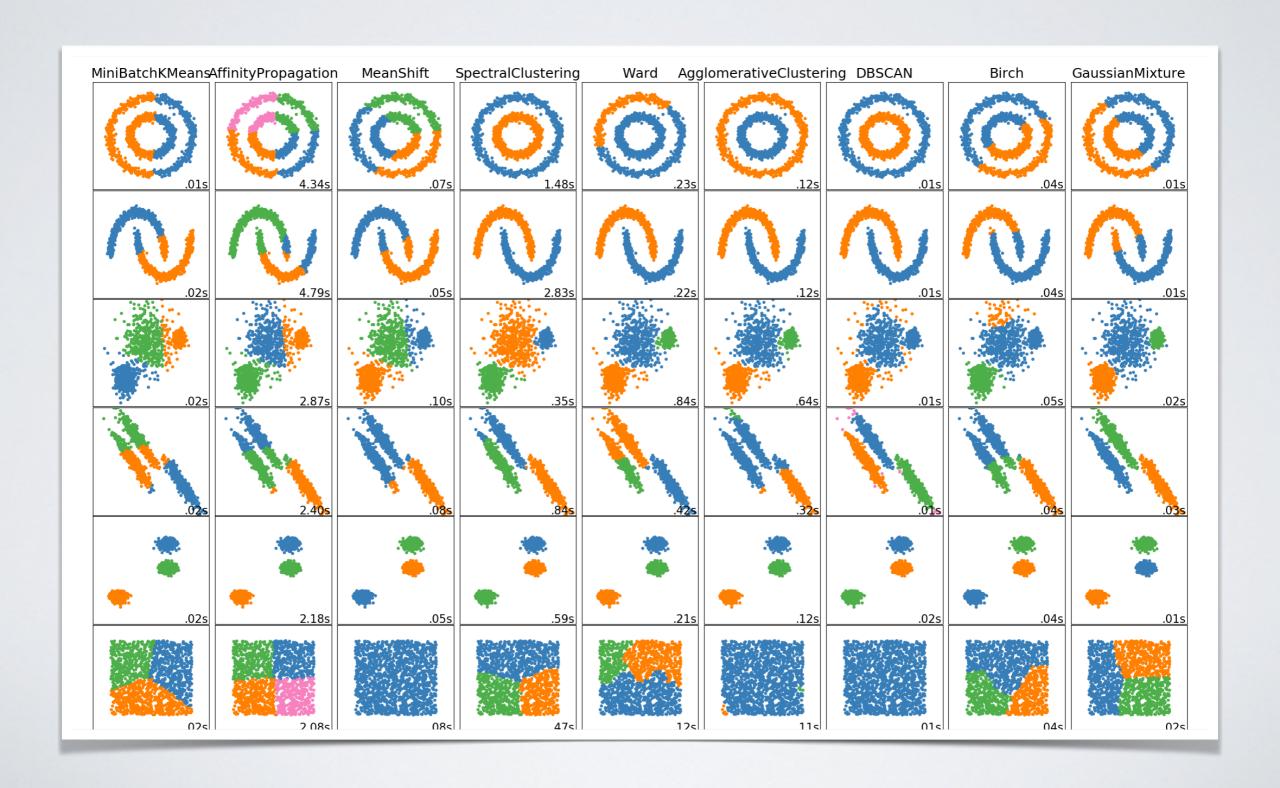
COMMUNITY DETECTION (GRAPH CLUSTERING)

COMMUNITY DETECTION

- Community detection is equivalent to "clustering" in unstructured data
- Clustering: unsupervised machine learning
 - Find groups of elements that are similar to each other
 - People based on DNA, apartments based on characteristics, etc.
 - Hundreds of methods published since 1950 (k-means)
 - Problem: what does "similar to each other" means?

