
UNSUPERVISED ML



OBJECTIVE

• Discover information from data without labeled examples

• Extract some hidden organisation, patterns, relation between 
elements

• Extract a (statistical ?) model of the data ?



OBJECTIVE

• Typical objectives:
‣ Cluster discovery
‣ Anomaly Detection
‣ Latent variable discovery / Embedding / dimensionality reduction…



CLUSTERING



CLUSTERING

• The most famous unsupervised ML problem

• 100+ methods exist
‣ Most people use “good old” methods: k-means (1967), DBSCAN (1996)
‣ They are often “good enough”, well implemented, safe, …

• Part of the problem: Clustering is not well defined
‣ What is “a good cluster” ?



CLUSTERING

• How would you define a good cluster ?

• A good partition in clusters ?



CLUSTERING



K-MEANS

• Definition: 
‣ For a target number of clusters 
‣ Find the item assignment minimizing

- The inter-cluster variance
- Equivalently => The squared distance from points to their cluster center
- Equivalently => The squared distance between cluster elements

• This is only one possible objective !
‣ Why this one ?
‣ Intuitive, good properties…

k



K-MEANS
arg min

S
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i=1

∑
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S
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∑
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|Si |Var(Si)

with 
 a cluster assignment, 

 a d dimensional item, and 
 the mean of items in cluster .

Note that without fixing , there is a trivial solution with each 
item alone in its own cluster.
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K-MEANS

• Discovering the global optimum is NP-hard

• How to find quickly a good solution ?
‣ Naive k-means
‣ K-means ++ (used in most current implementations)
‣ Use optimized data structure (KDtrees…)



NAIVE K-MEANS

• 1)Assigment: Assign each item to its closest cluster center

• 2) Update: Recompute the center of each cluster as the mean 
(centroid) of items that compose that cluster

• Start with random centroids



NAIVE K-MEANS



NAIVE K-MEANS
• Known limit: convergence to poor local minimum if poor initial 

centroids



K-MEANS++

• Several variants to choose wisely the initial centroids

• K-means++ is proven to improve the results, statistically
‣ Not always, but improves more often than deteriorate the results.



K-MEANS++
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Clustering

De�nition

The clustering task is probably the most famous unsupervised

machine learning task.

The objective is to

K-means: Objective

Probably the most famous clustering method.

Requires to �x the number of desired clusters k.
k-means has a global de�nition of clusters: the objective is tomin-

imize a global quality function.

Objective: Find the item assignment minimizing the inter-cluster

variance, or equivalently, the squared distance frompoints to their

cluster center, or squared distance between cluster elements.

More formally:

argmin
S

kX

i=1

X

x2Si

kx� µik
2 = argmin

S
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|Si|VarSi

= argmin
S
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x,y2Si
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with S a cluster assignment, x (and y) a d dimensional item, and

µi the mean of items in cluster Si .

Note that without �xing k, there is a trivial solution with each item

alone in its own cluster.

K-means: Optimization Methods

Various methods have been proposed to discover the optimal

clusters. They are basedonheuristic and tend to converge to local

minima. Themost used is known as naive k-means. It consists in a
two set iterative approach, starting with k random cluster centers:

• (Assignment/Expectation) Assign each item to its closest

cluster center

• (Update/Maximization) Recompute the center of each

cluster as the mean (centroid) of items that compose that

cluster.

This process is known to converge to a local minimum if the dis-

tance used is the euclidean distance.

K-means: Fast computation

KDtrees

K-means++

It is known that the choice of initial cluster centers a�ects strongly

the �nal result. Amethodwhich is known to have consistently bet-

ter results than random assignments is known as k-means++.

�. Choose one center uniformly at random among the data

points.

�. For each data point x not chosen yet, compute D(x), the
distance between x and the nearest center that has al-

ready been chosen.

�. Choose one new data point at random as a new center,

using a weighted probability distribution where a point x is

chosen with probability proportional toD(x)2 .

�. Repeat Steps � and � until k centers have been chosen.

