
SUPERVISED ML



SUPERVISED ML

• Certainly the most successful branch of ML currently

• Training a computer program (algorithm) to learn through 
examples

• Tasks:
‣ Predict the weather, the climate
‣ Recognize objects/people in pictures
‣ Evaluate the risks of recidivism of a convict (don’t do that!)
‣ What else ?



SUPERVISED ML

• Two main objectives, with similar solutions

• Regression: predict a numerical value
‣ Temperature, cost, grade, etc.

• Classification: predict a class/label/category
‣ Success/Failure, Blue/Red/Yellow, which animal among 1000 possibles, etc.



SUPERVISED ML: DNN

• Many recent successes thanks to Deep Neural Networks

• This class: only “classic” methods

• DNN are just an evolution of methods presented in this class, 
all principles stay the same.



FICTIONAL EXAMPLE

• Let’s say we want to predict the price of apartments. We have 
a collection of examples, for now in comparable settings (same 
neighborhood of the same city…)

• We have access to some characteristics of apartments:
‣ Surface Area, # of rooms, # of windows, Elevator…

• This is typically a Regression problem.



EVALUATION/OBJECTIVE

• Before applying any method, set up an objective/a quality 
score/an error measure

• We want to be able to compare several prediction methods 
to see which one is the most efficient. But how to compare 
them ?

• Typical scores:
‣ MAE: Mean Absolute Error
‣ MSE, RMSE: (Root) Mean Square Error
‣ R2



MEAN ABSOLUTE ERROR

•

• Similarity with the MAD (Mean Absolute Deviation), 
comparing values with predictions instead of simple mean.

• Simple to interpret 
‣ lower the value, lower the error, better the prediction
‣ 0: perfect prediction
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MEAN SQUARED ERROR

•

• Similarity with the Variance

• Using squared errors give stronger importance to large errors

• , can be easier to interpret
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 (R-SQUARED)R2

•

• Quantifies the fraction of the variance that is explained by the 
prediction
‣ Sometimes called coefficient of determination for linear regression

• 1=>Perfect prediction.
‣ Negative if the prediction is worst than taking the average (=Variance)
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 (R-SQUARED)R2

Variance

RMSE

Mean

Prediction

Variance
Explained



EVALUATION/OBJECTIVE

• Which one should you use?
‣ Different literature have their favorite one. RMSE is probably the most popular.
‣ If your ML algorithm use the RMSE as objective (loss function), then you should 

probably use RMSE

• More information can allow you to judge better.  There is no 
“truth”.



NAIVE/STATISTICAL 
PREDICTION

Baseline



BASELINE
• Let’s define our baseline, our reference to improve on

• Let’s assume we only know the target variable values

• Using statistics, we know that the best “prediction” we can do 
for the price of a future apartment will be
‣ The average (for MSE) =>Variance
‣ The median (for MAE) => MAD

(Some imaginary values)



BASELINE

MSE 1105345073.7155044

RMSE 33246.73027104326

MAE 22740.967725747014

R2 0.0

MSE 1179133659.4166086

RMSE 34338.51568452848

MAE 21658.66828240126

R2 -0.06675615376207489

Using Mean=51676 Using Median=43086

MAE lowerRMSE lower



LINEAR REGRESSION



LINEAR REGRESSION
• Let’s assume that we know one apartment attribute: Surface 

area. We can plot the relation between Surface and Price

• There seems to be a linear relationship



LINEAR REGRESSION
• We will use linear regression method, and more 

specifically Ordinary Least Square. First, with a single 
variable:

• We assume that: 
‣ Target value=constant+(constant*feature)+normally distributed (random) 

errors
‣ i=>ith example in our dataset

• The objective of linear regression is to find parameters 

‣ Such as to minimize the MSE, 
‣ Considering that the prediction is: 

- Equivalently: 

yi = β0 + β1xi + ϵ

Θ = {β0, β1}

̂yi = β0 + β1xi
̂y = β0 + β1x



LINEAR REGRESSION

• We solve this problem, and obtain:
‣ =987
‣ =779

β0
β1

MSE 20668278.463901177

RMSE 4546.237836266508

MAE 3512.3861644882704

R2 0.9813015148342528



LINEAR REGRESSION

• We solve this problem, and obtain:
‣ =987
‣ =779

β0
β1

MSE 20668278.463901177

RMSE 4546.237836266508

MAE 3512.3861644882704

R2 0.9813015148342528

MSE 1105345073.7155044

RMSE 33246.73027104326

MAE 22740.967725747014

R2 0.0

MSE 1179133659.4166086

RMSE 34338.51568452848

MAE 21658.66828240126

R2 -0.06675615376207489

Using Mean Using Median Using 
Linear Regression



LINEAR REGRESSION

• Note: To generate the data, I used indeed a linear model, with 
parameters
‣ =987  0
‣ =779 1000

β0
β1



LINEAR REGRESSION

• In real life, we usually have more than 1 parameter
‣ New generator, prices depends on surface AND floor

