
NETWORK DATA MINING



NETWORKS/GRAPHS

• Some data are not (only) “tabular”. 
‣ Items can have features that characterize them

- Person: age, gender, etc.
‣ Items also are linked/related to other items

- This cannot be represented as a feature





Materials
Pop-science books

I have a copy I can lend



GRAPHS & NETWORKS
Networks often refers to real systems
• www,
• social network
• metabolic network. 
• Language: (Network, node, link) 

In most cases we will use the two terms interchangeably. 

Graph is the mathematical 
representation of a network
• Language: (Graph, vertex, edge) 

Vertex Edge
person friendship
neuron synapse
Website hyperlink
company ownership

gene regulation



NETWORK REPRESENTATIONS

Network Science
Cheatsheet

Made by
Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., B.A.B.A.C.E is a valid
walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections
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� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (1, 6),

(1, 5), (2, 4), (2, 3), (2, 5),

(2, 6), (6, 5), (5, 5), (4, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out

u
Successors of u, nodes such as (u, v) 2 E in a directed
graph

N
in

u
Predecessors of u, nodes such as (v, u) 2 E in a directed
graph

k
out

u
Out-degree of u, number of outgoing edges |Nout

u
|.

k
in

u
In-degree of u, number of incoming edges |Nin

u
|

wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v
wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections



Node degree
Number of connections of a node

2

3

3

3

1

1

1
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� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections



DENSITY 

Colorful Cheatsheet: A Template

Original author: Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., B.A.B.A.C.E is a valid
walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections

Triangles counting
�u - number of triangles of u: number of triangles which contains node u

� - number of triangles in the graph total number of triangles in the graph,
� =

P
u2V �u

�
max
u - triangles potential of u: maximum number of triangles that could
exist around node u, given its degree: �max

u = ⌧(u) =
�ki

2

�

�max - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V �

max(u)



#nodes #edges Densité Deg. Moyen
Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416
Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 
Elegans

280 6393 0,16 46
Roads Calif. 2M 2.7M 6x10-7 2,7

Airport 
traffic

3k 31k 0,007 21

Attention: Densité difficile à comparer entre des 
graphes de taille différente



SUBGRAPHSThe adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero: 

Figure after Newman, 2010 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix 

Network Science: Graph Theory   2012 
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� Network basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (1, 6),

(1, 5), (2, 4), (2, 3), (2, 5),

(2, 6), (6, 5), (5, 5), (4, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out

u
Successors of u, nodes such as (u, v) 2 E in a directed
graph

N
in

u
Predecessors of u, nodes such as (v, u) 2 E in a directed
graph

k
out

u
Out-degree of u, number of outgoing edges |Nout

u
|.

k
in

u
In-degree of u, number of incoming edges |Nin

u
|

wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v
wuv .

Network descriptors - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
Subgraph H(W ) (induced subgraph): subset of nodes W of a graph
G = (V,E) and edges connecting them in G, i.e., subgraph H(W ) =
(W,E

0),W ⇢ V, (u, v) 2 E
0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections



DEGREE DISTRIBUTION

PDF (Probability Distribution Function)



CLUSTERING COEFFICIENT

• Clustering coefficient or triadic closure

• Triangles are considered important in real networks
‣ Think of social networks: friends of friends are my friends
‣ # triangles is a big difference between real and random networks



CLUSTERING COEFFICIENT

u Triangles=2

Possible triangles= =6

=2/6=1/3
(4

2)
Cu

Clustering Coe�cents - Triadic closure
The clustering coe�cient is ameasure of the triadic closure of a network of a
node neighborhood. The triadic closure is a notion coming from social net-
work analysis, often summarized by the aphorism The friends of my friends

are my friends.

Cu - Node clustering coe�cient: density of the subgraph induced by the
neighborhood of u, Cu = d(H(Nu). Also interpreted as the fraction of all
possible triangles inNu that exist, �u

�max
u

hCi - Average clustering coe�cient: Average clustering coe�cient of all
nodes in the graph, C̄ =

P
u2V Cu .

