NETWORK DATA MINING



NETWORKS/GRAPHS

» Some data are not (only) “tabular”.
» [tems can have features that characterize them

=" [Ferson: age, gender, efc.
» [tems also are linked/related to other items

- This cannot be represented as a feature
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Materials

Pop-science books

"Actgssibla and engaging A good introdustion to the topic.” —Nature
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/i The/New Science
of Nétwo'r_ks
g ) \ {H

e e
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SMALL WORLDS and the '
Groundbreaking
SCIENCE OF NETWORKS
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A-CONNECTED AGE

WITH ATNEW,CHAPTER

DUNCAN 'Ju WATTS

' How Everything is Connected to Everything Else

~—KIRKUS REVIEWS

r r r -
Albert-Laszlo Barabasi
NICHOLAS A. CHRISTAKIS, MD, PhD

AND JAMES H. FOWLER, PhD I

Guido Caldarelli & Michele Catanzaro

NETWORKS
A Very Short |lj|tl'0gl{?ti0n — “’." ;
i > *

_
Connecdcted
THE UNIVERSAL

The Surprising Power of Our Social Networks LAws 0 F s u c c Es s

and How They Shape Our Lives

< THE SCIENCE BENIND WHY PLOPLE SUCCEED O FAILD
OXFORD

Copyrighted Material Cagyrightd Matorol

I have a copy I can lend



GRAPHS & NETWORKS

Networks often refers to real systems
" WWW,

»social network

* metabolic network.

- Language: (Network, node, link)

Graph is the mathematical
representation of a network
*Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

N

person | friendship

neuron | synapse
Website | hyperlink
company jownership
gene | regulation



NETWORK REPRESEN TATIONS

Networks: Graph notation

Graph notation: G = (V, F)
Vv set of vertices/nodes.
E set of edges/links.
u eV a node.
(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V =1{1,2,3,4,5,6}
E={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5), (5,5), (4,3)}




GRAPH REPRESENTATION

Node-Edge description

Neighbourhood of u, nodes sharing a link with w.

Degree of u, number of neighbors | N, |.

Successors of u, nodes such as (u,v) € FE in a directed
graph

Predecessors of u, nodes such as (v, u) € FE in a directed
graph

Out-degree of u, number of outgoing edges | N2**|.
In-degree of u, number of incoming edges | N" |

Weight of edge (u, v).

Strength of u, sum of weights of adjacent edges, s, =

Dy Wuw.




Node degree

Number of connections of a node
« Undirected network

* Directed network

2 0
1 \
In degree

1 1

1
. N\,
Out degree




o Vi

Counting nodes and edges

size: number of nodes |V |.
number of edges | E|
Maximum number of links

N
2

Undirected network: (

— N(N —1)/2
)

Directed network: (




DENSITY

Network descriptors 1 - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically
(k) < mn. Increases slowly with network size, eg., d ~

log(m)

(k) = ="

Density: Fraction of pairs of hodes connected by an edge in
G.

0h = Jb D




#nodes ~__Densite  Deg. Moyen
Wikipedia ~ 15x105 30

.........................................................................................................................................................................

Twitter 2015  1.4x106 416

.........................................................................................................................................................................

Facebook | - 4x109 570

Brain c. 0.16 46

.........................................................................................................................................................................

Roads Calif. | - ex107 27

.........................................................................................................................................................................

Airport 0,007 21

Attention: Densite difficile a comparer entre des
oraphes de tallle différente



SUBGRAPHS

&
s

Figure after Newman, 2010

Clique: subgraph withd = 1

Triangle: clique of size 3

Connected component. a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph



DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

>

P(V) (humber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)



CLUSTERING COEFFICIENT

* Clustering coefficient or triadic closure

* Iriangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles Is a big difference between real and random networks



CLUSTERING COEFFICIENT

C'.. - Node clustering coefficient: density of the subgraph induced by the

neighborhood of u, C',, = d(H (N, ). Also interpreted as the fraction of all

possible triangles in N, that exist, %

u

O
U O Triangles=2
4
Possible triangles= <2> =6
Edges: 2 C,=2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3




Rl RELAITED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

¢, .- Distance: The distance between nodes wu, v is the length of the short-
est path