Surface Floor



LINEAR REGRESSION

• General formulation with any number of attribute
‣

‣ Searching for the different coefficients
y = β0 + β1x1 + β2x2 + . . . + βnxn + ϵ

MSE 388200345.3991482

RMSE 19702.800445600322

MAE 16757.480694933285

R2 0.7329146952183824

MSE 22157971.6387145

RMSE 4707.225471412486

MAE 3617.346073048316

R2 0.9847551176123155

MSE 785600976.607142

RMSE 28028.57428780747

MAE 22165.777484397917

R2 0.34222807880552575

Surfaces only Floor only All features

Generative Parameters
Found Parameters

‣ = 0 = 1 000,  =10 000β0 β1 β2

‣ = 579 = 994,  =9 821β0 β1 β2



LINEAR REGRESSION

• Linear regression works :)

• But what happens if relations are not linear?
‣ Assume that Price  log(surface)*100 000 ?≈

MSE 474131230.6072998

RMSE 21774.554659218633

MAE 16958.426496791166

R2 0.8437196622358905

MSE 23408487.920127597

RMSE 4838.231900201518

MAE 4057.809620606243

R2 0.9922842323758786

Linear regression

Real model



LINEAR REGRESSION

• Linear regression works if there are indeed linear relations
‣ But there is no particular reason for relations to be linear

• In many scientific domains (e.g., epidemiology, biology, 
econometrics, etc.), linear regression is still widely used. 
‣ Why ?



OLS STRENGTH
• Analytical solution: 

‣ With X the feature matrix

• An analytical solution guarantees to find the optimal solution

• Possible to do before the generalization of computers

• If there are
‣ Many variables, matrix inversion becomes a bottleneck 
‣ Many observations, matrix multiplication goes 
‣ Solution=>Gradient descent

̂β = (XT X)−1XTy

𝒪(v3)
𝒪(nv)



OLS KNOWN WEAKNESS

• MSE is known to be sensitive to outliers



NON-LINEAR REGRESSION:
DECISION TREE REGRESSION



DECISION TREE

• Decision tree is a simple yet powerful way to do machine 
learning.

• Meta-algorithm: 
‣ Recursively split the data in 2 groups of items, based on a chosen attribute, so 

that elements in the same group have as close target values as possible
‣ Predict that the value of a new item is the same as those of the group it 

belongs to.



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 1 Level of splitting

MSE 1106922922.7787206

RMSE 33270.45119589935

MAE 27836.40899704275

R2 0.6351425995939648



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 2 Level of splitting

MSE 299670892.805488

RMSE 17311.00496232059

MAE 13262.652619929546

R2 0.9012242490634346



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 3 Level of splitting

MSE 90552465.56733872

RMSE 9515.905924678886

MAE 7434.910779663157

R2 0.9701526307682573



DECISION TREE
• Ex: Using 

‣ MSE as split criteria 
‣ 10 Level of splitting

MSE 0.0

RMSE 0.0

MAE 0.0

R2 1.0



MACHINE LEARNING: 
SOLVED :)



OR IS IT ?
OVERFITTING…



AVOIDING OVERFIT

• The most important rule of machine learning
‣ And essential part of the scientific process

• Predicting what you already know is cheating

• You must hide a test set, that you will never use when 
learning, and that you will only use once, for evaluating.



AVOIDING OVERFIT

Train set Test set

Do whatever you want :) Use only once !



AVOIDING OVERFIT

Decision Tree, levels=10 Decision Tree, levels=5
MSE 0.0

RMSE 0.0

MAE 0.0

R2 1.0

MSE 9675372.95170697

RMSE 3110.5261535159884

MAE 2364.5552169188454

R2 0.9968108606746918

MSE 47482936.48734139

RMSE 6890.786347532579

MAE 5748.307144423111

R2 0.9756671526915104

MSE 60522590.58807978

RMSE 7779.626635519199

MAE 6427.594619486819

R2 0.9689849224913336

Scores on 
Train Set

Scores on 
Test Set



TRAIN/TEST SPLIT

• What size should your test set have?
‣ No good answer. 66% Train, 33% Test is often a default choice

• Problem is if data is scarce
‣ =>Cross validation



CROSS VALIDATION



FIGHTING OVERFIT
BACK TO THE METHOD



FIGHTING OVERFIT

• Implicit limit to overfit:
‣ Because a method has a limited power of expression, it cannot overfit “too 

much”.
‣ =>A linear regression method cannot overfit to the trivial solution, unlike 

decision tree
- Unless there are enough variables…

• Explicit limit to overfit:
‣ The method is not limited in its power of expression, but contains a safeguard 

against overfit



FIGHTING OVERFIT

MSE 474131230.6072998

RMSE 21774.554659218633

MAE 16958.426496791166

R2 0.8437196622358905

MSE 297361867.9984524

RMSE 17244.18359907051

MAE 14666.202886910516

R2 0.8476155548782759

MSE 9675372.95170697

RMSE 3110.5261535159884

MAE 2364.5552169188454

R2 0.9968108606746918

MSE 47482936.48734139

RMSE 6890.786347532579

MAE 5748.307144423111

R2 0.9756671526915104

Train

Test

No visible overfit= underfit? Still Some overfit



FIGHTING OVERFIT

• Avoiding overfit in decision trees: Pruning strategies
‣ One way to see: Artificially limit the expressivity of the model
‣ 1)Limit the number of levels (Simple but naive)
‣ 2) Limit the number of leaves

