DATA - INTRODUCTION

WHO AM I

- Rémy Cazabet (<u>remy.cazabet@univ-lyon I.fr</u>)
- Associate professor, LIRIS Laboratory, Lyon 1 University
- Team: Data Mining and Machine Learning (DM2L)
- Lyon's Institute of Complex Systems (IXXI)

WHO AM I

- Research topics:
 - Large Network Analysis (Cryptocurrencies...)
 - Graph Clustering
 - Dynamic network
 - Graph Embedding
 - Graph Neural Networks
- Stages orienté recherche en analyse de données

CLASS OVERVIEW

- Class page: http://cazabetremy.fr/Teaching/TIW/DAD.html
 - All contents: slides, TP, data, corrections...
- Class divided in 2 independent parts:
 - Monday: me, Analyse de de données, manipulation, visualization
 - Wednesday: Fabien De Marchi (frequent patterns and others)
- My part:
 - How to interpret real data
 - How to explore it using custom interactive visualization
 - Dash

OBJECTIVE

- Data is everywhere:
 - Clients data
 - IT service data
 - You system's performance data
 - Real life
- Learn how to manipulate data and make sense of it
 - Is this variable affected by that other one?
 - What are the most importants, the key elements in my dataset?
 - How to use code to explore my dataset, for me and for others?
 - Interactive Dashboards

CLASS OVERVIEW

- Data cleaning and Data description
- Unsupervised ML (beyond k-means)
- Network Data
- Projections and other data types

- Dash: data analysis webapp
- Project => Data Analysis WebApp

THIS CLASS

- This class is based on:
 - Countless Wikipedia and blogs (use them too!)
- Some books
 - Borrow at my office

Data Mining and Machine Learning FUNDAMENTAL CONCEPTS

AND ALGORITHMS SECOND EDITION MOHAMMED J. ZAKI WAGNER MEIRA, JR.

TYPES OF DATA

DATATYPES

 Data types : What kind of data (feature, variables) can we encounter?

DATATYPES

- Data types : What kind of data (feature, variables) can we encounter?
 - People
 - Name, Age, Gender, Revenue, Birth Date, Address, etc.
 - House/Apartment
 - Surface area, Floor, Address, # of rooms, # of Windows, Elevator, etc.
- Types of features?

DATATYPES

- Nominal:
 - From "names". No order between possible values
 - Color, Gender, Animal, Brand, etc. (Numbers: Participant ID, class...)
- Ordered:
 - Ordinal
 - Interval
 - Ratio

ORDERED

- Ordinal
 - Order between values, but not numeric
 - Size[small, medium, large], [Satisfied, ..., Unsatisfied], Income [0-10k],[10k-15k], [15k-50k]...
- Ratio
 - Numerical values, all operations are valid
 - Height, Duration, Revenue...
- Interval
 - Numeric values, <u>difference</u> is meaningful
 - ▶ T°: 30°-20° = 15°-5°, But 30° 2*15°
 - 2022-2020=1789-1787, but 1011 2022/2
 - >>0 is not a meaningful value, is arbitrary

OTHERTYPES

- Real Data can have many other forms
 - Textual
 - Relational (networks)
 - Complex objects (picture, video, software...)

- Latitude and Longitude
- Hours expressed between 0 and 12/24, day of month, etc.
 - Convert in time since beginning of dataset ?
- => Space and Time often handled with specific ML methods

WHATTO DO ?

• Nominal =>

- One hot encoding
- Also called
 - Dummy encoding
 - Indicator variables
 - Binary vector encoring

• Ordered:

- Ordinal => Transform to Interval/Ratio
- Interval/traps => **usually forbidden to perform correlation, clustering, etc.**
- Ratio => :)

MISSING VALUES

- Real-life datasets are full of missing values
 - Impossible data: fur color for a sphinx cat
 - More generally, failure to obtain them
- Few methods can deal with missing values
 - =>Imputation
 - Naive: fill with average value
 - Use ML to fill-in missing values (other problems, introduce biases...)
 - Large literature, no good solution

DATA QUALITY

- Data coming from the real world is often incorrect
 - Malfunctioning sensors (T°, speed...)
 - Human error or falsification (e.g., entered 100 instead of 1.00)
 - Undocumented change (e.g., Bicycle sharing station was moved...)
- Before applying a method blindly,
 - >=>check your data's quality!
 - If the data is plausible, no simple solutions
 - Common
 - Out-of-range values (e.g., a person's weight is negative or above 1000kg...)
 - Zeros. (Weight of the person is 0. But in many cases, zero is possible too...)
 - Variant: 01/01/1970...

