NETWORK REPRESENTATIONS \cdot $\overline{}$ 2 = *N*(*N* 1)

Node-Edge description

Node degree

Number of connections of a node

• Undirected network

• Directed network

In degree

Out degree

Weighted degree: strength

DESCRIPTION OF GRAPHS

DESCRIPTION OF GRAPHS

- When confronted with a graph, how to describe it?
- How to compare graphs?
- What can we say about a graph?

SIZE

Counting nodes and edges

 N/n **size**: number of nodes $|V|$.
L/m and number of edges $|E|$ L/m number of edges $|E|$
 L_{max} Maximum number of **Maximum number of links**

> Undirected network: ⇣*^N* 2 \setminus $= N(N-1)/2$

$$
\text{Directed network: } \binom{N}{2} = N(N-1)
$$

SIZE

$DENSITY$

Network descriptors 1 - Nodes/Edges

 $\langle k \rangle$ **| Average degree**: Real networks are sparse, i.e., typically $\langle k \rangle \ll n$. Increases slowly with network size, e.g., $d \sim$ $log(m)$

$$
\langle k \rangle = \frac{2m}{n}
$$

 $d/d(G)$ **Density**: Fraction of pairs of nodes connected by an edge in *G*.

$$
d=L/L_{\rm max}
$$

DENSITY

Beware: density hard to compare between graphs of different sizes

DENSITY

- It has been observed that: [Leskovec. 2006]
	- ‣ When graphs increase in size, the average degree increases
		- (Density on the contrary, decreases)
	- ‣ This increase is very slow
- Think of friends in a social network

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations." *Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining.* 2005.

DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is (close to) a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
	- ‣ A high majority of small degree nodes
	- ‣ A small minority of nodes with very high degree (Hubs)
- Often modeled by a **power law**
	- ‣ More details later in the course

SUBGRAPHS

Subgraphs

Subgraph *H*(*W*) (induced subgraph): subset of nodes *W* of a graph $G = (V, E)$ and edges connecting them in *G*, i.e., subgraph $H(W) =$ $(W, E'), W \subset V, (u, v) \in E' \iff u, v \in W \land (u, v) \in E$

Clique: subgraph with $d = 1$

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

Strongly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

Figure after Newman, 2010

CLUSTERING COEFFICIENT

• **Clustering coefficient** or **triadic closure**

- Triangles are considered important in real networks
	- ‣ Think of social networks: *friends of friends are my friends*
	- ▶ # triangles is a big difference between real and random networks

CLUSTERING COEFFICIENT

Triangles counting

 δ_u - **triads of** u : number of triangles containing node u Δ - **number of triangles in the graph** total number of triangles in the graph, $\Delta = \frac{1}{3}$ $\sum_{u \in V} \delta_u$

Each triangle in the graph is counted as a triad once by each of its nodes.

 δ_u^{\max} - triads potential of u : maximum number of triangles that could exist around node u , given its degree: $\delta_u^{\max} = \tau(u) = \binom{k_i}{2}$ 2 Δ^{max} - **triangles potential of G:** maximum number of triangles that could exist in the graph, given its degree distribution: $\Delta^{\max} = \frac{1}{3}$ $\sum_{u \in V} \delta^{\max}(u)$

CLUSTERING COEFFICIENT T (T is a measure of the triadic coefficient is a network of a new T node neighborhood. The triadic closure is a notion coming from social net-

C^u - **Node clustering coe!cient:** density of the subgraph induced by the neighborhood of u , $C_u = d(H(N_u))$. Also interpreted as the fraction of all possible triangles in N_u that exist, $\frac{\delta u}{\delta^{\rm max}_u}$

Triangle=2
\n
$$
Figsible triangles = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 6
$$
\n
$$
C_u = 2/6 = 1/3
$$

CLUSTERING COEFFICIENT *C*_u (S *L* B ERING (C) FFFI(IFN I neighborhood of *u*, *C^u* = *d*(*H*(*Nu*). Also interpreted as the fraction of all

u $\langle C \rangle$ - **Average clustering coefficient**: Average clustering coefficient of all $\frac{1}{N}$ nodes in the graph, $\bar{C} = \frac{1}{N}$ $\sum_{u \in V} C_u$

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their degree, and that low degree nodes tend to be much more frequent than hubs, and their *C* value is very sensitive, i.e., for a node *u* of degree 2, $C_u \in 0, 1$, while nodes of higher degrees tend to have more contrasted scores.

C^g - **Global clustering coe!cient:** Fraction of all possible triangles in the graph that do exist, $C^{\tilde{g}} = \frac{3\Delta}{\Delta^{\max}}$

CLUSTERING COEFFICIENT

• Global CC:

- \rightarrow In random networks, GCC = density
	- = >very small for large graphs
- ‣ Facebook ego-networks: 0.6
- ‣ Twitter lists: 0.56
- ‣ California Road networks: 0.04

PATH RELATED SCORES \Box Λ \Box **V SET OF VERTICAL SET OF VE** E set of the \sim \sim \sim \sim \sim \sim *s^u* **Strength** P of *u*, sum of weights of adjacent edges, *s^u* = *^v wuv*.