PATH RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
W = n(n — 1) ;dij




AVERAGE PATH LENGITH

* The famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

* Not too sensible to noise

» Tells you If the network Is “'stretched” or “hairball” like



SIDE-STORY: MILGRAM
EAPERIMENTS

B lROrid experiment (60's) | EEEEEEEE \

' ' : North Dakota y
» Give a (physical) mail to random people T

» Ask them to send to someone they don't know =
- They know his city, job

» They send to their most relevant contact

* Results: In average, 6 hops to arrive

Texas




SIDE-STORY: MILGRAM
EAXPERIMENTS

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web



SIDE-STORY: MILGRAM
EAXPERIMENTS
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SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

+ Average distance must be short, i.e., (£) =~ log(N)

-+ Clustering coefficient must be high, i.e.,, much larger than in a ran-
dom network , e.g., C? > d, with d the network density



FARNESS, CLOSENESS



FARNESS, CLOSENESS

* How close the node Is to all other nodes

» Parallel with the center of a figure:

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighted




FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

Farness(u):N . Z Lo ,v



EEOSENESS CEN TRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =

| e il 11
C.(i) = =— =0.55

Bx1+7%x2+1x%x3) 20



EEOSENESS CENTRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other

nodes in term of shortest paths. AmsterdamPart_CLS_nolimit

Closeness
I 0.000000
N —1
ClOSGI’]eSS(u) = [ 0,000001 - 0,000000
Zv eViu lu U 0,000001 - 0,000000

0,000001 - 0,000000
\ 0,000001 - 0,000000
W Ve I 0.000001 - 0,007673
= I 0007674 - 0034569

I=dll hodes are at distance one

Kilometers




BE TWEENNESS CENTRALITY

* Measure how much the node plays the role of a bridge

* Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cr (”U) . Z Ust(v)

sFvAteEV O st

with os: the number of shortest paths between nodes s and t and o5+ (v)
the number of those paths passing through wv.

The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: C'X™ (v) = (ijﬁ((ﬁ)_z)-




Betweenness Centrality

Cp(v) = Z 75(v)

Ost

sHEvAtEV
: . ,~ynorm i Cp)
directed graph: C5"" (v) = i (N =)

5% 6+1+-+= 64
Coltt) = 2 E i
11*10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity



BE TWEENNESS CENTRALITY
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EDGE - BETWEENNESS

Same definition as for nodes

R B8 N .l 23 3 N
" By |
- n i
{ TRIZ

? | .' G N YO\/E,ﬁU K ROMANIA '

Can you guess the edge of o ’].! b P
highest betweenness In “A P " \l D
the European rail network ¢ R “tr R . N




RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

* Recursive iImportance:
» Important nodes are those connected to important nodes

« Several centralities based on this idea:

» Eigenvector centrality
» PageRank



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» If every node “sends’’ its score 1o 1ts neighbors, the sum of all scores received
oy each node will be equal to Its original score

@i — i el (1)

& i A 2 normalisation constant



RECURSIVE DEFINITION

» I his problem can be solved by what s called the power
method:

» |) We initialize all scores to random values

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!

» Perron-Frobenius theorem (see next slide)
» =>]rue for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

* What we just described Is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a column vector of size n, which can be interpreted as the scores of nodes

* What Perron-Frobenius algorithm says is that the power
method will always converge to the leading eigenvector, I.e., the
elgenvector associated with the highest eigenvalue



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) o b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree)

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PAGERANK

* 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even If that Is their only in-coming link)
- =>What each node "is worth" Is divided equally among its neighbors (normalization by the

degree)
oL Lz ok t4+1 C,
(0 S A\ v St > CU T Z out + B

UEN’I?:Ln UEN&TL v

With by convention =1 and a a parameter (usually 0.85) controlling the
relative importance of f



PAGERANK

* Then how do Google rank when we do a research!?

» Compute Pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
“Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



Which i1s which ?

v v

- [Deoges

/ ustermg coefficient
Closeness

Betweenness
Figenvector
PageRank



Which i1s which ?

P . Degree
s coefficient
* Closeness

Betweenness

VA Figenvector
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COMMUNITY DETECTION
(GRAPH CLUSTERING)



EOMMUNITY DE | EC THEHS.

» Community detection Is equivalent to “clustering” in
unstructured data

» Clustering: unsupervised machine learning

» Find groups of elements that are similar to each other
- People based on DNA, apartments based on characteristics, etc.