Be careful when interpreting this value, since all nodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C value is very sensitive, i.e., for a node u of de-
gree �, Cu 2 0, 1, while nodes of higher degrees tend to
have more contrasted scores.

C
g - Global clustering coe�cient: Fraction of all possible triangles in the

graph that do exist, Cg = 3�
�max

� Node centrality

Node centrality indices
(Node structural indexes)
Node centrality indices re�ect how a node is characteristic of a given struc-
tural property. This is often summarized as a measure of the node impor-

tance, however importance and centrality are subjective/qualitative notions.
Thus a centrality, despite its name, do not necessarily measure how central

a node is, but rather how its position in the graph is typical of the property
captured by this index.

Centralities - Example

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasure how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness:
Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`
vu means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Edges: 2
Max edges: 4*3/2=6

=2/6=1/3Cu



PATH RELATED SCORES
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� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections
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� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., B.A.B.A.C.E is a valid
walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections
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� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections



AVERAGE PATH LENGTH

• The famous 6 degrees of separation (Milgram experiment)
‣ (More on that next slide)

• Not too sensible to noise

• Tells you if the network is “stretched” or “hairball” like



SIDE-STORY: MILGRAM 
EXPERIMENT

• Small world experiment (60’s)
‣ Give a (physical) mail to random people
‣ Ask them to send to someone they don’t know

- They know his city, job
‣ They send to their most relevant contact

• Results: In average, 6 hops to arrive



SIDE-STORY: MILGRAM 
EXPERIMENT

• Many criticism on the experiment itself: 
‣ Some mails did not arrive
‣ Small sample
‣ …

• Checked on “real” complete graphs (giant component):
‣ MSN messenger
‣ Facebook
‣ The world wide web
‣ …



SIDE-STORY: MILGRAM 
EXPERIMENT

Facebook



SMALL WORLD

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Clustering Coe�cents - Triadic closure
The clustering coe�cient is ameasure of the triadic closure of a network of a
node neighborhood. The triadic closure is a notion coming from social net-
work analysis, often summarized by the aphorism The friends of my friends

are my friends.

Cu - Node clustering coe�cient: density of the subgraph induced by the
neighborhood of u, Cu = d(H(Nu). Also interpreted as the fraction of all
possible triangles in Nu that exist, �u

�max
u

hCi - Average clustering coe�cient: Average clustering coe�cient of all
nodes in the graph, C̄ = 1

N

P
u2V

Cu .

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their

degree, and that low degree nodes tend to bemuchmore frequent than hubs, and theirC value

is very sensitive, i.e., for a nodeu of degree �,Cu 2 0, 1, while nodes of higher degrees tend

to have more contrasted scores.

C
g - Global clustering coe�cient: Fraction of all possible triangles in the

graph that do exist, Cg = 3�
�max

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

Small World Network
A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively de�ned, but two properties
are required:

• Average distance must be short, i.e., h`i ⇡ log(N)

• Clustering coe�cient must be high, i.e., much larger than in a ran-
dom network , e.g., Cg � d, with d the network density

This property is considered characteristic of real networks, as opposition to
random networks. It is believed to be associated to particular properties
(robustness to failures, e�cient information �ow, etc.), and to be the conse-
quence of emergent mechanisms typical of complex systems.

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.
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• How close the node is to all other nodes

• Parallel with the center of a figure:
‣ Center of a circle is the point of shorter average distance to any points in the 

circle



Network Science
Cheatsheet

Made by
Remy Cazabet

� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a votemecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

FARNESS, CLOSENESS
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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=
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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• Measure how much the node plays the role of a bridge
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .



Betweenness Centrality
Network Analysis and Modeling, CSCI 5352

Lecture 2

Prof. Aaron Clauset

2017

which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-

11

u

CB(u) = 2
5 * 6 + 1 + 1

2 + 1
2

11 * 10
=

64
110

Exact computation:

Floyd-Warshall:  O(n3) time complexity  
          O(n2) space complexity 

Approximate computation
 Dijskstra: O(n(m+n log n)) time complexity  
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Network Science
Cheatsheet

Made by
Remy Cazabet

� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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(blue higher) (red higher)



EDGE - BETWEENNESS 

Can you guess the edge of
highest betweenness in 

the European rail network ?

