degrees on the diagonal)
: learnable weights

: activation fonction (often ReLU)

H
A ̂A = A + I
l
D
W
σ

H(l+1) = f(H(l), A)

21

ADJACENCY MATRIX A

Zackary Karate club
(with communities for reference)

̂A

22

NORMALIZED A

D−1 ̂A D− 1
2 ̂AD− 1

2

Normalisation of the adjacency matrix
Performs an average Average weighted by degree

23

HW=COMBINE FEATURES

24

a b c

z

y

x

H

W

n1

n2

n3

n4

…

fea
t. 1

(e.
g.

ag
e)

w1

w2

w3

ch
an

ne
l1

ch
an

ne
l2

fea
t. 2

(e.
g.

he
igh

t)
fea

t. 3
(e.

g.
weig

ht)

a*x+b*y+c*z

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

HW= New features

A(HW)= AVERAGE OVER NEIGHBORS

25

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

a b c

y

x

w

n1

n2

n3

n4
fea

t1
fea

t2

=mean(w+y+z)

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))
d

n1 n2 n3 n4

n1

n2

n3

n4 z

a+b+c+d=1

a*w+b*x+c*y+d*z

A(HW)= AVERAGE NEIGHBORS
EMBEDDING

26

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

(AH)W= EMBED AVERAGE OF NEIGHBORS
FEATURES

MATRIX MULTIPLICATION IS ASSOCIATIVE

GRAPH CONVOLUTION

• Individual embeddings computed as

•

‣ embedding of node in the previous layer
‣ Embedding of node is a weighted sum of its neighbors’ attributes multiplied by

weights

hl+1
i = ∑

j∈Ni

1
deg(i) deg(j)

hl
jW

T

hl
j j

i

ACTIVATION FUNCTION
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

 is an activation function.
It is used to introduce non-linearity.

A common choice is to use the ReLU, (Rectified Linear Unit)
=>Simple to differentiate and to compute

σ

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f728

ACTIVATION FUNCTION
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

 is an activation function.
It is used to introduce non-linearity.

σ

29

Remember, Multiplication is associative

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

https://medium.com/data-science-365/what-happens-if-you-do-not-use-any-activation-function-in-a-neural-networks-hidden-layer-s-f3ce089e4508

((X*W1 + b1)*W2 + b2)*W3 + b3

(X*W1*W2+ b1*W2 + b2)*W3 + b3
(X*W1*W2*W3 + b1*W2*W3 + b2*W3) + b3
(X*W1*W2*W3) + (b1*W2*W3 + b2*W3 + b3)

(X*W) + B
Where, W = W1*W2*W3 and B = b1*W2*W3 + b2*W3 + b3

GCN: STEP-BY-STEP
Without features: Structure only

LAYERS SIZE

…

W0 : d0 × d1
W1 : d1 × d2

Wn : dn × dn+1

Size of the weight matrices by layer

 is the number of features per node in the original network data,
 is the number of desired features (usually followed by a normal

classifier, e.g., logistic)

d0
dn+1

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

31

FORWARD STEP

• We can first look at what happens without weight
learning, i.e., doing only the forward step.

• We set the original features to the identity matrix, . Each
node’s features is a one hot vector of itself (1 at its position, 0
otherwise)

• Weights are random (normal distribution centered on 0)

• Two layers, with sizes

H0 = I

W n × 5,5 × 2

32

FORWARD STEP
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

=

=

L1 = n to 5 features

L1 = 5 to 2 features

=>σ

33

FORWARD STEP

Dimension 1

Dimension 2

Even with random weights, some structure is preserved
in the “embedding” (colors=communities)

34

FORWARD STEP

Why is some information preserved?
=>Label propagation mechanism, due to local

structure (communities, transitivity…), close nodes
receive similar values, convergence to a particular

value…

FORWARD STEP
K-means on the 2D “embedding”

(paramater k=3 clusters)

Node positions based on spring layout,
colors=clusters

36

BACKWARD STEP

• To learn the weights, we use back-propagation

• Short summary
‣ A loss function is defined to compare the “predicted values” with ground

truth labels (at this point, we need some labels…)
‣ The derivative of the cost function relative to weights is computed
‣ Weights are updated using grading descent (i.e., weights are modified in

the direction that will minimize the loss)

https://en.wikipedia.org/wiki/Backpropagation
37

FITTING THE GCN

• We define a “semi-supervised” objective:
‣ Labels are known only for a few nodes (the 2 instructors)
‣ Choose a loss function for binary classification (logistic…)
‣ The loss is computed only for the two instructors