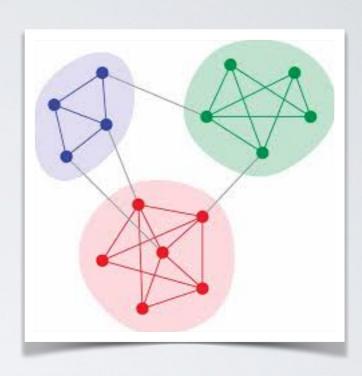
COMMUNITY DETECTION



COMMUNITY DETECTION

Community detection:

- Find groups of nodes that are:
 - Strongly connected to each other
 - Weakly connected to the rest of the network
 - Ideal form: each community is I)A clique, 2) A separate connected component
- No formal definition
- Hundreds of methods published since 2003

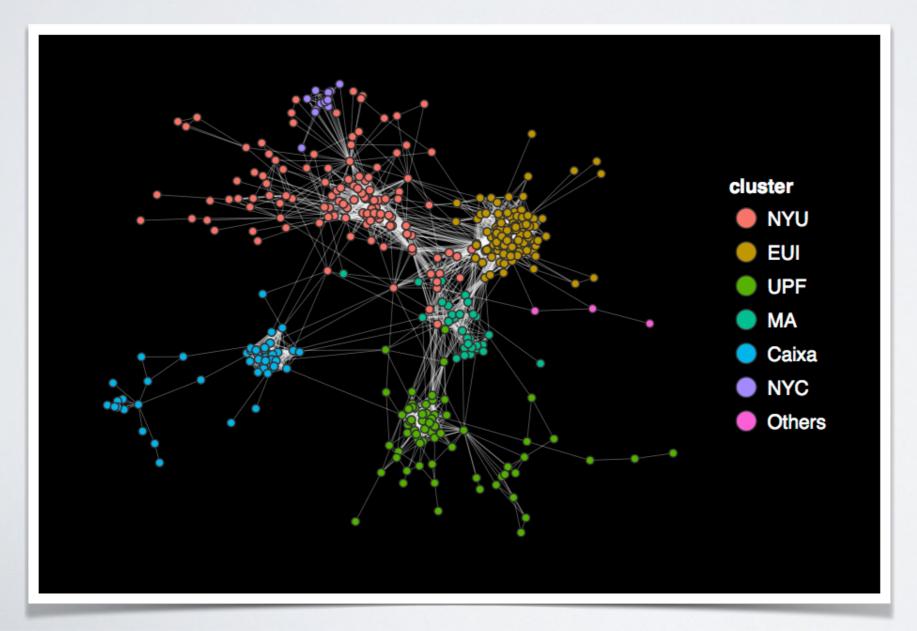


WHY COMMUNITY DETECTION?

- One of the key properties of complex networks was
 - High clustering coefficient
 - (friends of my friends are my friends)
- Different from random networks. How to explain it?
 - Watts strogatz (spatial structure?)
- => In real networks, presence of dense groups: communities
 - Small, dense (random) networks have high density.
 - Large networks could be interpreted as aggregation of smaller, denser networks, with much fewer edges between them