» Hundreds of methods published since 1950 (k-means)
» Problem: what does “similar to each other’ means !



EOMMUNITY DE | EC THEHS.

¢ S

» Community detection: »

» FIind groups of nodes that are:
- Strongly connected to each other
- Weakly connected to the rest of the network
- |deal form: each community is |)A clique, 2) A separate connected component

» No formal definition
» Hundreds of methods published since 2003



COMMUNITY STRUCTURE IN
REAL GRAFES

* If you plot the graph of your facebook friends, it looks like this

cluster

® NYU
® EUI
© UPF

® MA
@ Caixa
® NYC
® Others




COMMUNITY STRUCTURE IN
REAL GRAFTS

« Connections In the brain ?

A

O = Occipital

O = Central

O = Frontoparietal
@ = Default mode
[] = Rich club

Deactivations




COMMUNITY STRUCTURE IN
REAL GRAFTS

* Phone call communications in Belgium ?




FIRST METHOD BY GIRVAN &
NEWMAN

» | )Compute the betweenness of all edges
 2)Remove the edge of highest betweenness

» 3)Repeat untll all edges have been removed

» Connected components are communities

« => |t Is called a divisive method
* =>What you obtain Is a dendrogram

BEIEWATO cut this dendrogram at the best level ¢



NEWMAN

Cluster Dendrogram
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FIRST METHOD BY GIRVAN &
NEWMAN

* Introduction of the Modularity

* The modularity 1s computed for a partition of a graph

» (each node belongs to one and only one community)

* [t compares :
» The observed fraction of edges inside communities

» To the expected fraction of edges inside communities In a random network



MODULARITY

Original formulation



MODULARITY

Sum over all pairs of nodes



MODULARITY

— A’U'w — | ) )

| It In same community



MODULARITY

| If there Is an edge between them



MODULARITY

Probability of an edge In
a configuration model
(Edges at random, keeping degrees)



MODULARITY

* Modularity compares the observed network to a null
model

» Usually the configuration model (degree preserving random graphs)
- Multi-edges and loops are allowed
» Other models could be used, such as ER random graphs (fully random)

» Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN &
NEWMAN

* Back to the method:

» Create a dendrogram by removing edges
» Cut the dendrogram at the best level using modularity

* =>|n the end, your objective Is... to optimize the Modularity,
right ¢

* Why not optimizing it directly !



LOUVAIN ALGORITHM

» Greedy approach
» Each node start in its own community

 Repeat until convergence

» FOR each node:

SRR WIRSecch nelghbor:
if adding node to its community increase modularity, do it

* When converged, create an induced network

» Each community becomes a node
» Edge weight Is the sum of welights of edges between them

* [rick: Modularrty 1s computed by community

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



LOUVAIN ALGORITHM

Move nodes

Level 1
Level 2
Mave nadec

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



OCHAS 11C BLOCK MOE S

» Stochastic Block Models (SBM) are based on statistical models
of networks

» Likelihood maximization of observing the graph given a model

* [he model Is;

» Each node belongs to | and only | community (blocks)

» [o each pair of communities, there Is an associated density (probability of each
SCek e 24y



OCHAS 11C BLOCK MOE S

B EIRCan represent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

Adjacency Matrix Blockmodel Graph Adjacency Matrix Blockmodel
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OCHAS 11C BLOCK MOE S

» General Idea of SBM community detection:

» Specify the desired number of cluster
» Find parameters to optimize the maximum likelihood

- Principle: The best parameters are those that allow to generate the observed network with
the highest probability

» Main weakness of this approach

» Number of clusters k must be specified (avoid trivial solution)
» MDL (Minimum Description Length) approaches exist to find automatically k



EVALUATION OF
COMMUNITY STRUCTURE



EVALUATION

* Similar to clustering:

» Intrinsic/Internal evaluation
- Partrtion quality function
- Individual Community quality function
» Comparison of observed communities and expected communities

- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION

» Partition quality function
» Already defined: Modularity, graph compression, etc.

» Quality function for individual community

» Internal Clustering Coefficient

| Epye |
t
B Eondlciance: =
|E0ut|+|Ein| | E |5
- Fraction of external edges # of links to nodes inside

(respectively, outside) the
community



