GEPHI - NETWORK SCIENCE



WHO AM |

» Remy Cazabet

e Oalic Prolessor (Maltre de conferences)
» Universite Lyon |
» LIRIS, DM2L Team (Data Mining & Machine Learning)

» Computer Scientist => Network Scientist

* Member of |XX]

» Contact me: remy.cazabet@univ-lyon | ir

* http://cazabetremy.fr
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OUTLINE

* Introduction to network science

» Using Gephl



GEPHI

» A software for network visualisation and basic analysis

» Several other software exists but less options
» Gephi (UTC Compiegne, science po, ..=> International)
» Cytoscape (Seattle => International)
» Tulip (bordeaux)

* Libraries in programming languages

» Networkx, igraph, graph-tools, etc.



EOMPLEX NETWORISS

WHAT?
VWHY?
WHY NOW?
WHAT FOR?




EOMPLEX SYS TERS

- Complex systems: Systems composed of multiple parts
in interactions

- Complex networks model the interactions between the parts

» A common framework applicable to many systems
» =>Many networks share similar characteristics
» =>Similar processes shape the networks
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Materials

Pop-science books

"Actgssibla and engaging A good introdustion to the topic.” —Nature

S1X

DEGREES

Albert-Laszlo
Barabasi

/i The/New Science
of Nétwo'r_ks
g ) \ {H

e e

A

SMALL WORLDS and the '
Groundbreaking
SCIENCE OF NETWORKS

THE SCIENCEOF
A-CONNECTED AGE

WITH ATNEW,CHAPTER

DUNCAN 'Ju WATTS

' How Everything is Connected to Everything Else

~—KIRKUS REVIEWS

r r r -
Albert-Laszlo Barabasi
NICHOLAS A. CHRISTAKIS, MD, PhD

AND JAMES H. FOWLER, PhD I

Guido Caldarelli & Michele Catanzaro

NETWORKS
A Very Short |lj|tl'0gl{?ti0n — “’." ;
i > *

_
Connecdcted
THE UNIVERSAL

The Surprising Power of Our Social Networks LAws 0 F s u c c Es s

and How They Shape Our Lives

< THE SCIENCE BENIND WHY PLOPLE SUCCEED O FAILD
OXFORD

Copyrighted Material Cagyrightd Matorol

I have a copy I can lend



GRAPHS & NETWORKS



GRAPHS & NETWORKS

Networks often refers to real systems
" WWW,

»social network

* metabolic network.

- Language: (Network, node, link)

Graph is the mathematical
representation of a network
*Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

N

person | friendship

neuron | synapse
Website | hyperlink
company jownership
gene | regulation



GRAPH
REPRESENTATION



NETWORK REPRESEN TATIONS

Networks: Graph notation

Graph notation: G = (V, F)
Vv set of vertices/nodes.
E set of edges/links.
u eV a node.
(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V =1{1,2,3,4,5,6}
E={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5), (5,5), (4,3)}




Types of
Networks



Undirected networks

Opte project

G=(V E)
(uv) €EE=(Hvu €L

* The directions of edges do
not matter

* Interactions are possible
between connected entities
In both directions

117
207.205.25!

The Internet: Nodes - routers, Links - physical wires



Directed networks

Moritz Stefaner, eigenfactor.com

G=(V E)
(u,v) EE =z (vu) €EE

* The directions of
edges matter

* Interactions are
possible between
connected entities
only in specified
directions

\ Citation network: Nodes - publications, Links - references



http://eigenfactor.com

Weighted networks

Onnela et.al. New Journal of Physics 9, 179 (2007).

G=(V E, w)
w: (u,v) EE=R

- Strength of
Interactions are
assigned by the
weight of links

o
a¥-e
So00!

®e

Social interaction network: Nodes - individuals
Links - social interactions




Bipartite network

® O

Disease
Gene
Up-reg.
Dn-reg.

