NETWORK REPRESEN TATIONS

Node-Edge description

Neighbourhood of u, nodes sharing a link with w.

Degree of u, number of neighbors | N, |.

Successors of u, nodes such as (u,v) € FE in a directed
graph

Predecessors of u, nodes such as (v, u) € FE in a directed
graph

Out-degree of u, number of outgoing edges | N2**|.
In-degree of u, number of incoming edges | N" |

Weight of edge (u, v).

Strength of u, sum of weights of adjacent edges, s, =

Dy Wuw.




Node degree

Number of connections of a node
« Undirected network

* Directed network
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Weighted degree: strength
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DESCRIPTION OF GRAPHS

* When confronted with a graph, how to describe it/
* How to compare graphs?

* What can we say about a graph!?



o Vi

Counting nodes and edges

size: number of nodes |V |.
number of edges | E|
Maximum number of links

N
2

Undirected network: (

— N(N —1)/2
)

Directed network: (




Wikipedia HL
Twitter 2015
Facebook 2015
Brain c. Elegans
Roads US
Airport traffic

o Vi

#nodes (n)

#edges (m)




DENSITY

Network descriptors 1 - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically
(k) < mn. Increases slowly with network size, eg., d ~

log(m)

(k) = ="

Density: Fraction of pairs of hodes connected by an edge in
G.

0h = Jb D




DENSITY

Wikipedia

#nodes | #edges | Density

.........................................................................................................................................................................

Twitter 2015

.........................................................................................................................................................................

Facebook

Brain C.

.........................................................................................................................................................................

Roads Calif.

.........................................................................................................................................................................

Airport

Beware: density hard

'O compare between

oraphs of di

ferent sizes




DENSITY

* It has been observed that: [Leskovec. 2006]

» When graphs increase In size, the average degree increases
- (Density on the contrary, decreases)
» This increase Is very slow

* Think of friends In a social network

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations." Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining. 200?. 0



DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

>

P(V) (humber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)



DEGREE DISTRIBUTION

* In a fully random graph (Erdos-Renyi), degree distribution is
(close to) a normal distribution centered on the average
degree

* In real graphs, In general, it I1s not the case:

» A high majority of small degree nodes
» A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law
» More detalls later in the course



SUBGRAPHS

Subgraphs

Subgraph H (W) (induced subgraph): subset of nodes W of a graph
G = (V, E) and edges connecting them in G, i.e, subgraph H(W) =
(W,E",W C V,(u,v) € B/ < u,ve WA (u,v) €E

Clique: subgraph with d = 1

Triangle: clique of size 3
Connected component. a subgraph in which any two vertices are con- @
nected to each other by paths, and which is connected to no additional ver-

tices in the supergraph @
Strongly Connected component: In directed networks, a subgraph in which

any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which Figure after Newman, 2010
any two vertices are connected to each other by paths if we disregard di-

rections

original graph A X

not an induced subgraph

L — =2
IE®
After “A. DZY Loves Physics”



CLUSTERING COEFFICIENT

 Clustering coefficient or triadic closure

* Iriangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles Is a big difference between real and random networks



CLUSTERING COEFFICIENT

Triangles counting

9., - triads of u: number of triangles containing node u
A - number of triangles in the graph total number of triangles in the graph,

A = % D uey Ou

Each triangle in the graph is counted as a triad once by each of its nodes.

6, - - triads potential of u: maximum number of triangles that could exist

around node u, given its degree: §,'** = 7(u) = (kg)

A™** - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: A™#* = £ 3~ . §™%*(u)




CLUSTERING COEFFICIENT

C'.. - Node clustering coefficient: density of the subgraph induced by the

neighborhood of u, C',, = d(H (N, ). Also interpreted as the fraction of all

possible triangles in N, that exist, %

u

O
U O Triangles=2
4
Possible triangles= <2> =6
Edges: 2 C =2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3




EEUS | ERING COERFICIERNSS

(C') - Average clustermg coefficient: Average clustering coefficient of all
nodes in the graph, C = + > uwecv C

Be careful when interpreting this value, since all hodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C' value is very sensitive, i.e., for a node u of de-
gree 2, C,, € 0,1, while nodes of higher degrees tend to
have more contrasted scores.

