
DATA TRANSFORMATION

DATA TRANSFORMATION
• Our data is provided in a given form

‣ Tabular (vectors)
‣ Network
‣ Time series
‣ Text
‣ Images
‣ ….

• To use the full potential of data mining, you might want to
study it from multiple angles
‣ How to convert from tabular to graph?
‣ From Graph to Tabular?
‣ From images/text to tabular (embedding)?

DIMENSIONALITY
REDUCTION

Low dimensionality embedding

DIMENSIONALITY
REDUCTION

• Data Mining objective: understand our data
‣ We get a dataset composed of many features

- Or worst, complex object (image, sound, graph…)
‣ How to understand the organization of our data?
‣ How to perform clustering?

VISUALIZATION

• Your data is perfectly fine, but you want to intuitively
understand how it is organized
‣ Are there groups of similar objects?
‣ Are my clusters meaningful?
‣ Is my classification/clustering on some types of elements and not others.

VISUALIZATION

CURSE OF DIMENSIONALITY

• Having hundreds/thousands of attributes is a problem for data
analysis.
‣ e.g.: medicine: blood analysis, genomics….
‣ e.g.: cooking recipes: each column an ingredient…

• We want to reduce number of attributes while keeping most
of the information

• Scalability

CORRELATION

• Assume that you have correlated features such as age, height
and weight.
‣ Linear regression will attribute the coefficients somewhat arbitrarily between

them
‣ Decision tree will spend a lot of time choosing between them for no reason

• Dimensionality reduction can create a single variable to
capture what is common
‣ The rest can be lost or captured by another feature,

- i.e., height - average height for that age, “residuals”

PCA

PCA
• PCA: Principal Component Analysis

• Defines new dimensions that are linear
combinations of initial dimensions
‣ Objective: concentrate the variance on some

dimensions
- So that we can keep only these ones.
- Those we remove contain low variance, thus low information

• Similar principle than the Fourier transform
technique for image compression

PCA
• Algorithm:

‣ 1)Find an “axis”, a unit vector defining a line
in the space
- That minimizes the variance=>the squared

distance from all points to that line

• 2)For d in 2-(initial_d)
‣ Find another axis, with two constraints:

- Orthogonal to all previous axis
- Among those, minimizing the variance

• 3)At the end, keep the first k
dimensions
‣ Some information is lost

?
?

?

EXAMPLE PCA 2D

Covariance matrix (original) Covariance matrix (pca)
[1.98675899e+00, 0],
[0, 1.32410092e-02]

1 1 1.98675899 0.01324101

Variance by dimension Variance by dimension

[1. , 0.98675899],
 [0.98675899, 1.]

Sum of variance Sum of variance
2 2

[0.9933795, 0.0066205]Explained variance(ratio)

3D=>2D

CHOOSING COMPONENTS

Explained
variance

• How to choose k?
‣ Elbow method
‣ OR fix beforehand a min threshold of explained variance, e.g.: 80%

- We are fine with losing 20% of information

COMPUTATION IN PRACTICE

• Find the eigenvectors of the covariance matrix of centered
data

• If you want new dimensions, pick the eigenvectors
associated with the largest eigenvalues
‣ Eigenvalues = explained variance

• The eigenvectors corresponding to the top eigenvalues are
coefficients of the linear transformation

k k
k

PCA POPULARITY
• Why is PCA popular?

• Similar reasons than linear regression:
‣ Useful

- Eliminate correlations
‣ Analytical solutions

- Guarantee to find the global minimum of the objective
- Could be done before modern computers

‣ Interpretable solution
‣ Intuitively pleasant

• No reason to consider it “better” than other methods for
demensionality reduction…

NON-LINEAR SITUATIONS

Pearson correlation(d1,d2): 0

NONLINEAR DATA

MANIFOLDS

MANIFOLDS

• Manifolds are another approach to dimensionality reduction

• The general principle is to
‣ 1)Define a notion of distance between elements in the original space
‣ 2)Define a notion of distance between elements in a reduced, target space
‣ 3)Minimize the difference between distances in original and target space

• In many cases, the process is nonlinear, i.e., we choose
distances such as
‣ We care more about preserving the distance for items “close” in space than for

those “far” from each other

MDS
• MDS: Multi-dimensional Scaling:

‣ Simply minimize distance between original space and target space
- e.g., d-dimensional forced to 2-dimensional

• How to do it?
‣ 1)Compute all (squared Euclidean) pairwise distances between

items=>similarity matrix
- n x f matrix => n x n matrix
- Apply double-centering

‣ 2)Compute PCA on this similarity matrix
- PCA preserves column information => preserves distance on a similarity matrix

• Problems:
- Very costly (nb features=nb elements),
- Try to preserve all distances, therefore extremely constrained

n2

MDS

ISOMAP
• Variation of MDS

‣ 1)We define a graph such as two elements are connected if they are at
distance<threshold. (Alternative: fixed number of neighbors)
- Put a weight on edges=euclidean distance

‣ 2)Compute a similarity matrix, such as distance = weighted shortest path
distance

‣ 3)Apply MDS on it

• Computing shortest paths on a graph is (relatively) fast
‣ Floyd–Warshall algorithm

T-SNE

T-SNE

• t-SNE : t-distributed stochastic neighbor embedding

• Non-linear dimensionality reduction

• Currently the most popular method for visualizing data in low
dimensions

T-SNE

• General principle:
‣ Define a notion of similarity in the high dimensional space