Same definition as for nodes
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RECURSIVE DEFINITIONS

• Recursive importance:
‣ Important nodes are those connected to important nodes

• Several centralities based on this idea:
‣ Eigenvector centrality
‣ PageRank
‣ …



RECURSIVE DEFINITION

• We would like scores such as :
‣ Each node has a score (centrality), 
‣ If every node “sends” its score to its neighbors, the sum of all scores received 

by each node will be equal to its original score

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes, i.e., kin = 0. Those nodes have by de�nition a, eigenvector central-
ity of � at t+�, and thus send a value of � at t+�, which might in turn result in
a score of � for its successors, and so on and so forth.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:

C
t+1
u

= ↵

X

v2Nin
u

C
t

v

kout
v

+ � (�)

with, by convention, � = 1,↵ a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Edge Structural indices
Edges situation in the network can also be described using srtuctural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

• With  a normalisation constantλ



RECURSIVE DEFINITION

• This problem can be solved by what is called the power 
method:
‣ 1) We initialize all scores to random values
‣ 2)Each score is updated according to the desired rule, until reaching a stable 

point (after normalization)

• Why does it converge?
‣ Perron-Frobenius theorem (see next slide)
‣ =>True for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

• What we just described is called the Eigenvector centrality

• A couple eigenvector ( ) and eigenvalue ( ) is defined by the 
following relation: 
‣  is a column vector of size n, which can be interpreted as the scores of nodes

• What Perron-Frobenius algorithm says is that the power 
method will always converge to the leading eigenvector, i.e., the 
eigenvector associated with the highest eigenvalue

x λ
Ax = λx

x



Eigenvector Centrality
Some problems in case of directed network:
• Adjacency matrix is asymmetric
• 2 sets of eigenvectors (Left & Right)
• 2 leading eigenvectors 

• Use right eigenvectors : consider nodes that 
are pointing towards you 

17

Eigenvector centrality — Bonacich centrality 
I am important if my friends are important too

Vertex A is connected but 
has only outgoing link 
= Its centrality will be 0 

Vertex B has outgoing and 
ingoing 

But Ingoing comes from A 
= Its centrality will be 0 

Only in strongly connected component 

Acyclic networks (citation network) do not have strongly connected 
component 

-Vertex A is connected but has only outgoing link = Its centrality will be 0 

-Vertex B has outgoing and an incoming link, but incoming link comes from A 
= Its centrality will be 0 
-etc.

But problem with source nodes (0 in-degree)

Solution: Only in strongly connected component 
Note: Acyclic networks (citation network) do not have strongly connected component 



PageRank Centrality
• Eigenvector centrality generalised for directed networks
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PAGERANK

• 2 main improvements over eigenvector centrality: 
‣ In directed networks, problem of source nodes

-  => Add a constant centrality gain for every node
‣ Nodes with very high centralities give very high centralities to all their neighbors 

(even if that is their only in-coming link)
- => What each node “is worth” is divided equally among its neighbors (normalization by the 

degree)

=>
With by convention =1 and  a parameter (usually 0.85) controlling the 

relative importance of 
β α

β

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:

C
t+1
u

= ↵

X

v2Nin
u

C
t

v

kout
v

+ � (�)

with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|

|Nu [ Nv| � 2

Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :

�
cos
xy

=
x.y

|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

�
cos
uv

=
|Nu \ Nv|p

kukv

Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv

N

which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,
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v
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with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
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Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:
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with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵
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. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,
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High clustering edges are said Integrative, low values nodes are said Disper-
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Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,
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with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:
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Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :
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cos
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|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:
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Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )
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with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv
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which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.



PAGERANK

• Then how do Google rank when we do a research?