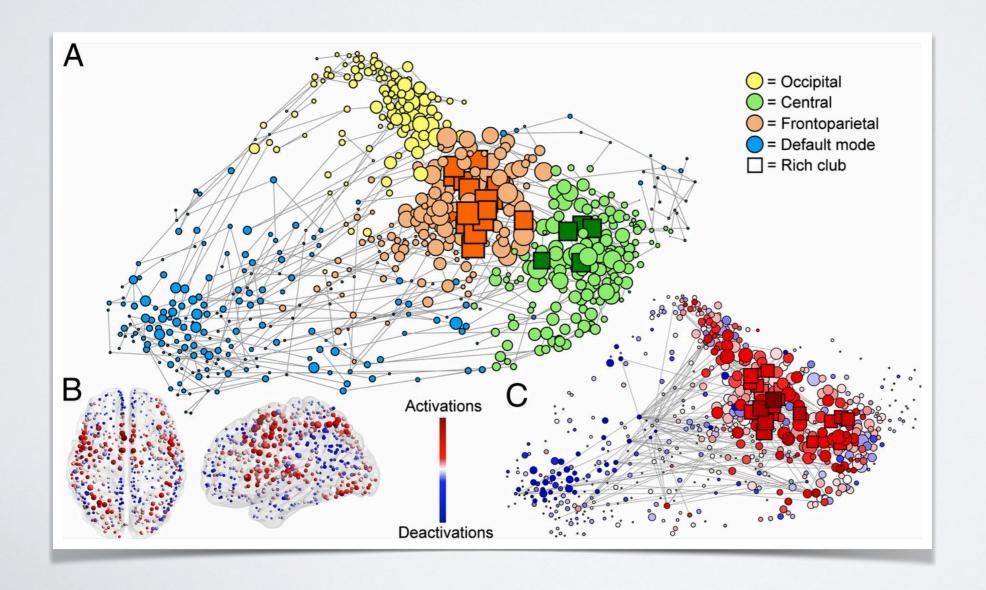
COMMUNITY STRUCTURE IN REAL GRAPHS

· If you plot the graph of your facebook friends, it looks like this



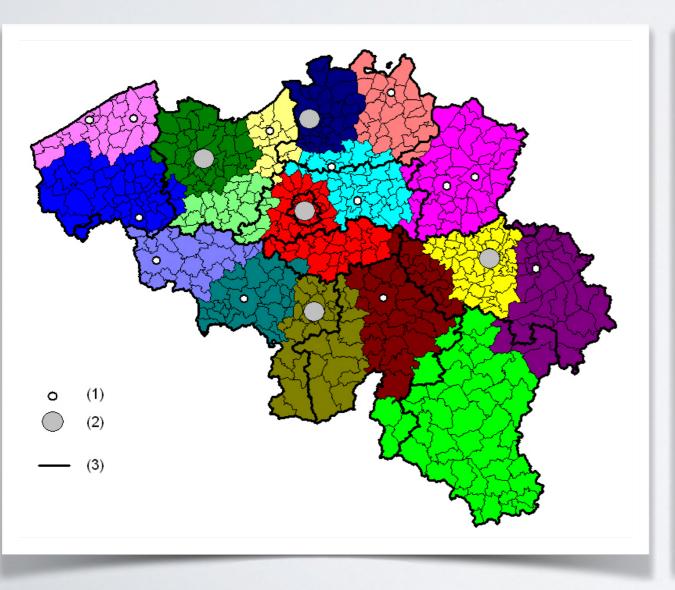
COMMUNITY STRUCTURE IN REAL GRAPHS

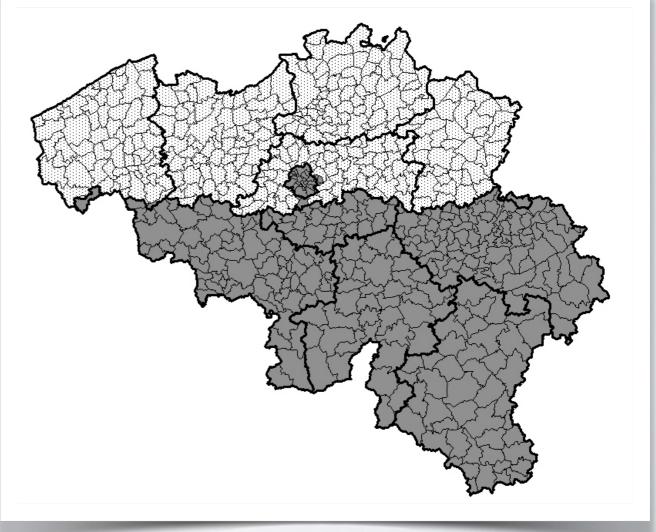
Connections in the brain?