<

P AP o 0

2881

. Emﬂh 62

Genes (mostly up-regulated) by
SLE, FSGS, and MGN

Genes (mostly down-regulated) by
SLE, FSGS, MGN, and IgAN

" |gAN /
=2 /AN SN
Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3

Gene-desease network:
Nodes - Desease (7)&Genes (747)
G=(U, V, E) Links - gene-desease relationship

GaYy—o
Vuv)EE ucUandveEV



Multiplex and multilayer networks

G=(V E), i=1..M

* Nodes can be present in
multiple networks
simultaneously

* These networks are
connected (can influence
each other) via the
common nodes

=

=

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

[Mendez-Bermudez et al. 2017]



Temporal and evolving networks
G=(V, Ey), (uvt,d) € E;

t - time of interaction (u,Vv)
d - duration of interaction (u,v,t)

* Temporal links encode time varying interactions

G=(Vs, Er)
v(t) €V
(M,V,O EEt

» Dynamical nodes and
links encode the
evolution of the
network

Mobile communication network
Nodes - individuals
Links - calls and SMS



NETWORK REPRESEN TATIONS

Node-Edge description

Neighbourhood of u, nodes sharing a link with w.

Degree of u, number of neighbors | N, |.

Successors of u, nodes such as (u,v) € FE in a directed
graph

Predecessors of u, nodes such as (v, u) € FE in a directed
graph

Out-degree of u, number of outgoing edges | N2**|.
In-degree of u, number of incoming edges | N" |

Weight of edge (u, v).

Strength of u, sum of weights of adjacent edges, s, =

Dy Wuw.




Node degree

Number of connections of a node
« Undirected network

* Directed network

2 0
1 \
In degree

1 1

1
. N\,
Out degree




Weighted degree: strength




BESCRIPTION OF GRAFES



DESCRIPTION OF GRAPHS

* When confronted with a graph, how to describe it/
* How to compare graphs?

* What can we say about a graph!?



o Vi

Counting nodes and edges

size: number of nodes |V |.
number of edges | E|
Maximum number of links

N
2

Undirected network: (

— N(N —1)/2
)

Directed network: (




Wikipedia HL
Twitter 2015
Facebook 2015
Brain c. Elegans
Roads US
Airport traffic

o Vi

#nodes (n)

#edges (m)




DENSITY

Network descriptors 1 - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically
(k) < mn. Increases slowly with network size, eg., d ~

log(m)

(k) = ="

Density: Fraction of pairs of hodes connected by an edge in
G.

0h = Jb D




DENSITY

#nodes | #edges | Density |
Wikipedia  1.5x105 30

.........................................................................................................................................................................

Twitter 2015 O 6 416

.........................................................................................................................................................................

Facebook | | 5 - | 570

Brain c. | 46

.........................................................................................................................................................................

Roads Calif. . - D7

.........................................................................................................................................................................

Airport | 21

Beware: density hard to compare between
oraphs of different sizes




DENSITY

* It has been observed that: [Leskovec. 2006]

» When graphs increase In size, the average degree increases
- (Density on the contrary, decreases)
» This increase Is very slow

* Think of friends In a social network

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations." Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining. 2005.



DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

>

P(V) (humber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)



DEGREE DISTRIBUTION

* In a fully random graph (Erdos-Renyi), degree distribution is
(close to) a normal distribution centered on the average
degree

* In real graphs, In general, it I1s not the case:

» A high majority of small degree nodes
» A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law
» More detalls later in the course



To Be or Not to Be Scale-Free

Scientists study complex networks by looking at the distribution of the number of links (or “degree”) of each node.

Some experts see so-called scale-free networks everywhere. But a new study suggests greater diversity in real-world networks.

Random Network o Twitter’s Scale-Free Network o Facebook's In-Between Network
Randomly connected networks have nodes with Most real-world networks of interest are not random. Researchers have found that most nonrandom
similar degrees. There are no (or virtually no) “hulos” — Some nonrandom networks have massive hulbs networks are not strictly scale-free. Many have
nodes with many times the average number of links. with vastly higher degrees than other nodes. a weak heavy tail and a rough characteristic scale.