• Compute Pagerank (using the power method for scalability)

• Create a subgraph of documents related to our topic

• Of course now it is certainly much more complex, but we don’t really know:   
“Most search engine development has gone on at companies with little publication of technical 
details. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
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graph (but u) that go through u. As a consequence, if we remove a node of
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Degree
Clustering coefficient

Closeness
Betweenness
Eigenvector
PageRank

Which is which ?
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Network Science
Cheatsheet

Made by
Remy Cazabet

� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1
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v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
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CB(v)
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm
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(v) =

CB(v)
(N�1)(N�2) .
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A: Degree
B:Closeness

C: Betweenness
D: Eigenvector
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(GRAPH CLUSTERING)



COMMUNITY DETECTION

• Community detection is equivalent to “clustering” in 
unstructured data

• Clustering: unsupervised machine learning
‣ Find groups of elements that are similar to each other

- People based on DNA, apartments based on characteristics, etc.
‣ Hundreds of methods published since 1950 (k-means)
‣ Problem: what does “similar to each other” means ?



COMMUNITY DETECTION

• Community detection:
‣ Find groups of nodes that are:

- Strongly connected to each other
- Weakly connected to the rest of the network
- Ideal form: each community is 1)A clique, 2) A separate connected component

‣ No formal definition 
‣ Hundreds of methods published since 2003



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• If you plot the graph of your facebook friends, it looks like this



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• Connections in the brain ?



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• Phone call communications in Belgium ?

3. Results: division of the Belgian telephone territory

3.1 Division based on the frequency of calls

Figure 2 illustrates the groups obtained based on the frequency of telephone com-
munications between municipalities. The colours are of no particular significance 
and are simply intended to facilitate the reading of the map. 

Our main comments may be summarised in four points:

(1) Without having fixed the number of groups or their size, the optimal groups ob-
tained are spatially balanced: 17 ‘telephone areas’ composed of 15 to 66 munici-
palities appear ‘naturally’. This result is different from the division in labour pools (47 
pools defined by de Wasseige et al., 2000) and, without being identical, resembles 
the urban hierarchy of Van Hecke et al. (2007). To this effect, we have indicated on 
the map in Figure 2 the regional cities and the major cities as defined in Van Hecke 
et al. (2007). Note that certain telephone areas encompass two cities (for example, 
the Belgian coast forms a telephone area in itself and groups the cities of Ostend 
and Bruges; other examples: Hasselt and Genk or Mechelen and Leuven), whilst 
other telephone areas do not correspond to a ‘regional city’ as defined by Van 
Hecke et al. (2007) (for example Aalst to the west of Brussels is a telephone area, 
whereas Aalst is not considered as a ‘regional city’; the same is true for the province 

of Luxembourg). 

(2) Surprisingly, the groups of municipalities 
are always made up of adjacent municipali-
ties. As the grouping method does not im-
pose constraints regarding proximity or 
contiguity of municipalities in groups, the 
results could have revealed groups com-
posed of separate parts, but this is not the 
case for the groups obtained. 

(3) The linguistic border is followed by the 
limits of the ‘telephone areas’, with the ex-
ception of the area of Brussels (in red on 
the map) and the municipalities with facili-
ties Espierre-Helchin, Comines-Warneton, 
Herstappe and Fourons. Language there-
fore seems to be a strong barrier in terms 
of telephone communications: this confirms 
the former results of Klaassen et al. (1972), 
Rossera (1990) and Rietveld and Janssen 
(1990). However, it should be noted that 
the barrier around the German-speaking 
region is less clearly marked.

(4) The biggest area obtained (66 munici-
palities) corresponds – not surprisingly – to 
the biggest city: Brussels. Figure 3 presents  
a zoom-in of Figure 2 centred on Brussels. 
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Figure 2: ‘Telephone areas’ defined based on the frequency of communica-
tions between municipalities. We also indicate (1) = regional city (2) major 
city (definitions from Van Hecke et al., 2007) and (3): provincial borders.