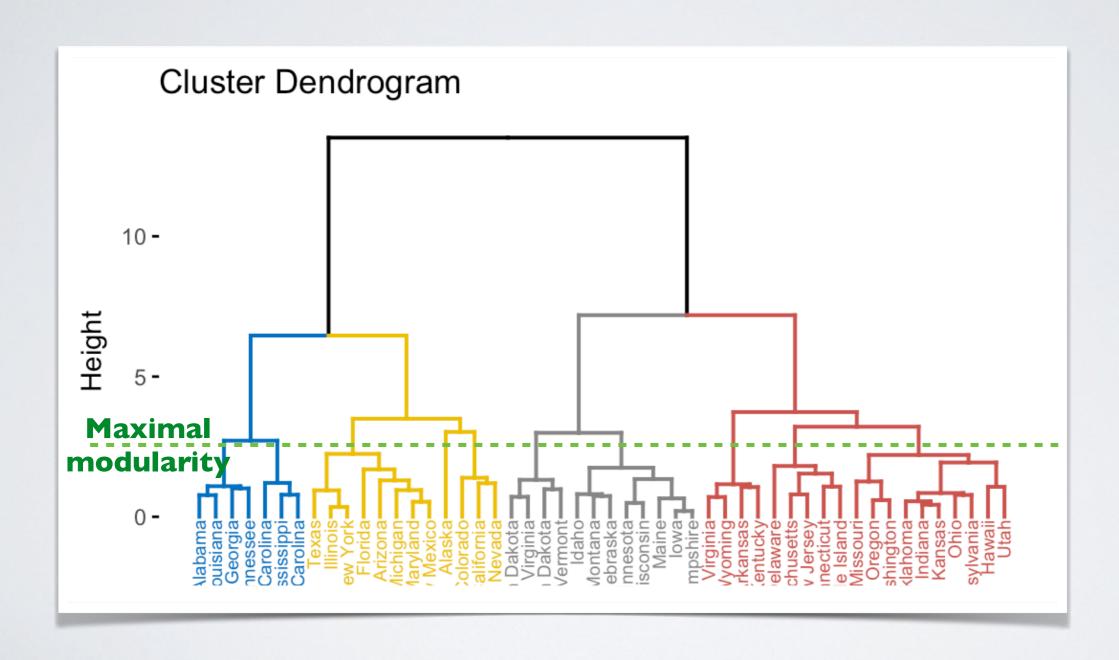
COMMUNITY STRUCTURE IN REAL GRAPHS

Phone call communications in Belgium ?





- 1) Compute the betweenness of all edges
- 2) Remove the edge of highest betweenness
- 3) Repeat until all edges have been removed
 - Connected components are communities
- => It is called a divisive method
- =>What you obtain is a dendrogram
- How to cut this dendrogram at the best level?



- Introduction of the Modularity
- The modularity is computed for a partition of a graph
 - (each node belongs to one and only one community)
- It compares:
 - The **observed** fraction of edges inside communities
 - To the **expected** fraction of edges inside communities in a random network

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw} - rac{k_v k_w}{(2m)}
ight] \delta(c_v, c_w)$$

Original formulation

$$Q = rac{1}{(2m)} \Biggl[A_{vw} - rac{k_v k_w}{(2m)} \Biggr] \, \delta(c_v, c_w)$$

Sum over all pairs of nodes

$$Q = rac{1}{(2m)} \sum_{vw} igg[A_{vw} - rac{k_v k_w}{(2m)} igg] \delta(c_v, c_w)$$

I if in same community

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw} - rac{k_v k_w}{(2m)}
ight] \delta(c_v, c_w)$$

I if there is an edge between them

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw} - \left(rac{k_v k_w}{(2m)}
ight) \delta(c_v, c_w)
ight.$$

Probability of an edge in a configuration model

Can also be defined as a sum by community

$$Q = \frac{1}{L} \sum_{i=1}^{|C|} (L_i - \frac{1}{2} K_i^2)$$

with $L_i = L(H(c_i))$ the number of edges inside community i and $K_i = \sum_{u \in c_i} k_u$ the sum of degrees of nodes in community i.

- Modularity compares the observed network to a null model
 - Usually the configuration model
 - Multi-edges and loops are allowed
 - Other models could be used, such as ER random graphs.
- Natural extension to weighted/multi-edge networks

- Back to the method:
 - Create a dendrogram by removing edges
 - Cut the dendrogram at the best level using modularity
- =>In the end, your objective is... to optimize the Modularity, right ?
- Why not optimizing it directly!

