
Learning how to use GNN

To get started, you need to install pytorch geometric:
https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html.
You can then have a look at the tutorial:
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html.
Check in particular sections:

• Data Handling of Graphs

• Data Transforms

• Learning Methods on Graphs

1. Getting started: data preparation for node classification
(a) Load the toy dataset ToyFriendship.graphml from the class website, using networkx. Plot the

network to have a quick view, check the attributes (G.nodes(data=True)). We consider that we
know the preferences of the students among sports/music/science, and the club they belong to.

(b) Convert from networkx to pytorch geometric using from networkx function. Be careful, due
to some bug, you first need to do G.graph={} on your networkx graph. In the function, use
group node attrs=["like sports","like music","like science"] to load only those attributes

as x .
(c) Check what is inside this object. You should find the edges edge index , the node features x , etc.

(d) Encode the class (club) using sklearn LabelEncoder , e.g.,

encoder = LabelEncoder()
integer_labels = encoder.fit_transform(data.club)
target_tensor = torch.tensor(integer_labels, dtype=torch.long)
data.y = target_tensor
data.num_classes = len(set(data.club))

(e) Let’s consider that for some of the students, we don’t know their preferences, but we want to train
a model to guess the club they belong to. For instance, we can imagine new students to whom we
want to recommend a club. So we want to guess the club class from the like attributes, but for
students for which we don’t have the like attribute. Without graph, this is not possible.

(f) We need to hide the like information for some of the nodes. You can do it with a mask, with
something like:

https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html

num_nodes = data.num_nodes
train_ratio = 0.80 # 80% of nodes for training

Randomly creating a mask
mask = torch.rand(num_nodes) < train_ratio
data.train_mask = mask
data.test_mask = ˜data.train_mask

remove the attributes for the nodes that are not in the training set
temp = torch.zeros((num_nodes, 3), dtype=torch.float)
temp[data.train_mask] = data.x[data.train_mask]
data.x = temp

2. Predict using a GCN
(a) Build your first GCN, with a single layer. It should solve a classification problem, with 3 classes.
(b) Your evaluation should be only on the test set, i.e., something like:

pred = model(data).argmax(dim=1)
correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
acc = int(correct) / int(data.test_mask.sum())
print(f’Accuracy: {acc:.4f}’)

(c) Check the add self loops attributes of the conv layer, and think of its meaning.

(d) Print the targets and the predictions for all the nodes
(e) Plot a confusion matrix, e.g.,

from sklearn.metrics import confusion_matrix
import seaborn as sns
cm = confusion_matrix(data.y[data.test_mask],pred[data.test_mask])
sns.heatmap(cm, annot=True, fmt=’g’)

(f) Print the weights of the GCN layer and interpret them (if you have a good accuracy...)

3. Using a GAT
(a) The problem is the same, but replace the GCNConv layer with a GATv2Conv layer, with a single

head of attention, for now.
(b) Do avoid overfit, you might want to add a F.dropout before the layer

(c) By using the attribute return attention weights=True) when calling the GAT layer for predic-
tion, you can access the attention computed by each neighbor on each other. Check what is in what
is returned

(d) You can plot the attention computed using something like: (you might need to adapt the code to
your setting, of course)

Page 2

predict,attention = model.gat1(data.x,data.edge_index,return_attention_weights=True)

attention_w=attention[1].detach().numpy()
#get the edges
edges= attention[0].detach().numpy()

#convert the edges to a dataframe
df=pd.DataFrame(edges.T,columns=["source","target"])
df["attention"]=attention_w
cmap = cm.get_cmap(’coolwarm’)
edge_colors = cmap(df[’attention’].tolist())
#plot as a networkx graph with the attention weights as colors
G=nx.from_pandas_edgelist(df,"source","target",edge_attr="attention")
plt.figure(figsize=(10,10))

#add the club attribute to the nodes
nx.set_node_attributes(G,dict(zip(range(len(data.club)),data.club)),"club")
colors = []
for node in G.nodes(data=True):

if node[1][’club’] == ’Sports’:
colors.append(’red’)

elif node[1][’club’] == ’Music’:
colors.append(’green’)

else:
colors.append(’blue’)

nx.draw_networkx(G,with_labels=True,edge_color=edge_colors,width=1,node_size=100,node_color=
colors)

4. Predicting edges using a VGAE
(a) This time, we want to predict edges. Start back from the original network, without hidden informa-

tion. Build a train test split using the train test split edges function from torch geometric.utils .
You don’t need a validation set.

(b) Build your Encoder . As seen in class, it should be something like:

class Encoder(torch.nn.Module):
def __init__(self, in_channels, out_channels):

super().__init__()
self.conv1 = GCNConv(in_channels, 2*out_channels)
self.conv_mu = GCNConv(2*out_channels, out_channels)
self.conv_logstd = GCNConv(2*out_channels, out_channels)

def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
return self.conv_mu(x, edge_index), self.conv_logstd(x, edge_index)

(c) Initialize your model using VGAE from torch geometric.nn .

(d) Evaluate your model. Be careful to use training data for training and testing data for testing :)
Something like:

Page 3

z = model.encode(data.x, data.train_pos_edge_index)
return model.test(z, data.test_pos_edge_index, data.test_neg_edge_index)

(e) Evaluate the result of your test, i.e., with AUC and AP (Average Precision)
(f) Check that you are able to reconstruct the original graph, by applying the dot product between

node vectors. You can do it with something like:

z = model.encode(data.x, data.train_pos_edge_index)
Ahat = torch.sigmoid(z @ z.T)

Page 4