Vilvoorde, Zaventem, Tervuren, Braine-l’Alleud, Ottignies-Louvain-la-Neuve, Wavre, 
Perwez and Jodoigne. However, Leuven is not included and is part of another tele-
phone area with Mechelen (see Figure 2). The Brussels telephone area resembles its 
urban area: it covers a much bigger area than the 19 municipalities of the Brussels-
Capital Region, all around the capital with a stronger spatial extension towards the 
south.

3.2 Division based on the average duration of communications

The municipalities are grouped here using the same method, according to the aver-
age duration of communications. The results are illustrated in Figures 4 (national 
scale) and 5 (a zoom-in on Brussels) and lead to two main commentaries:

(1) the method leads naturally to the constitution of two groups: one to the north 
and the other to the south of the country (Figure 4). Among the more than 200 mil-
lion communications analysed, only 1.05% are from the group in the north to the 
group in the south, and 1.04% are from the group in the south to the group in the 
north. In other words, almost 98% of telephone communications take place be-
tween customers within the same group. Let us note that the municipalities in the 

German-speaking 
community do not 
form a separate 
group, but are part 
of the group in the 
south of the country.

(2) Figure 4 shows 
that the north-south 
division follows the 
linguistic border with 
a few exceptions. 
Not surprisingly, 
these exceptions are 
all municipalities 
with facilities. With 
the exception of 
Wemmel, the mu-
nicipalities with facili-
ties in the outskirts 
of Brussels (Dro-
genbos, Kraainem, 
Linkebeek, Rhode-
Saint-Genèse, 
Wezembeek-
Oppem) are all 
grouped with the 
municipalities in the 
south of the country 
(see Figure 5 for a 
zoom-in). Three 
other municipalities 
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Figure 4: ‘Mobile telephone areas’ defined based on the average duration of communications.



FIRST METHOD BY GIRVAN & 
NEWMAN

• 1)Compute the betweenness of all edges

• 2)Remove the edge of highest betweenness

• 3)Repeat until all edges have been removed
‣ Connected components are communities

• => It is called a divisive method

• =>What you obtain is a dendrogram

• How to cut this dendrogram at the best level ?



FIRST METHOD BY GIRVAN & 
NEWMAN

Maximal 
modularity



FIRST METHOD BY GIRVAN & 
NEWMAN

• Introduction of the Modularity

• The modularity is computed for a partition of a graph
‣ (each node belongs to one and only one community)

• It compares :
‣ The observed fraction of edges inside communities 
‣ To the expected fraction of edges inside communities in a random network



MODULARITY

Original formulation



MODULARITY

Sum over all pairs of nodes



MODULARITY

1 if in same community



MODULARITY

1 if there is an edge between them



MODULARITY

Probability of an edge in 
a configuration model

(Edges at random, keeping degrees)



MODULARITY

• Modularity compares the observed network to a null 
model
‣ Usually the configuration model (degree preserving random graphs)

- Multi-edges and loops are allowed
‣ Other models could be used, such as ER random graphs (fully random)

• Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN & 
NEWMAN

• Back to the method:
‣ Create a dendrogram by removing edges
‣ Cut the dendrogram at the best level using modularity

• =>In the end, your objective is… to optimize the Modularity, 
right ?

• Why not optimizing it directly !



LOUVAIN ALGORITHM
• Greedy approach

• Each node start in its own community

• Repeat until convergence
‣ FOR each node:

- FOR each neighbor: 
     if adding node to its community increase modularity, do it

• When converged, create an induced network
‣ Each community becomes a node
‣ Edge weight is the sum of weights of edges between them

• Trick: Modularity is computed by community
Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



LOUVAIN ALGORITHM

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



ALTERNATIVES

• Most serious alternatives
‣ Infomap (based on information theory —compression)
‣ Stochastic block models (bayesian inference)

• These methods have a clear definition of what are good 
communities. Theoretically grounded



INFOMAP

• [Rosvall & Bergstrom 2009]

• Find the partition minimizing the description of any random 
walk on the network

• We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4 
(2008): 1118-1123.