C'9 - Global clustering coefficient: Fraction of all possible triangles in the

graph that do exist, C9 = <35



CLUSTERING COEFFICIENT

e Global CC:

» In random networks, GCC = density
- =>very small for large graphs
» Facebook ego-networks: 0.6

» Twitter lists: 0.56
» California Road networks: 0.04



Rl RELAITED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

¢, .- Distance: The distance between nodes wu, v is the length of the short-
est path




PATH RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
W = n(n — 1) ;dij

20



AVERAGE PATH LENGITH

* The famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

* Not too sensible to noise

» Tells you If the network Is “'stretched” or “hairball” like

i



SIDE-STORY: MILGRAM
EAPERIMENTS

B lROrid experiment (60's) | EEEEEEEE \

' ' : North Dakota y
» Give a (physical) mail to random people s

» Ask them to send to someone they don't know =
- They know his city, job

» They send to their most relevant contact

* Results: In average, 6 hops to arrive

Texas

ik



SIDE-STORY: MILGRAM
EAXPERIMENTS

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web

i



SIDE-STORY: MILGRAM
EAXPERIMENTS
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SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

+ Average distance must be short, i.e., (£) =~ log(N)

-+ Clustering coefficient must be high, i.e.,, much larger than in a ran-
dom network , e.g., C? > d, with d the network density

More on this during the random network class

i



BORE-PERIPHERY : CORENESS

Goal: To identify dense cores of high degree nodes in networks

Cores and Shells

Many real networks are known to have a core-periphery structure, ie,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest subgraph
H(C) such as all nodes have at least a degree k, ie, Vu € C, k7 < E,

withk T the degree of node w in subgraph H. 2 A k'Core Of G can be Obtained

fr?erinisi:_é);/ee.rtex u has coreness k if it belongs to the k-core but not to by recy rSively remOVi ng a” the
c-shell: all vertices whose coreness is exactly c. Vertices Of deg ree |eSS than k

until all vertices in the remaining
graph have at least degree k.

® 1-shell @® 2-shell ® 3-shell

26



TRIADS COUNTING
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TRIADS COUNTING
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SRAPHEE I

2-nod i}

gm‘f)%]& 3-node graphlets 4-node graphlets
0 1
G, & @6 6 G

3- node graphlets

49

i



GRAPHS AS
PIATRICES

Matrices in short

Matrices are mathematical objects that can be thought as tables of hum-

bers. The size of a matrix is expressed as m X n, for a matrix with m rows
and n columns. The order (row/column) is important.
M, ; is a notation representing the element on row m and column j.

30



AD|ACENCY MATRIX

The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is defined as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from 1to IV, and there is an
edge between nodes ¢ and j if the corresponding position of the matrix A; ;
is not 0.

- A value on the diagonal means that the corresponding node has a
self-loop

- the graph is undirected, the matrix is symmetric: A;; = A;; forany
i,7.
-+ In an unweighted network, and edge is represented by the value 1.

- In a weighted network, the value A;; represents the weight of the
edge (4, 5)

A - Adjacency Mat.

(O 1 0 0 1 1\
1 0 1 1 1 1
O 1 0 1 0 O
0O 1 1 0 0 O
1 1 0 0 1 1
\1 1 0 0 1 O/

31



ADJACENCY MATRIX

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

Multiplying A by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A,?j corresponds to the number of

walks of length 2 from node i to node j, Ag’j to the number of walks of
length 3, etc.

Multiplying A by a column vector W of length 1 x N can be thought as
setting the 7 th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W. This is convenient when working with random walks
or diffusion phenomenon.

B

Graph

A - Adjacency Mat.

0O 1 0 0 1 1

1 0 1 1 1 1

0O 1 0 1 0 o

O 1 1 0 0 o

1 1 0 0 1 1

1 1 0 0 1 O

A2

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3




EXEMPLE OF GRAPH
FUNALTSIS

» Source: [ The Anatomy of the Facebook Social Graph, Ugander
st a2l 2400 HE

» The Facebook friendship network in 201 |

55



EXEMPLE OF GRAPH
FUNALTSIS

» /21 M users (nodes) (active in the last 28 days)
e cdoes
» Average degree: |90 (average # friends)

B dldnidecree: 99

B shinccied component: 99.9 1 7%



cXEMPLE OF GRAPH
ANALYSIS
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Fraction

EXEMPLE OF GRAPH
FUNALTSIS
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EXEMPLE OF GRAPH
FINALTSIS
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Fraction
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EXEMPLE OF GRAPH
FUNALTSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

(More ReXiaEE

20 40 60 80 100
Neighbor’s age




EXEMPLE OF GRAPH
ANALYS\S

g%

Country similarity

84.2% percent of edges are

within countries

(More In the comirmiSiiis
detection class)




