NETWORK REPRESENTATIONS

Node-Edge description

N_u	Neighbourhood of u , nodes sharing a link with u .
k_u	Degree of u , number of neighbors $ N_u $.
N_u^{out}	Successors of u , nodes such as $(u, v) \in E$ in a directed
	graph
N_u^{in}	Predecessors of u , nodes such as $(v, u) \in E$ in a directed
	graph
k_u^{out}	Out-degree of u , number of outgoing edges $ N_u^{out} $.
k_u^{in}	In-degree of u , number of incoming edges $ N_u^{in} $
$w_{u,v}$	Weight of edge (u, v) .
s_u	Strength of u , sum of weights of adjacent edges, $s_u =$
	$\sum_{v} w_{uv}$

Node degree

Number of connections of a node

Undirected network

Directed network

In degree

Out degree

Weighted degree: strength

DESCRIPTION OF GRAPHS

DESCRIPTION OF GRAPHS

- When confronted with a graph, how to describe it?
- How to compare graphs?
- What can we say about a graph?

SIZE

Counting nodes and edges

N/nL/m L_{max}

size: number of nodes |V|. number of edges |E|Maximum number of links

Undirected network: $\binom{N}{2} = N(N-1)/2$

Directed network:
$$\binom{N}{2} = N(N-1)$$

SIZE

	#nodes (n)	#edges (m)
Wikipedia HL	2M	30M
Twitter 2015	288M	60B
Facebook 2015	1.4B	400B
Brain c. Elegans	280	6393
Roads US	2M	2.7M
Airport traffic	Зk	31k

DENSITY

Network descriptors 1 - Nodes/Edges

 $\langle k \rangle$

Average degree: Real networks are sparse, i.e., typically $\langle k\rangle \ll n.$ Increases slowly with network size, e.g., $d\sim \log(m)$

$$\langle k \rangle = \frac{2m}{n}$$

d/d(G) **Density**: Fraction of pairs of nodes connected by an edge in G.

$$d = L/L_{\rm max}$$

DENSITY

	#nodes	#edges	Density	avg. deg
Wikipedia	2M	30M	1.5x10 ⁻⁵	30
Twitter 2015	288M	60B	1.4x10 ⁻⁶	416
Facebook	1.4B	400B	4x10 ⁻⁹	570
Brain c.	280	6393	0,16	46
Roads Calif.	2M	2.7M	6x10 ⁻⁷	2,7
Airport	Зk	31k	0,007	21

Beware: density hard to compare between graphs of different sizes

DENSITY

- It has been observed that: [Leskovec. 2006]
 - When graphs increase in size, the average degree increases
 - (Density on the contrary, decreases)
 - This increase is very slow
- Think of friends in a social network

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations." *Proceedings of the eleventh* ACM SIGKDD international conference on Knowledge discovery in data mining. 2005.

DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is (close to) a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
 - A high majority of small degree nodes
 - A small minority of nodes with very high degree (Hubs)
- Often modeled by a **power law**
 - More details later in the course

SUBGRAPHS

Subgraphs

Subgraph H(W) (induced subgraph): subset of nodes W of a graph G = (V, E) and edges connecting them in G, i.e., subgraph $H(W) = (W, E'), W \subset V, (u, v) \in E' \iff u, v \in W \land (u, v) \in E$

Clique: subgraph with d = 1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

Strongly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

Figure after Newman, 2010

Clustering coefficient or triadic closure

- Triangles are considered important in real networks
 - Think of social networks: friends of friends are my friends
 - # triangles is a big difference between real and random networks

Triangles counting

 δ_u - triads of u: number of triangles containing node u Δ - number of triangles in the graph total number of triangles in the graph, $\Delta = \frac{1}{3} \sum_{u \in V} \delta_u$.

Each triangle in the graph is counted as a triad once by each of its nodes.

 δ_u^{\max} - triads potential of u: maximum number of triangles that could exist around node u, given its degree: $\delta_u^{\max} = \tau(u) = \binom{k_i}{2}$ Δ^{\max} - triangles potential of G: maximum number of triangles that could exist in the graph, given its degree distribution: $\Delta^{\max} = \frac{1}{3} \sum_{u \in V} \delta^{\max}(u)$

 C_u - Node clustering coefficient: density of the subgraph induced by the neighborhood of u, $C_u = d(H(N_u))$. Also interpreted as the fraction of all possible triangles in N_u that exist, $\frac{\delta_u}{\delta_u^{max}}$

Triangles=2
Possible triangles=
$$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
=6
 C_u =2/6=1/3

 $\langle C \rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C} = \frac{1}{N} \sum_{u \in V} C_u$.

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their degree, and that low degree nodes tend to be much more frequent than hubs, and their C value is very sensitive, i.e., for a node u of degree 2, $C_u \in 0, 1$, while nodes of higher degrees tend to have more contrasted scores.