INFOMAP

Random 
walk

Description 
Without

Communities
With communities

Huffman coding: short codes for frequent items
Prefix free: no code is a prefix of another one (avoid fix length/separators)



The Infomap method

• Minimise the expected description length of the random walk

Algorithm
1. Compute the fraction of time each node is visited by the random walker (Power-

method on adjacency matrix)

2. Explore the space of possible partitions (deterministic greedy search algorithm - similar to 
Louvain but here we join nodes if they decrease the description length)

3. Refine the results with simulated annealing (heat-bath algorithm)

by assigning short codewords to common events or objects and
long codewords to rare ones, much as common words are short
in spoken languages (19). Fig. 1B shows a prefix-free Huffman
coding for our sample network. Each codeword specifies a
particular node, and the codeword lengths are derived from the
ergodic node visit frequencies of an infinitely long random walk.
With the Huffman code pictured in Fig. 1B, we are able to
describe the specific 71-step walk in 314 bits. If we instead had
chosen a uniform code, in which all codewords are of equal
length, each codeword would be log 25! 5 bits long and 71!5 !
355 bits would have been required to describe the walk.

Although in this example we assign actual codewords to the
nodes for illustrative purposes, in general, we will not be
interested in the codewords themselves but rather in the theo-
retical limit of how concisely we can specify the path. Here, we
invoke Shannon’s source coding theorem (17), which implies that
when you use n codewords to describe the n states of a random
variable X that occur with frequencies pi, the average length of
a codeword can be no less than the entropy of the random
variable X itself: H(X) ! "#1

n pi log(pi). This theorem provides
us with the necessary apparatus to see that, in our Huffman
illustration, the average number of bits needed to describe a
single step in the random walk is bounded below by the entropy
H(P), where P is the distribution of visit frequencies to the nodes
on the network. We define this lower bound on code length to
be L. For example, L ! 4.50 bits per step in Fig. 1B.

Highlighting Important Objects. Matching the length of codewords
to the frequencies of their use gives us efficient codewords for
the nodes, but no map. Merely assigning appropriate-length
names to the nodes does little to simplify or highlight aspects of
the underlying structure. To make a map, we need to separate
the important structures from the insignificant details. We
therefore divide the network into two levels of description. We
retain unique names for large-scale objects, the clusters or
modules to be identified within our network, but we reuse the
names associated with fine-grain details, the individual nodes
within each module. This is a familiar approach for assigning
names to objects on maps: most U.S. cities have unique names,
but street names are reused from one city to the next, such that
each city has a Main Street and a Broadway and a Washington
Avenue and so forth. The reuse of street names rarely causes
confusion, because most routes remain within the bounds of a
single city.

A two-level description allows us to describe the path in fewer
bits than we could do with a one-level description. We capitalize
on the network’s structure and, in particular, on the fact that a
random walker is statistically likely to spend long periods of time
within certain clusters of nodes. Fig. 1C illustrates this approach.
We give each cluster a unique name but use a different Huffman
code to name the nodes within each cluster. A special codeword,
the exit code, is chosen as part of the within-cluster Huffman
coding and indicates that the walk is leaving the current cluster.
The exit code always is followed by the ‘‘name’’ or module code
of the new module into which the walk is moving [see supporting
information (SI) for more details]. Thus, we assign unique names
to coarse-grain structures (the cities in the city metaphor) but
reuse the names associated with fine-grain details (the streets in
the city metaphor). The savings are considerable; in the two-
level description of Fig. 1C the limit L is 3.05 bits per step
compared with 4.50 for the one-level description.

Herein lies the duality between finding community structure
in networks and the coding problem: to find an efficient code, we
look for a module partition M of n nodes into m modules so as
to minimize the expected description length of a random walk.
By using the module partition M, the average description length
of a single step is given by

L$M% ! q! H$"% " !
i!1

m

p@
i H$# i% . [1]

This equation comprises two terms: first is the entropy of the
movement between modules, and second is the entropy of
movements within modules (where exiting the module also is
considered a movement). Each is weighted by the frequency with
which it occurs in the particular partitioning. Here, q! is the
probability that the random walk switches modules on any given
step. H(Q) is the entropy of the module names, i.e., the entropy
of the underlined codewords in Fig. 1D. H(P i) is the entropy of
the within-module movements, including the exit code for
module i. The weight p@

i is the fraction of within-module
movements that occur in module i, plus the probability of exiting
module i such that #i!1

m p@
i ! 1 & q! (see SI for more details).