MODULARITY OPTIMIZATION

- From 2004 to 2008: The golden age of Modularity
- Scores of methods proposed to optimize it
 - Graph spectral approaches
 - Meta-heuristics approches (simulated annealing, multi-agent...)
 - ▶ Local/Gloabal approaches...
- => 2008: the Louvain algorithm

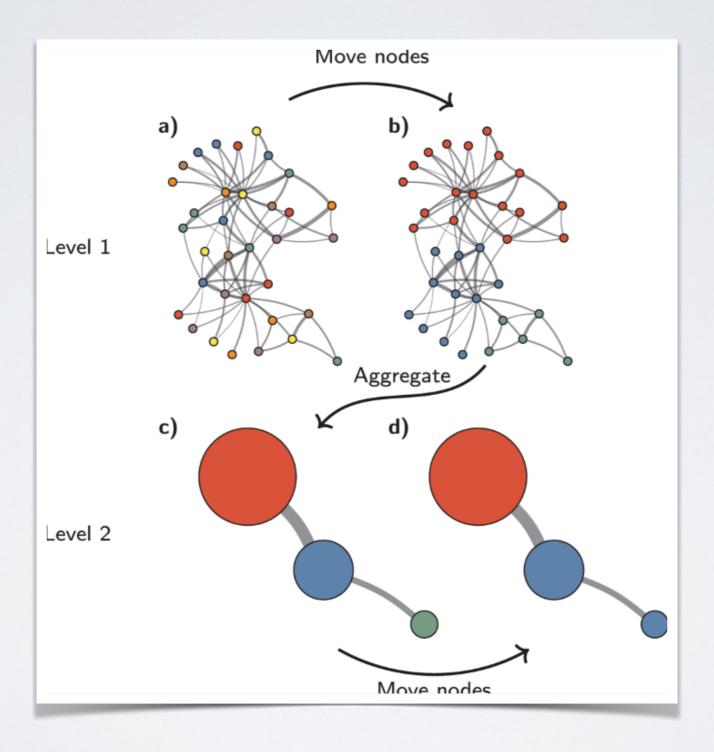
LOUVAIN ALGORITHM

- · Simple, greedy approach
 - Easy to implement
 - Fast
- Yields a hierarchical community structure
- · Beat state of the art on all aspects (when introduced)
 - Speed
 - Max modularity obtained
 - Do not fall in some traps (see later)

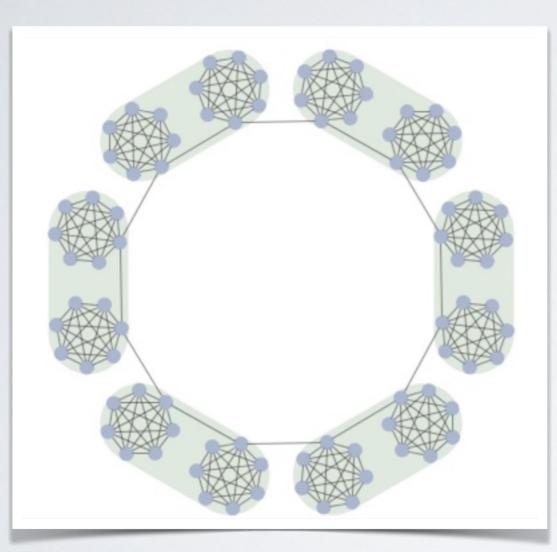
LOUVAIN ALGORITHM

- Each node start in its own community
- Repeat until convergence
 - FOR each node:
 - FOR each neighbor: if adding node to its community increase modularity, do it
- When converged, create an induced network
 - Each community becomes a node
 - Edge weight is the sum of weights of edges between them
- Trick: Modularity is computed by community
 - Global Modularity = sum of modularities of each community