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., **1.2.1.6.5** is a valid walk) **Path**: a walk in which each node is distinct. h*k*i **Average degree**: Real networks are sparse, i.e., typically h*k*i ⌧ *n*. Increases slowly with network size, e.g., *d* ⇠

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path **Shortest path**: The shortest path between nodes u, v is a path of minimal *path length*. Often it is not unique. *d/d*(*G*) **Density**: Fraction of pairs of nodes connected by an edge in

Weighted Shortest path: path of minimal weighted path length.

 $\ell_{u,v}$ **: Distance**: The distance between nodes u,v is the length of the shortest path *G*.

Network - Graph notation - G

(*u, v*) 2 *E* an edge.

Network descriptors 1 - Nodes/Edges

PATH RELATED SCORES

Network descriptors 2 - Paths

 ℓ_{max} **Diameter**: maximum *distance* between any pair of nodes.
 $\langle \ell \rangle$ **Average distance**: Average distance:

$$
\langle \ell \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij}
$$

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment) ‣ (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
	- ‣ Give a (physical) mail to random people
	- ▶ Ask them to send to someone they don't know South Dakota
		- They know his city, job
	- ‣ They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY: MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
	- ‣ Some mails did not arrive
	- ‣ Small sample
	- \blacktriangleright ...
- Checked on "real" complete graphs (giant component):
	- ‣ MSN messenger
	- ‣ Facebook
	- ‣ The world wide web
	- \mathcal{P} …

SIDE-STORY: MILGRAM EXPERIMENT

Facebook

SMALL WORLD

Small World Network

A network is said to have the **small world** property when it has some structural properties. The notion is not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle \ell \rangle \approx \log(N)$
- \cdot Clustering coefficient must be high, i.e., much larger than in a random network, e.g., $C^g \gg d$, with *d* the network density

More on this during the random network class

CORE-PERIPHERY : CORENESS around node *u*, given its degree: max *^u* ⁼ ⌧(*u*) = *ki* 2 max - **Triangle potential of G:** maximum number of triangles that could exist in the graph, given its degree distribution: max = ¹ 3 P *^u*2*^V* max(*u*) **Matrices in short**

Goal: To identify dense cores of high degree nodes in networks bers. The size of a matrix is expressed as *m* ⇥ *n*, for a matrix with *m* rows

Cores and Shells

Many real networks are known to have a **core-periphery** structure, i.e., there is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order *k*) of *G*(*V,E*) is the largest subgraph $H(C)$ such as all nodes have at least a degree k , i.e., $\forall u \in C, k_u^H \leq k$, with k_u^H the degree of node u in subgraph H .

coreness: A vertex *u* has coreness *k* if it belongs to the *k*-core but not to the $k + 1$ -core. **c-shell:** all vertices whose coreness is exactly *c*.

2-core 1-core \bullet 2-shell \bullet 3-shell 1-shell

• A k-core of *G* can be obtained by recursively removing all the vertices of degree less than k , until all vertices in the remaining graph have at least degree *k*. **A A DOD OD O** V ertices of degree less triali K , drim an vertices in the remaining

TRIADS COUNTING

TRIADS COUNTING

Triad type

GRAPHLETS

GRAPHS AS MATRICES **2 Networks as matrices**

Matrices in short

Matrices are mathematical objects that can be thought as *tables* of numbers. The size of a matrix is expressed as $m \times n$, for a matrix with m rows and *n* columns. **The order (row/column) is important**. *Mij* is a notation representing the element on **row** *m* and **column** *j*.

ADJACENCY MATRIX **Matrix 1988 Spectral Graph Theory** is a whole !eld in itself, and beyond the scope of this class. A few elements for those with a *linear algebra* background: • The adjacency matrix of an undirected simple graph is symmetric, and therefore has a complete set of real eigenvalues and an orthog-

A **- Adjacency matrix** onal eigenvector basis. α - Augusting indicates of a graph is the spectrum of the spectrum of the spectrum of the graph.

The most natural way to represent a graph as a matrix is called the Adjacency matrix A. It is defined as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes *N* in the graph. Nodes of the graph are numbered from 1 to N , and there is an edge between nodes i and j if the corresponding position of the matrix A_{ij} is not 0. is not 0.