For all but the smallest networks, it is infeasible to check all
possible partitions to find the one that minimizes the description

L = 2.67 bits/step
Q = 0.25 Q = 0.50

L = 4.13 bits/step

Q = 0.00
L = 2.73 bits/step L = 4.68 bits/step

Q = 0.56

Map equation
ytiraludoMytiraludoM

Map equation

Map equation
Modularity

Map equation
Modularity

B

A

Fig. 2. Mapping flow highlights different aspects of structure than does
optimizing modularity in directed and weighted networks. The coloring of
nodes illustrates alternative partitions of two sample networks. (Left) Parti-
tions show the modular structure as optimized by the map equation (mini-
mum L). (Right) Partitions show the structure as optimized by modularity
(maximum Q). In the network shown in A, the left-hand partition minimizes
the map equation because the persistence times in the modules are long; with
the weight of the bold links set to twice the weight of other links, a random
walker without teleportation takes on average three steps in a module before
exiting. The right-hand clustering gives a longer description length because a
random walker takes on average only 12/5 steps in a module before exiting.
The right-hand clustering maximizes the modularity because modularity
counts weights of links, the in-degree, and the out-degree in the modules; the
right-hand partitioning places the heavily weighted links inside of the mod-
ules. In B, for the same reason, the right-hand partition again maximizes
modularity, but not so the map equation. Because every node is either a sink
or a source in this network, the links do not induce any long-range flow, and
the one-step walks are best described as in the left-hand partition, with all
nodes in the same cluster.

1120 " www.pnas.org#cgi#doi#10.1073#pnas.0706851105 Rosvall and Bergstrom

Expected decryption 
length of partition M

Entropy of movement between 
modules, i.e. the frequency weighted 
average length of codewords

Entropy of movement inside modules, i.e. the 
frequency weighted average length of 
codewords in the module codebook

probability of between modules 
movements of a RW, i.e. the rate of 
usage of the index codebook

probability of within modules movements 
of a RW, i.e. the rate of usage of the 
module codebook

5

The unrecorded visit rates on links q�!� and nodes p� can now be expressed:

q�!� = p
⇤
�p�!� (5)

p� =
X

�

q�!� . (6)

This so called smart teleportation scheme ensures that the solution is independent of where the random walker starts in
directed networks with minimal impact on the results from the teleportation parameter. A typical value of the teleportation
rate is � = 0.15, but in practice the clustering results show only small changes for teleportation rates in the range � 2 (0.05,0.95)
(24). For example, for undirected networks the results are completely independent of the teleportation rate and identical to
results given by Eq. (2). For directed networks, a teleportation rate too close to 0 gives results that depend on how the random
walker was initiated and should be avoided, but a teleportation value equal to 1 corresponds to using the link weights as the
stationary distribution. Accordingly, the unrecorded teleportation scheme also makes it possible to describe raw �ow given by
the links themselves without �rst inducing dynamics with a random walker. The Infomap code described in Sec. 2.2 can use
any of these dynamics described above, but we recommend the unrecorded teleportation scheme proportional to link weights
for most robust results.

The map equation is free from external resolution parameters. Instead the resolution scale is set by the dynamics. The
dynamics described above correspond to encoding one node visit per step of the random walker, but the code rate can be set
both higher and lower (26). A higher code rate can be achieved by adding self-links and a lower code rate can be achieved
by adding non-local links to the network (26). A higher code rate gives smaller modules because the random walker becomes
trapped in smaller regions for a longer time. The Infomap code allows to increase the code rate from the natural value of
encoding one node visit per step of the random walker.

