
Clustering

1 Fundamentals
1. Clustering: getting started

(a) Get ready to use the same dataset as for the previous class. Keep columns [budget, popularity,
revenue, runtime, vote average, vote count] as numerical columns. Clean them by removing rows
having undefined (na) values. Remove 0 in Budget, Revenue, runtime and vote count.

(b) Using sklearn library, apply KMeans algorithm on the dataframe, with 3 clusters.
(c) Compute the centroid (mean values for each feature), and the size for each cluster. A flexible way

to proceed is to extract the clusters (fit predict), add the resulting list as a new column (e.g.,
”cluster”) in a copy of the feature dataframe, then compute statistics by cluster in that dataframe,
for instance with .groupby("cluster").agg([’mean’,"count"])

(d) Remember that k-means is based on the notion of distance between points in the D-dimensional
space, and thus is sensible to magnitudes. Standardize the features with StandardScaler (fit transform),
and re-run K-means (be careful not to use the dataframe of the previous question that contains the
previous clustering!)

(e) To better observe the difference, we can plot (sns.scatterplot) the relation between a variable
with large values (x=”budget”), a variable with low values (y=”vote average”), with dot colors
corresponding to clusters (hue=”cluster”). You should observe a clear difference between normalized
and non-normalized versions.

(f) If you had to give a manual label to those clusters, to describe the movies they contain, what would
it be ? (e.g.: ”popular movies that people like”...)

2. Evaluation and number of clusters
(a) Compute the silhouette score using method silhouette visualizer from package yellowbrick ,

plot the silhouette score and interpret it.
(b) We would like to find the optimal number of clusters. Apply the silhouette score method: plot the

relation between k and the silhouette score, and search for a maximum value, or a value where there
is a ”summit” (good luck).

(c) Apply now the elbow method. The y axis can represent various scores that decrease with k, a
simple one is to take the inertia parameter of your k-means object. Look for an elbow to find
the right number of clusters (good luck).

2 Advanced
(a) Apply DBSCAN method, with the default parameter eps=0.5. Compute clusters centroids and size.

Remember the number of clusters is found automatically.
(b) Check which movies are in some of the small clusters. One way to proceed is to 1)create a dataframe

filtered exactly like the one you used for training, but in which you retain the movie title. 2)Add the
cluster column to that dataframe.3)Now you can filter on the cluster number to see the corresponding
movies.

(c) To check that you understood correctly the eps parameter, make a guess: if you increase it, will
you lower or increase the number of clusters? Check.

(d) Check the BayesianGaussianMixture class of sklearn, and try to understand its parameters
n components, covariance type,tol,max iter,init params .

(e) Run it in different versions and explore the results

3 Going Further
(a) We could consider (although unlikely) that our clusters should correspond to different movie genre.

Extract the first genre from the genre column for each movie. Considering that as our clustering
ground truth, compute the AMI. Explore parameters of your favorite algorithm such as to find
those that maximize the similarity between found clusters and genres.

(b) Going back to the Gaussian Mixture, run it with a small number of clusters, and for 2 features,
plot the actual gaussian mixture (heatmap/kdeplot)

Page 2

	Fundamentals
	Advanced
	Going Further