UNIVARIATE / MULTIVARIATE

- Terminology:
 - Feature=variable="columns"
- Single *feature*: univariate
 Age
- Real life: multivariate.
 - 2D (age, weight)

. . .

- 3D (age, weight, height)
- 4D (age, weight, height, genre)

DESCRIBING A VARIABLE

DESCRIBING VALUES

- Mean / Average
 - Be careful, not necessarily representative !
- Median
 - Be careful, not necessarily representative !
- Mode
 - Not necessarily representative
- Min/Max
 - ٠...

VARIANCE

- Variance:
 - Expectation of the <u>squared</u> deviation of a random variable from its mean

$$Var(X) = \sigma^2 = E\left[(X - \mu)^2\right]$$

Also expressed as average squared distance between all elements

$$\sigma^2 = \frac{1}{N^2} \sum_{i < j} \left(x_i - x_j \right)^2$$

STANDARD DEVIATION

• Squared root of the Variance

$$\sigma = \sqrt{\sigma^2} = \sqrt{E\left[(X - \mu)^2\right]}$$

ABSOLUTE DEVIATION

- MAD (Mean Absolute Deviation)
 - Deviation from mean or from median
 - (Variant: Median Absolute Deviation)

$$\frac{1}{n} \sum_{i=1}^{n} |x_i - m(X)|$$

- So why are we using the Standard Deviation again?
 - The <u>mean</u> minimizes the expected squared distance
 - The median minimizes the MAD
 - Leads naturally to least square regression and PCA... see later.

STDIV AND NORMAL DISTRIBUTION

DISTRIBUTION

- What is a distribution?
 - A description of the frequency of occurence of items
 - A generative function describing the probability to observe any of the possible events
 - Discrete or continuous

DISTRIBUTION (DISCRETE)

25

- =>25 observations in the interval (13,17] •
- Raw values for a sample,
- or fraction
 - 0.25
 - 25%
 - Sum to I. Must be inferior to I for any value

THEORETICAL DISTRIBUTIONS

- Normal distribution
 - Many real variables follow it approximately (height, weight, price of a given product in various locations...
 - Random variations around a well-defined mean
 - Central limit theorem: <u>average</u> of many samples of a random variable converges to a normal distribution

THEORETICAL DISTRIBUTIONS

- Power Law distribution
 - A relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one quantity varies as a power of another.
 - e.g., earthquakes 10 times more powerful are x times less frequent.
 - e.g., cities 10 times bigger are x time less frequent

THEORETICAL DISTRIBUTIONS

Power Law distribution

DESCRIPTIVE STATISTICS

Х	Mean:	54.2659224
Y	Mean:	47.8313999
Х	SD :	16.7649829
Y	SD :	26.9342120
Corr. :		-0.0642526

The datasaurus

https://github.com/jumpingrivers/datasauRus

DESCRIPTIVE STATISTICS

- My advice:
 - Plot the distribution.
 - Don't assume a theoretical distribution
 - Don't believe single-number statistics. Never ever.

STATISTICALTESTS

WHAT IS IT?

• Questions such as:

- Is my data following a normal distribution?
 - I could summarize it by mean and variance...
- Are two variables coming from the same "population"
 - Is the probability of dying from COVID the same in two countries for 2 ''identical'' persons?
- Are two variables independent?
 - "eating chocolate" and "having cancer"?
- You can use statistical tests:
 - Normality: Shapiro-Wik, etc.
 - Categorical variables: Chi-squared χ^2 , etc.
 - Comparing distributions: Kolmogorov-Smirnov, t-test if assuming normality, etc.

STATISTICALTESTS

- "Can we reject the null hypothesis?"
 - p-value large => null hypothesis Likely True. (Probability obtain data if hypothesis True)
 - Normality test: Null hypothesis=>distribution is normal.
 - Hypothesis testing: Null hypothesis=>No relation between variables of interest

STATISTICALTESTS

• Useful when you have very little data and that you cannot obtain more

- If you have large datasets, in general, these tests are useless
 - Nothing is exactly normal
 - No pairs of populations are exactly identical
 - No variables are independent
 - Having a cat and owning a SUV? Height of a person and their grades in high school? Etc.