2.1.2. Basic information theory
While the map equation gives the theoretical lower limit of a modular description of a random walker on a network, the
interactive map equation demo illustrates the description with real codewords. We use Hu�man codes (27), which are optimal
in the sense that no binary codes can come closer to the theoretical limit. However, for identifying the optimal partition of the
network, we are only interested in the compression rate and not the actual codewords. Accordingly, the Infomap algorithm
only measures the theoretical limit given by the map equation.

Shannon’s source coding theorem (28) states that the per step theoretical lower limit of describing a stream of n indepen-
dent and identically-distributed random variables is given by the entropy of the probability distribution. That is, given the
probability distribution P = {pi } such that

P
i pi = 1, the lower limit of the per-step codelength is given by

L(P) = H (P) ⌘ �
X

i
pi logpi , (7)

with the logarithm taken in base 2 to measure the codelength in bits. In other words, no codebook with codewords for the
events distributed according to P can use fewer bits on average.

Accordingly, the best compression of random walker dynamics on a network is given by the entropy rate (28)
X

�
p�H (p�!� ), (8)

which corresponds to the average codelength of specifying the next node visit given current node position, averaged over
all node positions. This coding scheme takes advantage of the independent and identically distributed next node visits given
current node position, but can not be used to take advantage of themodular structure of the network. Instead, themap equation
uses the extra constraint that the only available information from one step to the next is the currently visitedmodule, or that the
random walk switches between modules, forcing independent and identically distributed events within and between modules.
From this assumption naturally follows a modular description that is maximally compressed by the network partition that best
represents the modular structure of the network with respect to the dynamics on the network.

2.1.3. The mathematics of the map equation
Given a network partition, the map equation speci�es the theoretical modular description length of how concisely we can
describe the trajectory of a randomwalker guided by the possibly weighted, directed links of the network. We useM to denote
a network partition of the network’s n nodes into m modules, with each node � assigned to a module i . We then seek to
minimize the description length L(M) given by the the map equation over possible network partitions M. Again, network
partition that gives the shortest description length best captures the community structure of the network with respect to the
dynamics on the network.

The map equation can be expressed in closed form by invoking Shannon’s source coding theorem in Eq. (7) for each of

• Shannon’s source coding theorem (Shannon’s entropy)
for a probability distribution P = {pi} such that Σi pi = 1, the 
lower limit of the per-step code-length is

Finding the optimal partition M:

Sum of Shannon entropies of multiple codebooks weighted by the rate of usage



INFOMAP

• To sum up:
‣ Infomap defines a quality function for a partition different than modularity
‣ Any algorithm can be used to optimize it (like Modularity)

• Advantage: 
‣ Infomap can recognize random networks (no communities)



STOCHASTIC BLOCK MODELS

• Stochastic Block Models (SBM) are based on statistical models 
of networks
‣ Likelihood maximization of observing the graph given a model 

• The model is:
‣ Each node belongs to 1 and only 1 community (blocks)
‣ To each pair of communities, there is an associated density (probability of each 

edge to exist)



STOCHASTIC BLOCK MODELS
• SBM can represent different things:

‣ Associative SBM: density inside nodes of a same communities >> density of 
pairs belonging to different communities.



STOCHASTIC BLOCK MODELS

• General idea of SBM community detection:
‣ Specify the desired number of cluster
‣ Find parameters to optimize the maximum likelihood

- Principle: The best parameters are those that allow to generate the observed network with 
the highest probability

• Main weakness of this approach
‣ Number of clusters k must be specified (avoid trivial solution)
‣ MDL (Minimum Description Length) approaches exist to find automatically k



EVALUATION OF 
COMMUNITY STRUCTURE



EVALUATION

• Similar to clustering:
‣ Intrinsic/Internal evaluation

- Partition quality function
- Individual Community quality function 

‣ Comparison of observed communities and expected communities
- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION

• Partition quality function
‣ Already defined: Modularity, graph compression, etc.

• Quality function for individual community
‣ Internal Clustering Coefficient 

‣ Conductance:  

- Fraction of external edges

|Eout |
|Eout | + |Ein | :

# of links to nodes inside 
(respectively, outside) the 

community

|Ein | , |Eout |