The median active user
has about 60 followers.

The medion ——
Facebook user

has about 200
friends.

Most nodes

have a few A few have

links. Some users have millions Facebook's limit
of followers, forming enormous hubs. RN of 5,000 friends.
The distribution of degrees is shaped roughly The degrees roughly follow a power law distribution This network has fewer and smaller hubs than
like a bell curve that peaks at the network’s that has a “heavy tail.” The distribution has no in a scale-free network. The distribution of nodes
“characteristic scale.” characteristic scale, making it scale-free. has a scale and does not follow a pure power law.
Most nodes have a Most nodes have a low degree. Most nodes have a low
T degree close to the T T degree and most users
» characteristic scale. ” ” cluster near the median.
c : :
2 No nodes 2 2
o of very high 5 Giant hubs form o)
o degree. o a heavy tail. o The tail is weak.
o0 @ A @ l
: | = ( 1 :
2 ( ) o) - 1
z z z
0 DEGREE 15 0 FOLLOWERS Millions 0 FRIENDS 5,000

—_—> B
[Quanta magazine 201 8]




DEGREE DISTRIBUTION

* T his has important implications:

» There is no “scale’ In the degree: the average degree Is not representative

» It 1s not realistic to use “random graphs” (ER) for evaluating algorithms
performance



SUBGRAPHS

Subgraphs

Subgraph H (W) (induced subgraph): subset of nodes W of a graph
G = (V, E) and edges connecting them in G, i.e, subgraph H(W) =
(W,E",W C V,(u,v) € B/ < u,ve WA (u,v) €E

Clique: subgraph with d = 1

Triangle: clique of size 3
Connected component. a subgraph in which any two vertices are con- @
nected to each other by paths, and which is connected to no additional ver-

tices in the supergraph @
Strongly Connected component: In directed networks, a subgraph in which

any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which Figure after Newman, 2010
any two vertices are connected to each other by paths if we disregard di-

rections

A AN

Q O O
VARSI

original graph A X

not an induced subgraph

After “A. DZY Loves Physics”



CLUSTERING COEFFICIENT

 Clustering coefficient or triadic closure

* Iriangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles Is a big difference between real and random networks



CLUSTERING COEFFICIENT

Triangles counting

9., - triads of u: number of triangles containing node u
A - number of triangles in the graph total number of triangles in the graph,

A = % D uey Ou

Each triangle in the graph is counted as a triad once by each of its nodes.

6, - - triads potential of u: maximum number of triangles that could exist

around node u, given its degree: §,'** = 7(u) = (kg)

A™** - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: A™#* = £ 3~ . §™%*(u)




CLUSTERING COEFFICIENT

C'.. - Node clustering coefficient: density of the subgraph induced by the

neighborhood of u, C',, = d(H (N, ). Also interpreted as the fraction of all

possible triangles in N, that exist, %

u

O
U O Triangles=2
4
Possible triangles= <2> =6
Edges: 2 C =2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3




EEUS | ERING COERFICIERNSS

(C') - Average clustermg coefficient: Average clustering coefficient of all
nodes in the graph, C = + > uwecv C

Be careful when interpreting this value, since all hodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C' value is very sensitive, i.e., for a node u of de-
gree 2, C,, € 0,1, while nodes of higher degrees tend to
have more contrasted scores.

C'9 - Global clustering coefficient: Fraction of all possible triangles in the

graph that do exist, C9 = <35



CLUSTERING COEFFICIENT

e Global CC:

» In random networks, GCC = density
- =>very small for large graphs
» Facebook ego-networks: 0.6

» Twitter lists: 0.56
» California Road networks: 0.04



Rl RELAITED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

¢, .- Distance: The distance between nodes wu, v is the length of the short-
est path