- A value on the diagonal means that the corresponding node has a **is called** in the sharp character is an eight of the solid state of the solid state in the solid state of t
- the graph is **undirected**, the matrix is **symmetric**: *Aij* = *Aji* for any If *G* is connected, then the diameter of *G* is strictly less than its num i,j .
	- In an **unweighted** network, and edge is represented by the value 1.
- \cdot In a weighted network, the value A_{ij} represents the weight of the edge (*i, j*) $\text{edge}(i, j)$

Multiplying *A* by a *column vector W* of length 1 ⇥ *N* can be thought as set-

31

 \bullet 3-shell

Matrices are mathematical objects that can be thought as *tables* of num-

bers. The size of a matrix is expressed as *m* ⇥ *n*, for a matrix with *m* rows

Mij is a notation representing the element on **row** *m* and **column** *j*.

ADJACENCY MATRIX 0 $\overline{\mathsf{N}}$ 050000 $\bigcap \bigcup \bigwedge \bigcap \bigcap \bigcup \bigwedge \bigcup \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge$ cency matrix *A*. It is de!ned as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes *N* in the graph. Nodes of the graph are numbered from 1 to *N*, and there is an edge between nodes *i* and *j* if the corresponding position of the matrix *Aij* Many real networks are known to have a **core-periphery** structure, i.e., there is a densely connected core at its center at its center at its center at its center and a more peripheral Λ zone in which nodes are loosely connected between them and to the core. **k-core:** The k-core (core of order *k*) of *G*(*V,E*) is the largest subgraph *^H*(*C*) such as all nodes have at least a degree *^k*, i.e., ⁸*^u* ² *C, k^H* **Matrix 1999** \blacksquare The set of \blacksquare • Eigenvalues are denoted as ⁰ ¹ ² *... ⁿ* • The largest eigenvalue ⁰ lies between the average and maximum

the graph. Nodes of the graph are numbered from 1 to *N*, and there is an

ber of distinct eigenvalues

• In an **unweighted** network, and edge is represented by the value 1.

Graph *ⁱ* = 0*^k*

Typical operations on *A* • the graph is **undirected**, the matrix is **symmetric**: *Aij* = *Aji* for any *i, j*. edge between nodes *i* and *j* if the corresponding position of the matrix *Aij* is $\boldsymbol{\mathcal{A}}$

• A value on the diagonal means that the corresponding node has a

Mij is a notation representing the element on **row** *m* and **column** *j*.

Matrices are mathematical objects that can be thought as *tables* of numbers. The size of a matrix is expressed as *m* ⇥ *n*, for a matrix with *m* rows

and *n* columns. **The order (row/column) is important**.

^u the degree of node *u* in subgraph *H*.

c-shell: all vertices whose coreness is exactly *c*.

coreness: A vertex *u* has coreness *k* if it belongs to the *k*-core but not to

Example 2
19 In a *i***operations on Adjacency matrices have straightforward interpreta-***A* **tions and are frequently used** *A*² • the graph is **undirected**, the matrix is **symmetric**: *Aij* = *Aji* for any *A* **- Adjacency Mat.** • A value on the diagonal means that the corresponding node has a

Multiplying A by itself allows to know the number of walks of a given length \blacksquare $\frac{1}{2}$ exist between any pair of nodes: A_{ij}^2 corresponds to the number of $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ \mathbb{R}^{e} **Walks of tength 2** from node *i* to node *j*, A_{ij}^3 to the number of walks of $\frac{1}{2}$ - tonpth 2 etg. α and α is a square matrix, such as a square matrix, such as the number of α $\mathcal{F}_{\mathcal{C}}$ remark exist between any pair of nodes: A_{ij}^- corr weeks of enging nonimode *i* to node *j*, A_{ij} to the number of w $\frac{1}{4}$

Multiplying \overline{A} by a **column vector** W of length $1 \times N$ can be thought as setting the *i*th value of the vector to the *i*th node and each node sending its $\frac{1}{2}$ is a the i ₁ th value of the vector to the *i*th node, and each node *sending* its value to its is shell because on a graphs). The result is a column vector was straightforward interpretations o with *N* elements, the *i*th element corresponding to the sum of the values with 17 stoffents, the value serious seriop priaing to the same ratio values or **diffusion** phenomenon. **Multiplying** *A* by **itself** allows to know the number of walks of a given length that exist between any pair of nodes: *A*² *ij* corresponds to the number of Some operations on Adjacency matrices have straightforward interpreta*i, j*. • In an **unweighted** network, and edge is represented by the value 1. r its neig \circ um of the values 1

300000

BBBBB@

050000

CCCCCA

BBBBB@

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]
- The Facebook friendship network in 2011

- 72 IM users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average # friends)
- Median degree: 99
- Connected component: 99.91%

Component size **Distribution**

Cumulative

Degree distribution

My friends have more

If it is a more than more Many of my friends have the Friends than mole same than mole than mole than mole than $\frac{1}{2}$ Same # of friends than me!

Age homophily

(More next class)

Country similarity

84.2% percent of edges are within countries

(More in the community detection class)