- Based on normal distribution
‣ Define a notion of similarity in the low dimensional space

- Based on student-t distribution, tends to “exaggerate” differences
‣ For each point of initial coordinates , find a new coordinate in the lower

dimensional space, such as to minimize the difference between and
-

pj|i P

qj|i Q

xi yi
P Q

∀i, j pj|i ≈ qj|i

SNE

• Distance in the original space
‣ To compute how far is from , consider a normal distribution centered in

with variance

‣ Mathematically: the raw distance is given as

‣

- Normalizes the similarity by sum of similarity to all other points.
- With proper , local definition of similarity

P
j i j

σ

sP
j|i = e−

∥xi − xj∥
2

2σ2

pj|i =
sP
j|i

∑k≠i sP
j|k

σ

i

i

Euclidean

Normal

T-SNE: PERPLEXITY

• There is a perplexity parameter : it controls how much each
point cares more about close neighbors compared with
farther neighbors
‣ Low : Preserve mostly local distances
‣ High : Give more importance to long-range distances

- More expensive, more similar to MDS

σ

σ
σ

INFLUENCE OF PERPLEXITY

LOW DIMENSIONAL
EMBEDDINGS

EMBEDDINGS

• A recent usage of low dimensional embeddings is to encode
complex objects as vectors
‣ Words as Vector => Word2Vec
‣ Nodes (of graph) as Vectors => Node2Vec
‣ Documents as Vectors => Doc2Vec
‣ ….

WORD EMBEDDING

WORD EMBEDDING

• Words can be understood as a (very) high dimensional space
‣ Using One Hot encoding: vocabulary of 1000 words=>1000 columns

• Could we assign a vector in “low dimension”, encoding the
“semantic” of a word?
‣ Two words with similar meanings should be close

SKIPGRAM
Word embedding

Corpus => Word = vectors
Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]
36

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b37

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b38

N=embedding size. V=vocabulary size

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
39

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
40

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

PRE-TRAINED

• You can train word2vec on your own dataset, but it needs to
be large enough (and its costly)
‣ https://radimrehurek.com/gensim/models/word2vec.html

• You can use pre-trained embeddings, trained on enormous
corpus (Twitter, Wikipedia…)
‣ e.g., Glove: https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

USAGE

• Single words=> Use directly vectors

• Short texts=> Weighted average vectors (more weights to
more important words, e.g., rare words: TF-IDF…)

• Long texts=> More tricky. Need other approaches (Doc2vec,
RNN)

USAGE

• Parameters:
‣ Embedding dimensions d
‣ Context size

GRAPH EMBEDDING

GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with interesting properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

45

DEEPWALK

• Skipgram for graphs:
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters:
‣ Same as Skipgram

- Embedding dimensions d
- Context size

‣ Parameters for “sentence” generation: length of random walks, number of walks
starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

46

NODE2VEC
• Use biased random walk to tune the context to capture

what we want
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM. 47

OBJECTS/VECTORS
TO

GRAPHS

GRAPH<->VECTORS

• Graph Embedding: Graph->Vectors

• What about Vectors->Graphs
‣ Simple approach: Correlation matrix
‣ =>Represent the relations between features in a dataset

- 1)Compute the correlation between all variables(spearman/Pearson)
- 2)Keep only correlations above a threshold
- 3)Correlation values can be represented as weights

ITEM-ITEM GRAPH

• We can use graphs as an alternative to dimensionality
reduction for visualization
‣ PCA / tSNE: project items in 2D, close items are similar

- Some impossibilities, e.g., multiple semantics for workds (“palm”: part of the hand, tree)
‣ Networks can also be viewed in 2D and preserve the similarity information

• Approach:
‣ 1)Compute the distance between elements

- Euclidean
- Cosine (in recommendation settings for instance)

‣ 2)Keep as an edge values above a threshold

ITEM-ITEM GRAPH

ITEM-ITEM GRAPH
• Typical application case: Brain signal analysis

‣ Distance is computed as signal correlation on fMRI, i.e., regional brain activity
‣ => Time series to graph

BACKBONE EXTRACTION

• In some cases, the network created might be too dense to be
analyzed properly
‣ Too low threshold: everything is connected
‣ Too high: disconnected graph, most elements removed

• A solution is to use Backbone extraction
‣ Methods that retain only the most important edges, based on different

principles
‣ e.g., https://gitlab.liris.cnrs.fr/coregraphie/netbone

https://gitlab.liris.cnrs.fr/coregraphie/netbone

BACKBONE EXTRACTION

PROJET

CRÉER UN “DASHBOARD”
Avec des visualizations sur mesure

DASH

• Librairie python pour créer des dashboards d’analyse de
données
‣ Il existe des outils ne nécessitant pas de code (Power BI, Tableau, Google data

Studio, OBIEE…)

• Dash permet potentiellement de faire des choses beaucoup
plus personnalisées
‣ Mais requiert de programmer :)

OBJECTIF

• Créer un Dashboard de données réelles
‣ Choisissez un jeu de données simple.
‣ Faites une visualization sous forme de dashboard de quelques aspects

• Prochain cours: tutoriel dash
‣ Faire un graphe
‣ Une carte avec des points
‣ Une distribution
‣ Un clustering