DBSCAN: Objective

Unlike k-means, DBSCAN has a local de�nition of clusters: there is no

global objective to minimize. Instead, clusters are de�ned according to

an intuitive rule based on a local de�nition: given a threshold distance ✏
and a minimal core size

DBSCAN: Optimization method

• Find the points in the ✏ neighborhood of every point, and identify

the core points with more than Note that, since there is no global

objective, variants of themethod exist that de�ne slightly di�erent

methods, for instance regarding how to classify non-core points

in the ✏ neighborhood of core nodes.

Mixture of Gaussians: Objective

Wede�ne amodel, which is that data has been generated by k in-
dependent generators (i.e., drawn according to a probability distri-

butions) –each of them being a cluster, that generate data points

according to a Gaussian distribution. The points observed are thus

amixture of those di�erent generators

The objective is thus to discover the most likely parameters of

those k generators, that explain the best the results. Informally,

we will try to solve a problem of the form:

argmax
⇥

p(X|⇥)

With ⇥ = ⇥1,⇥2, ...,⇥k the parameters of the k Gaussian distri-

butions, i.e., their mean and variance/Covariance matrices. We

usually also add a parameter ¶i corresponding to the relative

strength of this Gausian cluster (e.g., ��% of points might be gen-

erated by one cluster and ��% by another, that is their relative

strengths) p(X|⇥) is the probability to obtain the observed dataX
given the parameters⇥. We are searching the model parameters

maximizing the likelihood that the observed data was generated

by the model.

Mixture of Gaussians: trivial solution

With this de�nition, as with previous methods, we need to choose

manually the number of clusters k, to avoid the trivial solution in

which each point is the center of its own distribution with variance

�, that generate the observed data with probability �.

Mixture of Gaussians: variants

The principle of having a generative models, and to search for its

parameters maximizing the likelihood of generating the observed

data is generic enough so that it can be extended to many vari-

ations. One can for instance search for a complete Covariance

Matrix ⌃ for each Gaussian distribution, or impose it to be only a

diagonal matrix, to make the search space smaller (and/or avoid

over�tting). Other variants could use non-gaussian generators, or

even allow the number of cluster to vary using an additional cri-

teria, the MDL (Minimum Description Length) principle.



K-MEANS++



WEAKNESSES

• We can identify some clear weaknesses:
‣ K-means has a tendency to search for clusters of equal 

sizes (minimize overall cluster variance)
‣ Clusters tend to be circular, since all directions are 

worth the same. 



NORMALIZATION

• Very important point: k-means is based on euclidean 
distance.
‣ We minimize the inter-cluster euclidean distance between points
‣ We could adapt the method to other distances

• Data need to be normalized/standardized
‣ Clustering based on age in years and revenue in $. The “distance” in $ will 

dominate
‣ Remember: normalization/standardization are not fixing magically problems 

(outliers..)
- You need to think: is 1 unit in one dimension worth 1 unit in other dimensions ?



GAUSSIAN MIXTURES



GAUSSIAN MIXTURES

• Generalize k-means concept:
‣ Clusters are sets of points that are close in euclidean space
‣ Different clusters tend to be far appart

• Translate it statistically:
‣ Each cluster can be described using a normal distribution centered on its 

centroid, with the probability of observing points decreasing with the distance 
to the centroid.



GAUSSIAN MIXTURES



GAUSSIAN MIXTURES

• We define a generative model for  clusters
‣ Each cluster corresponds to a gaussian distribution, defined by a center and a 

variance, or covariance matrix
‣ The problem to solve is to find the parameters  (centers, variances) that 

maximize the likelihood of the corresponding model to generate the observed 
items 

‣ More formally, we are searching for : 

k

Θ

X
arg max

Θ
p(X |Θ)



K-MEANS EQUIVALENCE

• If we assume that:
‣ The gaussian distributions are defined only by their variance, not by complete 

covariance matrices 
- Similar in all directions, “spherical”

‣ The variance value is the same for all gaussian distributions
- Spheres of the same “size”

‣ The probability for each item to be generated by each of the gaussian 
distribution is identical

• Then it can be shown that the objective is equivalent to the k-
means objective !
‣ We can relax some of those constraints to get better results



DENSITY HETEROGENEITY

• Allowing denser/sparser clusters
‣ Consider the case in which gaussians are defined by a single value of variance 

(covariance=0)
‣ If they differ for each clusters, some can be denser than others
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SHAPE VARIATIONS

• Allowing non-circular shaped 
clusters
‣ If values on the diagonal of the covariance 

matrix differs, the matrix can have 
ellipsoidal shape, in the direction of the 
axes

‣ If the full covariance matrix is inferred, any 
ellipsoidal shape can be obtained
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SIZE HETEROGENEITY

• The fraction of all items generated by each 
generative gaussian (e.g., cluster) is the same. 