LOUVAIN ALGORITHM



- Modularity == Definition of good communities?
- 2006-2008: series of articles [Fortunato, Lancicchinetti, Barthelemy]
 - Resolution limit of Modularity
- · Let's see an example



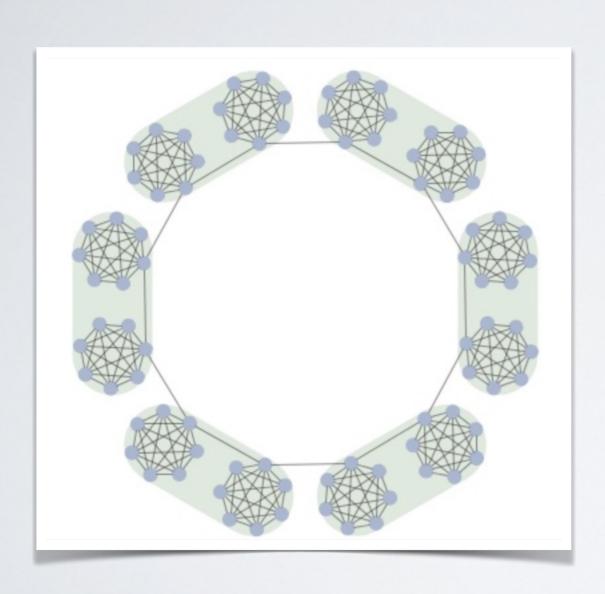
Let's consider a ring of cliques

Cliques are as dense as possible

Single edge between them:

=>As separated as possible

Any acceptable algorithm=>Each clique is a community



But with modularity:

Small graphs=> OK

Large graphs=>
The max of modularity obtained
by merging cliques

- Discovery that Modularity has a "favorite scale":
- · For a graph of given density and size:
 - Communities cannot be smaller than a fraction of nodes
 - Communities cannot be larger than a fraction of nodes
- Modularity optimisation will never discover
 - Small communities in large networks
 - Large communities in small networks

Multi-resolution modularity

$$\sum_{i}^{c} e_{ii} - a_i^2 \qquad \qquad \sum_{i}^{c} e_{ii} - \lambda a_i^2$$

 λ = Resolution parameter

More a patch than a solution...

ALTERNATIVES

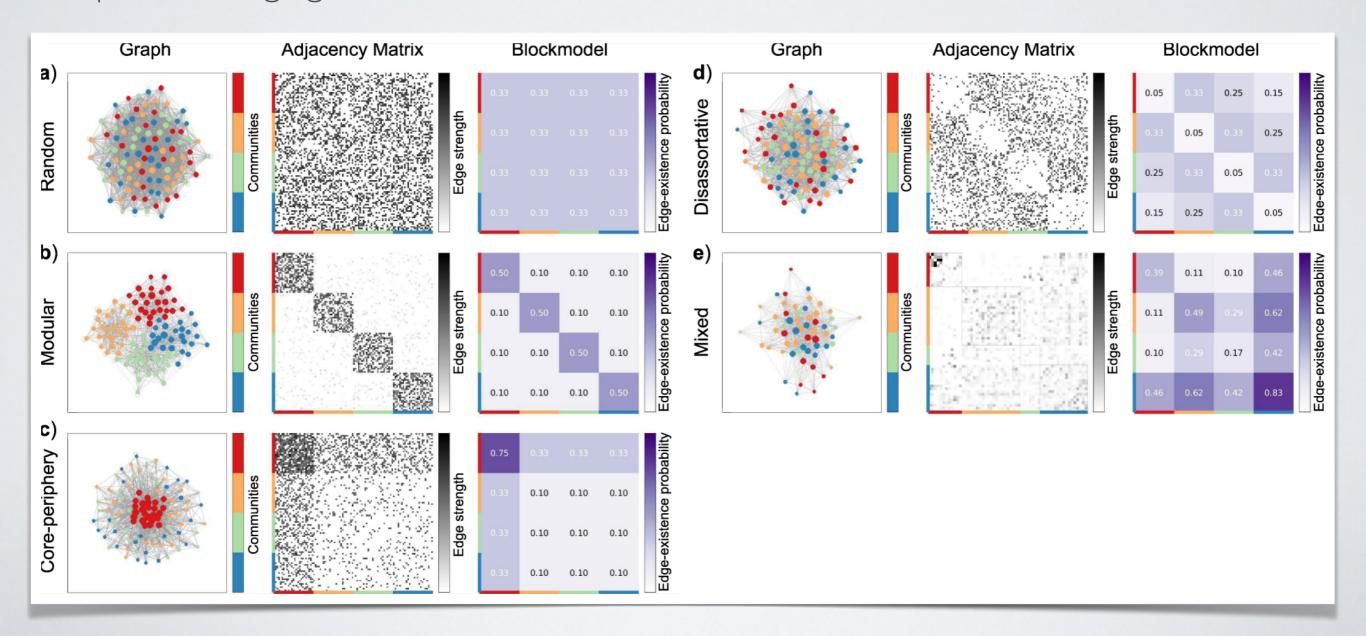
- Most serious alternatives (in my opinion)
 - Infomap (based on information theory —compression)
 - Stochastic Block Models (SBM) (bayesian inference)
- These methods have a clear definition of what are good communities. Theoretically grounded