 C^g - Global clustering coefficient: Fraction of all possible triangles in the graph that do exist, $C^g=\frac{3\Delta}{\Delta^{\max}}$

Global CC:

- In random networks, GCC = density
 - =>very small for large graphs
- Facebook ego-networks: 0.6
- Twitter lists: 0.56
- California Road networks: 0.04

PATH RELATED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., **1.2.1.6.5** is a valid walk) **Path**: a walk in which each node is distinct. **Path length**: number of edges encountered in a path **Weighted Path length**: Sum of the weights of edges on a path **Shortest path**: The shortest path between nodes u, v is a path of minimal *path length*. Often it is not unique. **Weighted Shortest path**: path of minimal *weighted path length*. $\ell_{u,v}$: **Distance**: The distance between nodes u, v is the length of the shortest path

PATH RELATED SCORES

Network descriptors 2 - Paths

 $\ell_{
m max} \ \langle \ell
angle$

Diameter: maximum *distance* between any pair of nodes. **Average distance**:

$$\langle \ell \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij}$$

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment)
 (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
 - Give a (physical) mail to random people
 - Ask them to send to someone they don't know
 - They know his city, job
 - They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY: MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
 - Some mails did not arrive
 - Small sample
 - ► ...
- Checked on "real" complete graphs (giant component):
 - MSN messenger
 - Facebook
 - The world wide web
 - ...

SIDE-STORY: MILGRAM EXPERIMENT

Facebook

SMALL WORLD

Small World Network

A network is said to have the **small world** property when it has some structural properties. The notion is not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle \ell \rangle \approx \log(N)$
- Clustering coefficient must be high, i.e., much larger than in a random network , e.g., $C^g \gg d$, with d the network density

More on this during the random network class

CORE-PERIPHERY : CORENESS

Goal: To identify dense cores of high degree nodes in networks

Cores and Shells

Many real networks are known to have a core-periphery structure, i.e., there is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest subgraph H(C) such as all nodes have at least a degree k, i.e., $\forall u \in C, k_u^H \leq k$, with k_u^H the degree of node u in subgraph H. **coreness:** A vertex u has coreness k if it belongs to the k-core but not to

the k + 1-core.

c-shell: all vertices whose coreness is exactly *c*.

2-core 1-core 3-shell 1-shell 2-shell

• A k-core of G can be obtained by recursively removing all the vertices of degree less than k, until all vertices in the remaining graph have at least degree k.

TRIADS COUNTING

TRIADS COUNTING

Λ

Triad type

GRAPHLETS

GRAPHS AS MATRICES

Matrices in short

Matrices are mathematical objects that can be thought as *tables* of numbers. The size of a matrix is expressed as $m \times n$, for a matrix with m rows and n columns. The order (row/column) is important. M_{ij} is a notation representing the element on row m and column j.

ADJACENCY MATRIX

A - Adjacency matrix

The most natural way to represent a graph as a matrix is called the Adjacency matrix A. It is defined as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes N in the graph. Nodes of the graph are numbered from 1 to N, and there is an edge between nodes i and j if the corresponding position of the matrix A_{ij} is not 0.

- A value on the diagonal means that the corresponding node has a self-loop
- the graph is **undirected**, the matrix is **symmetric**: $A_{ij} = A_{ji}$ for any i, j.
- In an **unweighted** network, and edge is represented by the value 1.
- In a weighted network, the value A_{ij} represents the weight of the edge $\left(i,j\right)$

Graph	A - Adjacency Mat.			
	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$			

3-shell

ADJACENCY MATRIX

Graph

Some operations on Adjacency matrices have straightforward interpreta-

Multiplying A by itself allows to know the number of walks of a given length that exist between any pair of nodes: A_{ij}^2 corresponds to the number of walks of length 2 from node *i* to node *j*, A_{ij}^3 to the number of walks of length 2 from node *i* to node *j*, A_{ij}^3 to the number of walks of length 2 from node *i* to node *j*.

3-shell

Multiplying A by a column vector W of length $1 \times N$ can be thought as setting the *i* th value of the vector to the *i*th node, and each node sending its ^{2-shell} and b its 1.3-shell are the *i*th element corresponding to the sum of the values of its neighbors in W. This is convenient when working with random walks or diffusion phenomenon.

4-3
Ø
6

/0	1	0	0	1	1
1	0	1	1	1	1
0	1	0	1	0	0
0	1	1	0	0	0
1	1	0	0	1	1
$\backslash 1$	1	0	0	1	0/

A - Adjacency Mat.

A^2					
$\begin{pmatrix}3\\2\\1\\1\\3\\2\end{pmatrix}$	$2 \\ 5 \\ 1 \\ 3 \\ 2$	$egin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array}$	$3 \\ 3 \\ 1 \\ 1 \\ 4 \\ 3$	$\begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 3 \end{pmatrix}$

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]
- The Facebook friendship network in 2011

- 721M users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average # friends)
- Median degree: 99
- Connected component: 99.91%

Component size Distribution

Cumulative

Degree distribution

My friends have more Friends than me!

Many of my friends have the Same # of friends than me!

Age homophily

(More next class)

Country similarity

84.2% percent of edges are within countries

(More in the community detection class)