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� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., B.A.B.A.C.E is a valid
walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections
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Node degree
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Weighted degree: strength
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DESCRIPTION OF GRAPHS
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DESCRIPTION OF GRAPHS

• When confronted with a graph, how to describe it?

• How to compare graphs?

• What can we say about a graph?
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SIZE

Network Science
Cheatsheet

Made by
Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections
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SIZE

#nodes (n) #edges (m)
Wikipedia HL 2M 30M
Twitter 2015 288M 60B

Facebook 2015 1.4B 400B
Brain c. Elegans 280 6393

Roads US 2M 2.7M
Airport traffic 3k 31k
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DENSITY 

Colorful Cheatsheet: A Template

Original author: Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., B.A.B.A.C.E is a valid
walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections

Triangles counting
�u - number of triangles of u: number of triangles which contains node u

� - number of triangles in the graph total number of triangles in the graph,
� =

P
u2V �u

�
max
u - triangles potential of u: maximum number of triangles that could
exist around node u, given its degree: �max

u = ⌧(u) =
�ki

2

�

�max - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V �

max(u)
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DENSITY 

#nodes #edges Density avg. deg
Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416
Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 
Elegans

280 6393 0,16 46
Roads Calif. 2M 2.7M 6x10-7 2,7

Airport 
traffic

3k 31k 0,007 21

Beware: density hard to compare between 
graphs of different sizes
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DENSITY 

• It has been observed that: [Leskovec. 2006]
‣ When graphs increase in size, the average degree increases

- (Density on the contrary, decreases)
‣ This increase is very slow

• Think of friends in a social network

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations." Proceedings of the eleventh 
ACM SIGKDD international conference on Knowledge discovery in data mining. 2005.10



DEGREE DISTRIBUTION

PDF (Probability Distribution Function)
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DEGREE DISTRIBUTION

• In a fully random graph (Erdos-Renyi), degree distribution is 
(close to) a normal distribution centered on the average 
degree 

• In real graphs, in general, it is not the case:
‣ A high majority of small degree nodes
‣ A small minority of nodes with very high degree (Hubs)

• Often modeled by a power law 
‣ More details later in the course

12



SUBGRAPHS The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero: 

Figure after Newman, 2010 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix 

Network Science: Graph Theory   2012 

Network Science
Cheatsheet

Made by
Remy Cazabet

� Network basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (1, 6),

(1, 5), (2, 4), (2, 3), (2, 5),

(2, 6), (6, 5), (5, 5), (4, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out

u
Successors of u, nodes such as (u, v) 2 E in a directed
graph

N
in

u
Predecessors of u, nodes such as (v, u) 2 E in a directed
graph

k
out

u
Out-degree of u, number of outgoing edges |Nout

u
|.

k
in

u
In-degree of u, number of incoming edges |Nin

u
|

wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v
wuv .

Network descriptors - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
Subgraph H(W ) (induced subgraph): subset of nodes W of a graph
G = (V,E) and edges connecting them in G, i.e., subgraph H(W ) =
(W,E

0),W ⇢ V, (u, v) 2 E
0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections

After “A. DZY Loves Physics”
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CLUSTERING COEFFICIENT

• Clustering coefficient or triadic closure

• Triangles are considered important in real networks
‣ Think of social networks: friends of friends are my friends
‣ # triangles is a big difference between real and random networks

14



CLUSTERING COEFFICIENT

Triangles counting
�u - triads of u: number of triangles containing node u

� - number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V �u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u - triads potential of u: maximum number of triangles that could exist

around node u, given its degree: �max
u = ⌧(u) =

�ki
2

�

�max - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V �

max(u)

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used:
MultiplyingA by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A2

ij corresponds to the number of
walks of length � from node i to node j, A3

ij to the number of walks of
length �, etc.
MultiplyingA by a column vector W of length 1⇥N can be thought as set-
ting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
Pn

i = 0�k
i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA

15



CLUSTERING COEFFICIENT

u Triangles=2

Possible triangles= =6

=2/6=1/3
(4

2)
Cu

Clustering Coe�cents - Triadic closure
The clustering coe�cient is ameasure of the triadic closure of a network of a
node neighborhood. The triadic closure is a notion coming from social net-
work analysis, often summarized by the aphorism The friends of my friends

are my friends.

Cu - Node clustering coe�cient: density of the subgraph induced by the
neighborhood of u, Cu = d(H(Nu). Also interpreted as the fraction of all
possible triangles inNu that exist, �u

�max
u

hCi - Average clustering coe�cient: Average clustering coe�cient of all
nodes in the graph, C̄ =

P
u2V Cu .

Be careful when interpreting this value, since all nodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C value is very sensitive, i.e., for a node u of de-
gree �, Cu 2 0, 1, while nodes of higher degrees tend to
have more contrasted scores.

C
g - Global clustering coe�cient: Fraction of all possible triangles in the

graph that do exist, Cg = 3�
�max

� Node centrality

Node centrality indices
(Node structural indexes)
Node centrality indices re�ect how a node is characteristic of a given struc-
tural property. This is often summarized as a measure of the node impor-

tance, however importance and centrality are subjective/qualitative notions.
Thus a centrality, despite its name, do not necessarily measure how central

a node is, but rather how its position in the graph is typical of the property
captured by this index.