DESCRIPTIVE STATISTICS

- My advice:
 - Plot the data
 - If the relation is not so obvious that you have no doubts, don't believe it
 - Get more data :)

VARIABLE INTERACTIONS

COVARIANCE MATRIX

Covariance Matrix Formula

 Var(x_1)

 Cov(x_n, x_1)

 Cov(x_n, x_1)

 Var(x_n)

- Covariance matrix K
 - Extension of Variance to multivariate data
 - $\operatorname{Var}(X) = \operatorname{E}\left[(X \mu)^2\right]$
 - $\operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \mathbf{K}_{\mathbf{X}\mathbf{Y}} = \mathbf{E}\left[(\mathbf{X} \mathbf{E}[\mathbf{X}])(\mathbf{Y} \mathbf{E}[\mathbf{Y}])^{\mathrm{T}}\right]$
 - How much observation X differs from the mean ? And Y ?
 - Multiply the respective divergences of X and of Y for each item
 - Take the average
 - \rightarrow => cov(**X**, **X**) = Var(**X**)
- Covariance is hardly interpretable by itself.
 - If >0, divergences tend to be in the same direction
 - Normalize it to obtain the "correlation coefficient"

CORRELATION COEFFICIENT

• Pearson correlation coefficient : $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{6}$

- Normalize the Covariance by the Standard deviation.
- Independent from magnitude, i.e., no need to have normalized data
- ▶ Value in -1, +1.
 - +I means a perfect positive linear correlation, i.e., X=aY
 - -I a negative one, i.e., X=-bY
- 0 can mean many different things

CORRELATION COEFFICIENT

Х	Mean:	54.2659224
Y	Mean:	47.8313999
Х	SD :	16.7649829
Y	SD :	26.9342120
Corr. :		-0.0642526

CORRELATION COEFFICIENT

- Other possible interpretation, e.g.
 - Cosine similarity of the vectors defined by the observations...
- 0.7 ? Is it a high or low value ?
 - It depends.

NONLINEAR RELATIONSHIPS

Linear relationship Y=a+bX+e

NONLINEAR RELATIONSHIPS

Monotonous, non-linear

NONLINEAR RELATIONSHIPS

Non-monotonous, Non-linear

SPEARMAN'S CORRELATION

- Spearman's rank correlation coefficient
- Assesses how well the relationship between two variables can be described using a monotonic function
 - Not assuming a linear relation
- Pearson correlation coefficient between the rank variables $r_s = \rho_{\mathcal{R}(X),\mathcal{R}(Y)} = \frac{\operatorname{cov}(\mathcal{R}(X),\mathcal{R}(Y))}{\sigma_{\mathcal{R}(X)}\sigma_{\mathcal{R}(Y)}}$

SPEARMAN'S CORRELATION

DESCRIPTIVE STATISTICS

- My advice:
 - Plot the relations
 - Don't believe single-number statistics. Never ever.

WARNING

Correlation is not causation!!!

"People having a Ferrari live longer in average"

• Confounding variable:

- an unobserved variable that affects both the cause being studied (Ferrari) and the effect observed (life expectation)
- =>The main problem of any study. It is impossible (apart from strictly controlled experiments) to avoid this problem.
- => Be careful when drawing conclusions from data

FEATURE SCALING

FEATURE SCALING: WHY

Y Age: 20 Ag m Height: 1.82 He g Weight: 80 000 M

Age: 20

Height: 1.82

Weight: 81 000

Age: 90 Height: 1.50 Weight: 81 000

FEATURE SCALING: WHY

- We want to use euclidean distance to compute the "distance" between 2 people
 - ▶ a= (y:20,m:1.82,g:80 000), b=(y:20,m:1.82,g:81000), c=(y:90,m:1.50,g:80 020)
 - d(a,b)=1000.0005
 - d(a,c)=72.8
 - That is not what we expected from our expert knowledge!
 - We should normalize/standardize data

FEATURE SCALING

. Rescaling (Normalization):
$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$
 :[0,1]

Mean normalization:
$$x' = \frac{x - \operatorname{average}(x)}{\max(x) - \min(x)}$$
: 0=mean

• Standardization (z-score normalization): $x' = \frac{x - \bar{x}}{\sigma}$

O: mean, -1/+1: I standard deviation from the mean

WARNING

- There is no magic recipe!
- Everything cannot be normalized
 - Percentage scores, grades, scores between 0 and 1...
 - You would make low values big.
 - Binary variables (one hot encoded or not)
 - Careful with variables having an "absolute meaning"
 - Number of observations, duration of time, positions, distances, etc.

• In real life:

- Your data does not follow a normal distribution. Nor a power law, nor any other theoretical distribution
- Your features are always correlated
- You always have non-linear relationships

• GIGO: Garbage in, Garbage out

• Real data is always garbage

- Get to know your data
 - Exploratory Analysis

EXPERIMENTS

- Go to the webpage of the class and do today's experiments
- The "Advanced" section is not mandatory, you can do it if you have time