BITCOIN NETWORK ANALYSIS Cazabet Rémy

WHO AM I

- Rémy Cazabet
- Associate Professor (Maître de conférences)
 - Université Lyon I
 - LIRIS, DM2LTeam (Data Mining & Machine Learning)
- Computer Scientist => Network Scientist
- Member of IXXI, Lyon's institute of Complex Systems

NETWORK SCIENCE

- Study interactions between entities at the micro level => represent interactions as a **network**
- Analyse this network based on tools from network science
- Vocabulary: network science ≈ Complex/Social network analysis ≈ Graph mining

NETWORKS

- Online social networks, e.g., Facebook, Twitter...
 - Nodes: accounts
 - Edges: relations (friend/follow) or interactions (wall post, like, retweet, mentions, etc.)
- Cryptocurrency
 - Nodes: addresses or actors (wallet ? Set of addresses ?)
 - Edges: transactions

NETWORK DEFINITION

REFERENCES

http://networksciencebook.com

THE ATLAS FOR THE ASPIRING NETWORK SCIENTIST

Albert-László Barabási NETWORK SCIENCE

https://arxiv.org/abs/2101.00863

https://www.amazon.com/First-Course-Network-Science/dp/1108471137

Complex Networks EFERENCES

SOCIAL AND ECONOMIC NETWORKS Matthew Or Jackson

M. O. Jackson, Social and Economic Networks (Princeton University Press, 2010).

Google: "network science finance" Or "network science economy" => I'm not an expert in economic networks :)

Pop-science books REFERENCES

GRAPHS & NETWORKS

Networks often refers to real systems

- •www,
- social network
- metabolic network.
- Language: (Network, node, link)

Graph is the mathematical representation of a network • <u>Language: (Graph, vertex, edge)</u>

In most cases we will use the two terms interchangeably.

Vertex	Edge
person	friendship
neuron	synapse
Website	hyperlink
company	ownership
gene	regulation

Types of Networks

Undirected networks

G = (V, E) $(u, v) \in E \equiv (v, u) \in E$

- The directions of edges do not matter
- Interactions are possible between connected entities in both directions

Directed networks

Moritz Stefaner, eigenfactor.com

G = (V, E) $(u, v) \in E \neq (v, u) \in E$

- The directions of edges matter
- Interactions are possible between connected entities only in specified directions

Citation network: Nodes - publications, Links - references

Weighted networks

G = (V, E, w) $w: (u, v) \in E \Longrightarrow R$

 Strength of interactions are assigned by the weight of links

Social interaction network: Nodes - individuals Links - social interactions

Bipartite network

Bhavnani et.al. BMC Bioinformatics 2009, **10**(Suppl 9):S3 Gene-desease network:

Nodes - Desease (7)&Genes (747)

G = (U, V, E) $U \cap V = \emptyset$ $\forall (u, v) \in E, u \in U \text{ and } v \in V$

Multiplex and multilayer networks

$G = (V, E_i), i = 1...M$

- Nodes can be present in multiple networks simultaneously
- These networks are connected (can influence each other) via the common nodes

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

[Mendez-Bermudez et al. 2017]

Temporal and evolving networks

$G=(V, E_t), (u,v,t,d) \in E_t$

t - time of interaction (u,v)

d - duration of interaction (u,v,t)

Temporal links encode time varying interactions

 $G = (V_t, E_t)$ $v(t) \in V_t$ $(u, v, t) \in E_t$

 Dynamical nodes and links encode the evolution of the network

Mobile communication network Nodes - individuals Links - calls and SMS

COURSE OBJECTIVES

COURSE OBJECTIVES

• Theory:

 Learn the basics of network science and network analysis, + some machine learning/data science concepts

• Practice:

- Learn how to apply those concepts to graphs of small/medium size
- Practice some data science tools
- Project:
 - Apply what you learnt on a subset of the bitcoin transaction network

ROADMAP

- Class I:
 - Theory:
 - Bitcoin transaction network
 - Basic Network Description measures
 - Practice:
 - Python data Manipulation
 - Networkx and Gephi
- Class 2:
 - Theory: Advanced network concepts: node clustering, dynamic networks, etc.
 - Practice: Bitcoin transaction data manipulation + Project
- Class 3:
 - Theory: Machine Learning on Graph
 - Practice: Project