Centralities - Example

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasure how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness:
Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`
vu means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Edges: 2
Max edges: 4*3/2=6

=2/6=1/3Cu 16



CLUSTERING COEFFICIENT

Clustering Coe�cents - Triadic closure
The clustering coe�cient is ameasure of the triadic closure of a network of a
node neighborhood. The triadic closure is a notion coming from social net-
work analysis, often summarized by the aphorism The friends of my friends

are my friends.

Cu - Node clustering coe�cient: density of the subgraph induced by the
neighborhood of u, Cu = d(H(Nu). Also interpreted as the fraction of all
possible triangles inNu that exist, �u

�max
u

hCi - Average clustering coe�cient: Average clustering coe�cient of all
nodes in the graph, C̄ = 1

N

P
u2V Cu .

Be careful when interpreting this value, since all nodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C value is very sensitive, i.e., for a node u of de-
gree �, Cu 2 0, 1, while nodes of higher degrees tend to
have more contrasted scores.

C
g - Global clustering coe�cient: Fraction of all possible triangles in the

graph that do exist, Cg = 3�
�max

� Node centrality

Node centrality indices
(Node structural indexes)
Node centrality indices re�ect how a node is characteristic of a given struc-
tural property. This is often summarized as a measure of the node impor-

tance, however importance and centrality are subjective/qualitative notions.
Thus a centrality, despite its name, do not necessarily measure how central

a node is, but rather how its position in the graph is typical of the property
captured by this index.

Centralities - Example

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasure how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness:
Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`
vu means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.
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CLUSTERING COEFFICIENT

• Global CC:
‣ In random networks, GCC = density

- =>very small for large graphs 
‣ Facebook ego-networks: 0.6
‣ Twitter lists: 0.56
‣ California Road networks: 0.04

18



PATH RELATED SCORES

Network Science
Cheatsheet

Made by
Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections

Network Science
Cheatsheet

Made by
Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., B.A.B.A.C.E is a valid
walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections19



PATH RELATED SCORES

Network Science
Cheatsheet

Made by
Remy Cazabet

� Network Basics

Networks: Graph notation
Graph notation : G = (V,E)
V set of vertices/nodes.
E set of edges/links.
u 2 V a node.
(u, v) 2 E an edge.

Network - Graph notation

Graph

�

�

�
�

��

Graph notation

G = (V,E)

V = {1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 5), (0, 4),
(1, 2), (1, 3), (1, 4), (1, 5),

(5, 4), (4, 4), (2, 3)}

Types of networks
Simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) 2 V does not imply (v, u) 2
V

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

N/n size: number of nodes |V |.
L/m number of edges |E|
Lmax Maximum number of links

Undirected network:
⇣
N

2

⌘
= N(N � 1)/2

Directed network:
⇣
N

2

⌘
= N(N � 1)

Node-Edge description

Nu Neighbourhood of u, nodes sharing a link with u.
ku Degree of u, number of neighbors |Nu|.
N

out
u Successors of u, nodes such as (u, v) 2 E in a directed

graph
N

in
u Predecessors of u, nodes such as (v, u) 2 E in a directed

graph
k
out
u Out-degree of u, number of outgoing edges |Nout

u |.
k
in
u In-degree of u, number of incoming edges |Nin

u |
wu,v Weight of edge (u, v).
su Strength of u, sum of weights of adjacent edges, su =P

v wuv .

Network descriptors � - Nodes/Edges

hki Average degree: Real networks are sparse, i.e., typically
hki ⌧ n. Increases slowly with network size, e.g., d ⇠
log(m)

hki =
2m

n

d/d(G) Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance
Walk: Sequences of adjacent edges or nodes (e.g., �.�.�.�.� is a valid walk)
Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
`u,v : Distance: The distance between nodes u, v is the length of the short-
est path

Network descriptors � - Paths
`max Diameter: maximum distance between any pair of nodes.
h`i Average distance:

h`i =
1

n(n � 1)

X

i 6=j

dij

Degree distribution
The degree distribution is considered an important network property. They
can follow two typical distributions:

• Bell-curved shaped (Normal/Poisson/Binomial)

• Scale-free, also called long-tail or Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
manwealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).

More details later.