• We usually add a strength parameter  to 
weight the fraction of items generated by each 
cluster

π
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p(X) =
K

∑
k=1

πkG(X |μk, σk)



ALL TOGETHER

p(X) =
K

∑
k=1

πkG(X |μk, σk)

arg max
Θ

p(X |Θ) Θ = μ, σ, π



K-MEANS COMPARISON
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K-means Full Gaussian Mixture



EM ALGORITHM

• To search for the parameters, we can use a method similar to 
naive k-means known as EM (Expectation Maximization)
‣ Note  the cluster assignation of items to their most likely clusters
‣ 1)Initialize parameters  to random values
‣ 2)(E) Compute , given 
‣ 3)(M) Use assignations in  to update values of 
‣ 4)Iterate steps 2 and 3 until convergence 

Z
Θ

Z Θ
Z Θ



EM ALGORITHM

https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e



PROS AND CONS
• Gaussian mixture seems an improvement over k-means. Why 

not always using it?
‣ Force of habits
‣ Higher computational cost (More parameters => More complex problem)
‣ Higher possibility of overfitting (More parameters =>More overfit risk)



REMAINING PROBLEMS

• We can mention 3 problems remaining (at least)
‣ The number of clusters still need to be provided. 

- If allowed to change, it will always converge to the trivial solution with each item in its own 
cluster

‣ If the data is completely random, the method still finds clusters
‣ Impossible to discover non-convex structures, such as circles or spirals
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MDL

• Discovering automatically the number of clusters —and thus 
finding no clusters in random data— is possible using an MDL 
approach

• MDL = Minimum Description Length 

• The principle is to search a solution maximizing the 
compression rate, i.e., minimizing the cost of the description, 
e.g., in bits.

• Method introduced later



NORMALIZATION

• Is normalization as important for full GM models as for k-
means?



DBSCAN



K-MEANS/GM LIMITS

• The problem of spiral/Circulal/weird shaped clusters comes 
from the assumption that items of a cluster should be 
“normally distributed” around their mean



LOCAL DEFINITIONS

• To overcome this problem, several methods propose local 
definitions of clusters
‣ Does not explicitly optimize a global function
‣ Items belong to clusters because they are close enough, locally, to other items 

in that cluster
‣ Clusters exist because there is continuum between all items in it, locally



DBSCAN

• Define some local parameters:
‣ , the distance threshold above which items are considered “too different”
‣ minPts, a minimal number of reachable points
‣ No need to define a number of clusters !

• Define:
‣ An item p is a core point if it has at least minPts items at distance less than 

- Including p itself

ϵ

ϵ



DBSCAN: GRAPH DEFINITION

• 1)Build a graph such as
‣ Each core node is a node
‣ A link exist between core nodes if they are at d<

• 2)Detect the connected components of the graph
‣ 2 nodes belong to the same connected components if there is a path between 

them

• 3) For all non-core nodes:
‣ If they have no core points directly reachable, discard them as noise
‣ Else, attribute them to (one of) the clusters for which one core point is directly 

reachable
- Variant DBSCAN* =>ignore those points as noise

ϵ



DBSCAN

https://community.alteryx.com/t5/Data-Science/Partitioning-Spatial-Data-with-DBSCAN/ba-p/446273





DBSCAN

• Strength:
‣ No need to define the number of clusters
‣ Can discover arbitrarily-shaped clusters
‣ A notion of noise

• Weaknesses
‣ Defining  is extremely difficult

- Similar to the number of clusters. 
- In fact it determines the number of clusters…

‣ Despite safeguards, risk of the stretched clusters effect 

ϵ



CLUSTERING EVALUATION



INTERNAL/EXTERNAL

• Two types of evaluation: internal or external

• External: we have a Ground Truth (GT). Like in supervised 
learning, we compare what we found (predictions) with the 
“truth”.