PATH RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
W = n(n — 1) ;dij




AVERAGE PATH LENGITH

* The famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

* Not too sensible to noise

» Tells you If the network Is “'stretched” or “hairball” like



SIDE-STORY: MILGRAM
EAPERIMENTS

B lROrid experiment (60's) | EEEEEEEE \

' ' : North Dakota y
» Give a (physical) mail to random people T

» Ask them to send to someone they don't know =
- They know his city, job

» They send to their most relevant contact

* Results: In average, 6 hops to arrive

Texas




SIDE-STORY: MILGRAM
EAXPERIMENTS

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web



SIDE-STORY: MILGRAM
EAXPERIMENTS

1251 |
|
|
| Mean = 3.57
|
31 001 :
-
O
E |
&
()
wn
-]
S 50-
o
O
(D)
(&)
Q]
L 25
25 27 29 31 33 35 37 39 41 43 45 47
Average degrees of separation
T — e

Facebook



SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

+ Average distance must be short, i.e., (£) =~ log(N)

-+ Clustering coefficient must be high, i.e.,, much larger than in a ran-
dom network , e.g., C? > d, with d the network density

More on this during the random network class



GRAPHS AS
PIATRICES

Matrices in short

Matrices are mathematical objects that can be thought as tables of hum-

bers. The size of a matrix is expressed as m X n, for a matrix with m rows
and n columns. The order (row/column) is important.
M, ; is a notation representing the element on row m and column j.




AD|ACENCY MATRIX

The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is defined as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from 1to IV, and there is an
edge between nodes ¢ and j if the corresponding position of the matrix A; ;
is not 0.

- A value on the diagonal means that the corresponding node has a
self-loop

- the graph is undirected, the matrix is symmetric: A;; = A;; forany
i,7.
-+ In an unweighted network, and edge is represented by the value 1.

- In a weighted network, the value A;; represents the weight of the
edge (4, 5)

A - Adjacency Mat.

(O 1 0 0 1 1\
1 0 1 1 1 1
O 1 0 1 0 O
0O 1 1 0 0 O
1 1 0 0 1 1
\1 1 0 0 1 O/




ADJACENCY MATRIX

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

Multiplying A by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A,?j corresponds to the number of

walks of length 2 from node i to node j, Ag’j to the number of walks of
length 3, etc.

Multiplying A by a column vector W of length 1 x N can be thought as
setting the 7 th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W. This is convenient when working with random walks
or diffusion phenomenon.

Graph

A - Adjacency Mat.

0O 1 0 0 1 1

1 0 1 1 1 1

0O 1 0 1 0 o

O 1 1 0 0 o

1 1 0 0 1 1

1 1 0 0 1 O

A2

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3




ADJACENCY MATRIX

)

~

O O O - O O
- O - O O
O O —-H O -
O - O - O O
- O - O - O
O - O O = O
N— ____

AN =

A AX

)
/

X4

/
6 —

Xy + X4
xl+X3+x5
X3 =Xy + x4

X

/
1 =

X

Labeled graph

Xy = X3 + X5 + Xg
Xs =X+ X5+ X4

T—
(

X
\

—

—
(0100 1 0)
101010
010100
0010 1 1
110100
\0 0 0 10 0/

—

AX=



EXEMPLE OF GRAPH
FUNALTSIS

» Source: [ The Anatomy of the Facebook Social Graph, Ugander
st a2l 2400 HE

» The Facebook friendship network in 201 |



EXEMPLE OF GRAPH
FUNALTSIS

» /21 M users (nodes) (active in the last 28 days)
e cdoes
» Average degree: |90 (average # friends)

B dldnidecree: 99

B shinccied component: 99.9 1 7%



cXEMPLE OF GRAPH
ANALYSIS

1e+06
|

1e+04
l

Component size
Distribution

Number of components

1e+02
I

1e+00 1e+02 1e+04 1e+06 1e+08
Component size

1e+00

T — -8



Fraction

EXEMPLE OF GRAPH
FUNALTSIS

- o
o o
| = + —
L L.
S _

gl o)
(b}
. ISR

O 1 —

o O
8 =
o P

'q|-) p—
— Global — Global
c'T: --- US. g?r --- US.
2 1 1 1 2 1
1 5 50 500 5000 1 5
Degree Degree
(a) (b)
Cumulative