• We run e steps (“epoch”) of back-propagation, until
convergence

38

FITTING THE GCN
W1 W2 H

Step1:
Combine one-hot to 5D

Step2:
Combine 5D to 2D

Result:
Computed feature vector

As expected, values for nodes
0 and 33 are opposed

39

FITTING THE GCN

40

RESULTS

Features values Highest
feature as

label

We retrieve the expected
“communities”

41

GAT
Graph ATtention networks

SELF-ATTENTION
MECHANISM

• Mechanisms coming mostly from Language models
‣ Transformers (as in GPT) are a particular type of self-attention

GRAPH ATTENTION

• In the normal GCN, a limit is the fix rule used to combine the
neighbors attributes (weighted average)

‣

• Graph attention principle is to allow each node to “choose”
what “attention” to give to each neighbor
‣

- attention from to

hl+1
i = ∑

j∈Ni

1
deg(i) deg(j)

hl
jW

T

hl+1
i = ∑

j∈Ni

αijhl
jW

T

αij i j

GRAPH ATTENTION

• Step 1: a learnable attention matrix convert the node
embeddings into new embeddings specific for Attention
‣

‣ the learnable weights
‣ existing nodes features (embeddings/attributes)

• =>We don’t want the node embedding to combine the
meanings of:
‣ The node position in the graph
‣ The way it behaves in term of attention to others

zi = Whi
W
hi

GRAPH ATTENTION

• Step 2: concatenate both nodes embedding
‣

‣ [a,b,c] || [f,e,d] => [a,b,c,f,e,d]

• =>To decide if a link is important, we will consider the
attributes/embeddings of both nodes

zi | |zj

GRAPH ATTENTION

• Step 2: Compute an attention coefficient using learnable
weights
‣

- is a learnable vector, common to all node pairs, computing the attention from the
combined embedding

‣ => Same principle as a perceptron/linear regression
‣ => Variant (as in transformer): compute

• Step 3: Add an activation function
‣

aij

eij = aT[zi | |zj]
a

zi·zj

eij = ReLu(aT[zi | |zj])

GRAPH ATTENTION

• Step 4: Softmax normalization
‣ We have unnormalized attention score for each neighbor
‣ Use Softmax to normalize attention

- small value for a single node , 0 value for all others => all attention on !

‣

n n

αij = softmax(eij) =
exp(eij)

∑k∈Ni
exp(eik)

GRAPH ATTENTION

• Finally: Multi-head attention
‣ A single attention layer might not be powerful enough. What we described is

called an attention head, and we typically have multiple heads
‣ The resulting embeddings are then combined

- Average (i.e.,)

• Similar principle as the multiple channels of a convolution

hi =
1
n

n

∑
k=1

hk
i

GRAPH AUTOENCODERS

AUTOENCODERS
• Autoencoders are mostly used for unsupervised learning using

deep neural networks

• Typically, for images.

• Composed of two parts
‣ An encoder

- e.g., a classic sequence of convolutional layers
‣ A decoder

- e.g., an inverse architecture (e.g., the same layers in inverse order)

• In the middle is the “embedding”, what we are interested in
‣ Constrained to be small

AUTOENCODERS

AUTOENCODERS
• The objective is to

‣ Encode a complex object
- e.g., a 3 color layers, 256 x 256 image

‣ Into a small-dimensional vector
- e.g., vector of size128

• Such that these vectors allow to reproduce the output with
minimal loss of information

• Many applications:
‣ Visualization (like PCA)
‣ Downstream task (these vectors can be used for classification, etc.)
‣ Generate variations (Generative image models…)

GRAPH AUTOENCODERS

• Same principle, but with graphs :)

• Classic architecture[1]:
‣ Encoder: GCN layers (e.g., 2 layers)
‣ Decoder: Dot product between embeddings (+activation)
‣ Minimize the binary cross entropy between input and output adjacency

matrices
‣ =>Compute vectors for each node

‣ such that their dot product is
- Close to 1 if they are connected (parallel => similar vectors)
- Close to 0 if they are not (orthogonal => different vectors)

[1]Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.