Subgraphs
subgraph H(W ): subset of nodes W of a graph G = (V,E) and edges
connecting them in G, i.e., subgraph H(W ) = (W,E

0),W ⇢ V, (u, v) 2
E

0 () u, v 2 W ^ (u, v) 2 E

Clique: subgraph with d = 1
Triangle: clique of size �
Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph
StronglyConnectedcomponent: In directed networks, a subgraph inwhich
any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections
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AVERAGE PATH LENGTH

• The famous 6 degrees of separation (Milgram experiment)
‣ (More on that next slide)

• Not too sensible to noise

• Tells you if the network is “stretched” or “hairball” like

21



SIDE-STORY: MILGRAM 
EXPERIMENT

• Small world experiment (60’s)
‣ Give a (physical) mail to random people
‣ Ask them to send to someone they don’t know

- They know his city, job
‣ They send to their most relevant contact

• Results: In average, 6 hops to arrive

22



SIDE-STORY: MILGRAM 
EXPERIMENT

• Many criticism on the experiment itself: 
‣ Some mails did not arrive
‣ Small sample
‣ …

• Checked on “real” complete graphs (giant component):
‣ MSN messenger
‣ Facebook
‣ The world wide web
‣ …

23



SIDE-STORY: MILGRAM 
EXPERIMENT

Facebook
24



SMALL WORLD

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Clustering Coe�cents - Triadic closure
The clustering coe�cient is ameasure of the triadic closure of a network of a
node neighborhood. The triadic closure is a notion coming from social net-
work analysis, often summarized by the aphorism The friends of my friends

are my friends.

Cu - Node clustering coe�cient: density of the subgraph induced by the
neighborhood of u, Cu = d(H(Nu). Also interpreted as the fraction of all
possible triangles in Nu that exist, �u

�max
u

hCi - Average clustering coe�cient: Average clustering coe�cient of all
nodes in the graph, C̄ = 1

N

P
u2V

Cu .

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their

degree, and that low degree nodes tend to bemuchmore frequent than hubs, and theirC value

is very sensitive, i.e., for a nodeu of degree �,Cu 2 0, 1, while nodes of higher degrees tend

to have more contrasted scores.

C
g - Global clustering coe�cient: Fraction of all possible triangles in the

graph that do exist, Cg = 3�
�max

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

Small World Network
A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively de�ned, but two properties
are required:

• Average distance must be short, i.e., h`i ⇡ log(N)

• Clustering coe�cient must be high, i.e., much larger than in a ran-
dom network , e.g., Cg � d, with d the network density

This property is considered characteristic of real networks, as opposition to
random networks. It is believed to be associated to particular properties
(robustness to failures, e�cient information �ow, etc.), and to be the conse-
quence of emergent mechanisms typical of complex systems.

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

More on this during the random network class
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CORE-PERIPHERY : CORENESS

• A k-core of G can be obtained 
by recursively removing all the 
vertices of degree less than k, 
until all vertices in the remaining 
graph have at least degree k. 

Goal: To identify dense cores of high degree nodes in networks

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used:
MultiplyingA by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.
MultiplyingA by a column vector W of length 1⇥N can be thought as set-
ting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA
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GRAPHS AS 
MATRICES

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used:
MultiplyingA by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.
MultiplyingA by a column vector W of length 1⇥N can be thought as set-
ting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA
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Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used:
MultiplyingA by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.
MultiplyingA by a column vector W of length 1⇥N can be thought as set-
ting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used:
MultiplyingA by itself allows to know the number of walks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.
MultiplyingA by a column vector W of length 1⇥N can be thought as set-
ting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA

31
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Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA

Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1
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D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1
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L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1
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A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1
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Triangles counting
�u - Triads of u: number of triangles containing node u

� -Number of triangles in the graph total number of triangles in the graph,
� = 1

3

P
u2V

�u .

Each triangle in the graph is counted as a triad once by each of its nodes.

�
max
u

- Triad potential of u: maximum number of triangles that could exist
around node u, given its degree: �max

u
= ⌧(u) =

�
ki
2

�

�max - Triangle potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: �max = 1

3

P
u2V

�
max(u)

Cores and Shells
Many real networks are known to have a core-periphery structure, i.e.,
there is a densely connected core at its center and a more peripheral
zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V,E) is the largest subgraph
H(C) such as all nodes have at least a degree k, i.e., 8u 2 C, k

H

u
 k,

withkH

u
the degree of node u in subgraph H .

coreness: A vertex u has coreness k if it belongs to the k-core but not to
the k + 1-core.
c-shell: all vertices whose coreness is exactly c.

Vocabulary
Singleton: node with a degree k = 0
Hub: node u with ku � hki

Bridge: Edge which, when removed, split a connected component in two.
Self-loop: Edge which connects a node to itself.

Complete network: L = Lmax

Sparse network: d ⌧ 1, L ⌧ Lmax

Connected Graph: Graph composed of a single connected component

� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k in G equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is ��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1
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D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1
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L - Laplacian

0

BBBBB@

2 �1 �1 �1 �1 �1
�1 4 �1 �1 �1 �1
�1 �1 1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 �1 4 �1
�1 �1 �1 �1 �1 2

1
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A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1
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ANALYSIS

• Source: [The Anatomy of the Facebook Social Graph, Ugander 
et al. 2011]

• The Facebook friendship network in 2011
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EXEMPLE OF GRAPH 
ANALYSIS

• 721M users (nodes) (active in the last 28 days)

• 68B edges

• Average degree: 190 (average # friends)

• Median degree: 99

• Connected component: 99.91%
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Component size
Distribution 
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Degree distribution

Cumulative
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My friends have more
Friends than me!

Many of my friends have the 
Same # of friends than me!
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Age homophily

(More next class)
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Country similarity

84.2% percent of edges are 

within countries 

(More in the community 
detection class)