Degree distribution



EXEMPLE OF GRAPH
FUNALTSIS

T o
O W —
o O
D
o
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o ©
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h —d
Q
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-----

- [\lean
- == 5/95th Pct

I |
20 50 200
Degree

|
1000

|
5000

Clustering coefficient
By degree

Median user: 0. | 4:

| 496 of users with a common
friend are friends



EXEMPLE OF GRAPH
FINALTSIS

|

800 1000

l

l

Neighbor’s average degree

200 400 600
I

0
l

e Actual
----- Random

- Diagonal

B
\<

I I

friends

0 e Degree 10
g — === Degree 50
Degree 100
=== Degree 500
................................ - B - Random edge
I I I I g i | [ I I I
0 200 400 600 800 1000 1 5 50 500 5000
Degree Neighbor’s degree
e SABRISIAS Many of my friends have the
| :
NEARARIS Same # of friends than me!

Friends t




Fraction
0.00 0.05 0.10 0.15 0.20

EXEMPLE OF GRAPH
FUNALTSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

(More ReXiaEE

20 40 60 80 100
Neighbor’s age




EXEMPLE OF GRAPH
ANALYS\S

g%

Country similarity

84.2% percent of edges are

within countries

(More In the comirmiSiiis
detection class)




WEBSITE

http://cazabetremy.ir



Centrality
measures




NODE

- We can measure nodes importance using so-called
centrality.

* Poor terminology: nothing to do with being central in general

Qicaoe:
» Some centralities have straightforward interpretation

» Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)



NODE DEGRES

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

< et

* But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

ST



NODE CLUSTERING
COEFFICIENT

- Clustering coefficient: density of neighborhood
» ells you If the neighbors of the node are connected

* Be careful!

» Degree 2:value O or |
» Degree 1000: Not O or | (usually)
» Ranking them is not meaningful

- Can be used as a proxy for “communities’ belonging:

» If node belong to single group: high CC
» If node belong to several groups: lower CC



PERINESS, CLOSENESS
HARMONIC CENTRALITY



FARNESS, CLOSENESS

* How close the node Is to all other nodes

» Parallel with the center of a figure:

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighted




FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

Farness(u):N . Z Lo ,v



EEOSENESS CEN TRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =

| e il 11
C.(i) = =— =0.55

Bx1+7%x2+1x%x3) 20



EEOSENESS CENTRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other

nodes in term of shortest paths. AmsterdamPart_CLS_nolimit

Closeness
I 0.000000
N —1
ClOSGI’]eSS(u) = [ 0,000001 - 0,000000
Zv eViu lu U 0,000001 - 0,000000

0,000001 - 0,000000
\ 0,000001 - 0,000000
W Ve I 0.000001 - 0,007673
= I 0007674 - 0034569

I=dll hodes are at distance one

Kilometers




Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of
the inverse of distance to all other nodes (Harmonic mean). Well defined
on disconnected network with é = 0. Its interpretation is the same as the

closeness.
1

1
Harmonic(u) = ——— D
o veV\u

U,V




BE TWEENNESS CENTRALITY

* Measure how much the node plays the role of a bridge

* Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cr (”U) . Z Ust(v)

sFvAteEV O st

with os: the number of shortest paths between nodes s and t and o5+ (v)
the number of those paths passing through wv.

The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: C'X™ (v) = (ijﬁ((ﬁ)_z)-




Betweenness Centrality

Cp(v) = Z 75(v)

Ost

sHEvAtEV
: . ,~ynorm i Cp)
directed graph: C5"" (v) = i (N =)

5% 6+1+-+= 64
o) = 2 =
11*10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity
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EDGE - BETWEENNESS

Same definition as for nodes

R B8 N .l 23 3 N
" By |
- n i
{ TRIZ

? | .' G N YO\/E,ﬁU K ROMANIA '

Can you guess the edge of o ’].! b P
highest betweenness In “A P " \l D
the European rail network ¢ R “tr R . N




RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

* Recursive iImportance:
» Important nodes are those connected to important nodes

« Several centralities based on this idea:

» Eigenvector centrality
» PageRank



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» If every node “sends’’ its score 1o 1ts neighbors, the sum of all scores received
oy each node will be equal to Its original score

@i — i el (1)

& i A 2 normalisation constant



RECURSIVE DEFINITION

» I his problem can be solved by what s called the power
method:

» |) We initialize all scores to random values

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!