STOCHASTIC BLOCK MODELS

- Stochastic Block Models (SBM) are based on statistical models of networks
- · They are in fact more general than usual communities.
- The model is:
 - ► Each node belongs to I and only I community
 - To each pair of communities, there is an associated density (probability of each edge to exist)

STOCHASTIC BLOCK MODELS

- SBM can represent different things:
 - Associative SBM: density inside nodes of a same communities >> density of pairs belonging to different communities.



STOCHASTIC BLOCK MODELS

- To sum up:
 - SBM have a convincing definition of communities
 - In practice, inference slower than louvain/infomap
 - But more powerful
 - Can also say if there is no community
 - And also suffer from a form of resolution limit
- · Less often used, but regain popularity since works by Peixoto.

EVALUATION OF COMMUNITY STRUCTURE

EVALUATION

- Two main approaches:
 - Intrinsic/Internal evaluation
 - Partition quality function
 - Individual Community quality function
 - Comparison of observed communities and expected communities
 - Synthetic networks with community structure
 - Real networks with Ground Truth

INTRINSIC EVALUATION

INTRINSIC EVALUATION

- Partition quality function
 - Already defined: Modularity, graph compression, etc.
- · Quality function for individual community
 - Internal Clustering Coefficient

Conductance:
$$\frac{|E_{out}|}{|E_{out}| + |E_{in}|}$$

- Fraction of external edges

 $|E_{in}|, |E_{out}|:$ # of links to nodes inside (respectively, outside) the community

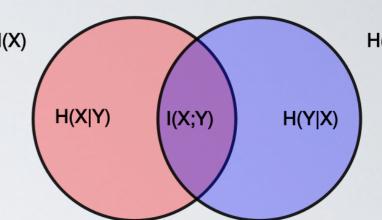
COMPARISON WITH GROUND TRUTH

MEASURING PARTITION SIMILARITIES

- Synthetic or GT, we get:
 - Reference communities
 - Communities found by algorithms
- How to measure their similarity?
 - ► NMI => AMI
 - ARI
 - **)**

MEASURING PARTITION SIMILARITIES

NMI: Normalized Mutual Information



- Classic notion of Information Theory: Mutual Information
 - How much knowing one variable reduces uncertainty about the other
 - Or how much in common between the two variables

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(rac{p(x,y)}{p(x)\,p(y)}
ight)$$

- Normalized version: NMI
 - 0: independent, 1: identical
- Adjusted for chance: aNMI

$$AMI(U, V) = \frac{MI(U, V) - E\{MI(U, V)\}}{\max\{H(U), H(V)\} - E\{MI(U, V)\}}$$

OTHER MESO-SCALE ORGANIZATIONS

CORE-PERIPHERY