- =>Split nodes in priority where it improves the most
‣ 3) Limit the size of leaves

- => Explicitly forbids the naive solutioN

• Hyperparameter tuning/optimization
‣ Typical approach: Grid search.
‣ Fix a set of possible parameters. Test all possibilities on a validation test



GRID SEARCH

More clever methods exist: Bayesian optimization, etc.



NOTE: GENERALIZATION

• A very important notion in machine learning is Generalization
‣ Can we extract generic principles underlying our data?
‣ Can we generalize our observations to unseen cases?

• Linear regression can predict an unseen value, while decision 
tree cannot.
‣ What the weather be like in 5 years ? Extrapolation from current condition…



CLASSIFICATION



CLASSIFICATION

• Objective: predict the class of an item

• Methods for regression can be reused with some adaptations
‣ Binary Classification is usually simple
‣ Multiclass Classification might require more changes

• Evaluation methods change

• Imbalanced datasets might become a problem



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface



LINEAR CLASSIFICATION
• We can easily adapt linear regression

• Imagine a 1 feature example:
‣ We want to classify between apartments and houses
‣ Our (unique) feature is dwelling surface

Classified as 1Classified as 0

MSE 0.06361520558572538

RMSE 0.2522205494913636

MAE 0.20506852857512292

R2 0.7455391776570985



LINEAR CLASSIFICATION
• Weaknesses: Outliers



LINEAR CLASSIFICATION
• More generally, inadapted objective: 

‣ The relation is not linear
‣ We minimize a cost function (MSE) which is not meaningful: 

- Some predictions go beyond possible values (prediction less than 0 or more than 1 adding 
error



SIGMOID FUNCTION

lim
t→+∞

sig(t) = 1lim
t→−∞

sig(t) = 0 sig(0) = 0.5



LOGISTIC REGRESSION

̂y = β0 + β1xi + β2x2 + . . . + βnxn

P(y = 1) = Sig(β0 + β1xi + β2x2 + . . . + βnxn)

Sig(x) =
1

1 + e−x

P(y = 1) =
1

1 + e−β0+β1xi+β2x2+...+βnxn

Linear regression:

Logistic 
Regression:

Logisitic (Sigmoid) function:



LOGISTIC REGRESSION

ln(
P(y = 1)

1 − P(y = 1)
) = β0 + β1xi + β2x2 + . . . + βnxn

Problem to solve similar to a linear regression.
We minimize the error between true  

and estimated probability of being 
y ∈ {0,1}

1

After reformulation:



DECISION TREE

• Trees can be easily adapted to the classification task
‣ It is even more natural than for regression

• The principle is to divide observations in term of class 
homogeneity
‣ We want items in the same branch/leaf to belong to the same class



DECISION TREE

• Most common homogeneity/diversity/inequality/purity scores
‣ : fraction of items of class 

‣
Gini Coefficient: 

- If we classify by taking an element at random, probability to be wrong.

‣
Entropy: 

- Interpretation: average # of bits required to encode the information of the class of each item

pi i
1 − ∑

j

p2
j

−∑
j

pj ⋅ log2pj



DECISION TREE



CLASSIFICATION:
EVALUATION



CLASSIFICATION:
EVALUATION

• Precision=
‣ Among those predicted as True, fraction of really 

True

• Recall= 
‣ Among those really true, what fraction did we 

identity correctly

TP
TP + FP

TP
TP + FN



ACCURACY

• Accuracy: 

• Fraction of correct prediction, among all predictions
‣ Simple to interpret

• Main drawback: class imbalance
‣ Test whole city, 1 000 people, for Covid

- 95% don’t have covid, i.e., 50 people have covid, 950 don’t have it
‣ Our test (ML algorithm) is pretty good: TP: 45 - FN: 5 - TN: 900 -FP: 50

- Accuracy= (45+900)/1 000=0.945
‣ Dumb classifier : Always answer: not covid

- Accuracy: (0+950)/1 000 = 0.95

TP + TN
P + N



F1 SCORE
• F1 score: 

‣ Harmonic mean between precision and recall
- Harmonic mean more adapted for rates.
- Gives more importance to the lower value

• Scores for the covid predictor :
- Precision=45/95=0.47
- Recall = 45/50=0.9

‣ F1=0.65

• Score for the naive predictor impossible to compute…
‣ You need at least some TP !
‣ Assuming 1 “free” TP (Precision=1, Recall=1/50)

- => F1=0.04

F1 = 2
precision * recall
precision + recall



AUC

• Will see in link prediction class