» Perron-Frobenius theorem (see next slide)
» =>]rue for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

* What we just described Is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a column vector of size n, which can be interpreted as the scores of nodes

* What Perron-Frobenius algorithm says is that the power
method will always converge to the leading eigenvector, I.e., the
elgenvector associated with the highest eigenvalue



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) o b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree)

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-“[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[...], we expect that advertising funded search engines will be inherently biased towards the
advertisers and away from the needs of the consumers.”



PageRank Centrality

& cle hotes)

& Sergey Brin received his B.S. degree in mathematics and computer science

" from the University of Maryland at College Park in 1993. Currently, he is a
Ph.D. candidate in computer science at Stanford University where he received
. his M.S. in 1995. He is a recipient of a National Science Foundation Graduate
Fellowship. His research interests include search engines, information
extraction from unstructured sources, and data mining of large text collections
and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E.
in Computer Engineering at the University of Michigan Ann Arbor in 1995.
He is currently a Ph.D. candidate in Computer Science at Stanford University.
Some of his research interests include the link structure of the web, human
computer interaction, search engines, scalability of information access
interfaces, and personal data mining.




PAGERANK

* 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even If that Is their only in-coming link)
- =>What each node "is worth" Is divided equally among its neighbors (normalization by the

degree)
oL Lz ok t4+1 C,
(0 S A\ v St > CU T Z out + B

UEN’I?:Ln UEN&TL v

With by convention =1 and a a parameter (usually 0.85) controlling the
relative importance of f



PAGERANK

Matrix interpretation (‘f 011 ¢
A= 0 1 0 1 0
Principal eigenvector of the “"Google Matrix': (0 0/ : /1 : /
() 12 1/3 0 1/5

First, define matrix S as:
-Normalization by columns of A
-Columns with only O receives |/n

0 1/3 1/3 1/5
1/2 0 1/3 1/5
0 1/3 0 1/5
0 0 1/3 1/5

W
Il
-
coo~Co

(e) / 0.03 0.455 0.313 0.03 0.2
0.88 0.03 0313 0.313 0.2
G=1 003 0455 0.03 0.313 0.2

' 0.03 0.03 0313 0.03 0.2
‘Fma”}/, Gl] = aSij == (1L = @i \ 003 003 003 0313 0.2
— T

A - Adjacency Mat. Random W. mat.

0100 1 1 050073

1 0 1 1 1 1 1 91111

0 1.0 1 0 0 3 2.2 43

01 10 0 0 0 £ 03500

1 1.0 0 1 1 o

1 100 1 0 ol looo

1100}

L1000



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk
process with restart

Teleportation probability: the parameter a gives the probability that in the next step of
the RW will follow a Markov process or with probability 7-a it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on
this node after an infinite number of hops.



PAGERANK

* Then how do Google rank when we do a research!?

» Compute pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
“Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



o i siss

- Many other centralities have been proposed
* The problem Is how to interpret them ¢

» Can be used as supervised tool:

Compute many centralities on all nodes

Learn how to combine them to find chosen nodes

Discover new similar nodes

(roles In social networks, key elements in an infrastructure, ...)

v

v

v

v



Which i1s which ?

Blagce
Clustering coefficient
Closeness
Harmonic Centrality
Betweenness
Figenvector
PageRank
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Which i1s which ?

Blagce
Clustering coefficient
Closeness
Harmonic Centrality
Betweenness
Katz
Figenvector
PageRank
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Iry again
Blagice
Betweenness
Closeness
Fisenvector
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Try again :)
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B:Closeness

Betweenness
D: Eigenvector
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