• Internal: No ground truth, we rely only some intrinsic property 
of our clusters 



INTERNAL/EXTERNAL

• External Evaluation (extrinsic):
‣ The ground truth can be exactly the right clustering desired

- So we are just validating the method, since we already know the answer…
‣ The ground truth can be a proxy to what we want

- e.g., we want to cluster stars based on their characteristics (size, temperature, color…). We 
already have a manual historic categorization (red dwarf, Brown dwarfs, Red giants…). We 
assume that the new categories found should be somewhat similar



EXTERNAL EVALUATION



EXTERNAL EVALUATION

• Rand Index = Accuracy over node pairs

•
‣ TP:two nodes in same cluster in both GT and solution
‣ TN:two nodes in different clusters in both GT and solution
‣ TP+FP+FN+TN=all possible node pairs

• Problem: complexity. #of pairs= 
‣ 100k items: 10 Billion pairs… 

RI =
TP + TN

TP + FP + FN + TN

𝒪(n2)



RAND INDEX
• Rand Index has the same weakness as Accuracy:

‣ If the classes are imbalanced, i.e., the size and number of communities vary 
between GT and clustering, results can be counterintuitive

• In practice:
‣ Random communities have different scores depending on their size
‣ =>Prefer certain types of communities

Previous example,
With random communities



ARI
• Solution: Use an adjusted for chance score.

‣ Principle: adjust (normalize) such as 0 is the score obtained with a “random” 
solution, 1 is the highest possible score.

‣ Negative solutions are worst than random

Index − Expected index
Max index - Expected index

E(nij) = (ni

2 ) (nj

2 )
(n

2)
Expected nb of TP



ARI

Lawrence Hubert and Phipps Arabie (1985). "Comparing partitions". Journal of Classification. 2 (1)



NMI - AMI
• An alternative based on Information Theory is the 

NMI(Normalized Mutual Information), also called v-score
‣ Known to suffer from the exact same problem as Rand Index
‣ An adjusted for chance version exist, called AMI (Adjusted Mutual Information)



INTERNAL EVALUATION



AD-HOC SCORES
• Several clustering method define their own objective to 

minimize. This objective can be used as a score for clusters 
obtained by this method or others
‣ k-means minimizes inter-cluster variance
‣ Gaussian mixture maximize likelihood

• But can lead to unfair comparison:
‣ Using inter-cluster variance to compare k-means and another method such as 

DBscan is unfair.
- One explicitly minimizes this objective, the other no…

• As always, the choice of a score is equivalent to choosing a 
definition of cluster… 



SILHOUETTE SCORE
• Intrinsic score

• Silhouette score of 1 item:
‣ 1)Compute , average distance to all other points of the same cluster
‣ 2)Compute , min average distance to all points of another cluster

‣
3) Silhouette: 

• Silhouette coefficient:
‣ Average of all individual Silhouette scores.

a(i)
b(i)

s(i) =
1 − a(i)/b(i), if a(i) < b(i)
0, if a(i) = b(i)
b(i)/a(i) − 1, if a(i) > b(i)





AUTOMATIC K SELECTION

• The Silhouette score can 
be used to choose 
automatically the number 
of clusters:
‣ We vary the number of clusters 

k, and search for the maximum



VARIANT: ELBOW METHOD
• Another well known method to find automatically the number 

of clusters consists in plotting a measure of quality such as the 
inter-cluster variance, and cut at an “elbow” 
‣ Diminishing returns=> less “worthy” to continue



NO FREE LUNCH THEOREM

• “Any two optimization algorithms are equivalent when their 
performance is averaged across all possible problems”
‣ Two clustering algorithms with different objective functions are fully 

comparable, one is not intrinsically better than another.
‣ Each is the best for the objective function it defines
‣ What is “the best” cluster? Depends on your definition.

• Does not mean that some methods are not more appropriate 
than other for what most people consider as clusters…

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

https://ieeexplore.ieee.org/document/585893