VARIANT: VGAE
• VAE : Variational AutoEncoder

‣ Popular improvement over classic AutoEncoder

• Limits of Autoencoders:
‣ Embedding space is often poorly structured

- Poor continuity: The “middle” vector between two vectors (v1,v2) do not correspond to
a middle image between the two corresponding to v1/v2

- Poor completeness: Space seems “sparse”: many vectors correspond to nothing
meaningful

• VAE solution:
‣ Instead of encoding an input as a single point, we encode it as a distribution

over the latent space

VAE

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

VAE

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

VAE

• The model is trained as follows:
‣ 1)the input is encoded as gaussian distribution over the latent space
‣ 2) a point from the latent space is sampled from that distribution
‣ 3) the sampled point is decoded and the reconstruction error can be

computed
‣ 4) finally, the reconstruction error is backpropagated through the network

VAE

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Regularization: trade-off between best fit to data and distance
between each gaussian and a standard gaussian(centered, unit

variance)

VAE

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

VGAE

• Simple adaptation to graphs, i.e., a classic graph autoencoder in
which the encoding part is replaced by Variational mechanism.

• In practice:
‣ Layer 1: normal GCN
‣ Layer 2: two parallel GCN layers

- One to learn the centroid
- One to learn the variance (diagonal of the covariance matrix)
- =>For each node, instead of having 1 vector of size d, we have two vectors of size d

‣ To decode, we take a random point from the multivariate gaussian

LINK PREDICTION

LINK PREDICTION

• Observed network: current state

• Link prediction: What edge
‣ Might appear in the future (future link prediction)
‣ Might have been missed (missing link prediction)

• Many applications
‣ Recommender systems
‣ Drug/healness prediction, …

63

LINK PREDICTION

• Classification objective
‣ Binary classes: edge/No edge
‣ Usually, evaluation based on class probability

- AUC, AP…

• Evaluation process
‣ Hide some of the edges in the graph
‣ Check that

- Training on the remaining edges
- We predict well the removed ones

LINK PREDICTION

• Classic methods
‣ Common Neighbors
‣ Adamic Adar
‣ …

- =>Work only on nodes at distance two

• Advanced methods
‣ Graph embedding (DeepWalk, Node2Vec)

- Use dot product of embedding as score, or other variants, e.g., training a classification on
vectors

‣ Community structure, random walks

‣ =>Do not take node features into account

LINK PREDICTION

• Using VGAE
‣ The objetive of VGAE is to reconstruct the graph, i.e., to predict which edge is

present or not =>Directly a link prediction objective
‣ VGAE final step: dot product of embeddings

• Edge prediction score: result of the dot product of node
vectors

LINK PREDICTION

• Using directly a GNN
‣ GNNs produce node embeddings in the output
‣ We need to combine node embeddings

• Two (main) solutions
‣ Create a combined vector from two independent vectors, and add a linear

layer for classification
‣ Use directly a vector-to-scalar operation

LINK PREDICTION

• Combining two node vectors into a node-pair vector
‣ Vector concatenation [x1,x2] [x3,x4]=>[x1,x2,x3,x4]
‣ L1 difference [x1,x2][x3,x4]=>[x1-x3 , x2-x4]
‣ Hadamard Product [x1,x2][x3,x4]=>[x1*x3 , x2*x4]
‣ …

• Followed by a classification task on this new vector

LINK PREDICTION
• Combining two node vectors into a scalar

dot product unnormalized cosine similarity≈

TRANSDUCTIVE / INDUCTIVE

• Transductive
‣ What we discussed until now:

- We have access to the whole graph at training time
- We just don’t see all the labels (test, prediction)

• Inductive
‣ Train on a set of nodes/graphs
‣ Results can be applied to unseen nodes/graphs

- A GCN layer can be trained on multiple (sub)networks, and learned weights used on a new
scenario (but not very efficient)

- GraphSAGE=>Works for each node on a local graph centered on the node, by sampling a
fixed number of neighbors. Transform the graph problem in a more classic problem.

MULTI-PARTITE GRAPHS

• Nodes of multiple types:
‣ Items/Users
‣ Drug/illness
‣ …

• Each type of node has their own attributes
‣ Cannot learn a single GCN layer

• =>Learn 2 independent layers
‣ User attributes to Item attributes
‣ Item attributes to User attributes

