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COMMUNITY DETECTION

• Community detection is equivalent to “clustering” in 
unstructured data

• Clustering: unsupervised machine learning
‣ Find groups of elements that are similar to each other

- People based on DNA, apartments based on characteristics, etc.
‣ Hundreds of methods published since 1950 (k-means)
‣ Problem: what does “similar to each other” means ?



COMMUNITY DETECTION



COMMUNITY DETECTION

• Community detection:
‣ Find groups of nodes that are:

- Strongly connected to each other
- Weakly connected to the rest of the network
- Ideal form: each community is 1)A clique, 2) A separate connected component

‣ No formal definition 
‣ Hundreds of methods published since 2003



WHY COMMUNITY 
DETECTION ?

• One of the key properties of complex networks was
‣ High clustering coefficient
‣ (friends of my friends are my friends)

• Different from random networks. How to explain it ?
‣ Watts strogatz (spatial structure?)

• => In real networks, presence of dense groups: communities
‣ Small, dense (random) networks have high density.
‣ Large networks could be interpreted as aggregation of smaller, denser 

networks, with much fewer edges between them



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• If you plot the graph of your Facebook/linked-in contacts, it 
looks like this



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• Connections in the brain ?



COMMUNITY STRUCTURE IN 
REAL GRAPHS

• Phone call communications in Belgium ?

3. Results: division of the Belgian telephone territory

3.1 Division based on the frequency of calls

Figure 2 illustrates the groups obtained based on the frequency of telephone com-
munications between municipalities. The colours are of no particular significance 
and are simply intended to facilitate the reading of the map. 

Our main comments may be summarised in four points:

(1) Without having fixed the number of groups or their size, the optimal groups ob-
tained are spatially balanced: 17 ‘telephone areas’ composed of 15 to 66 munici-
palities appear ‘naturally’. This result is different from the division in labour pools (47 
pools defined by de Wasseige et al., 2000) and, without being identical, resembles 
the urban hierarchy of Van Hecke et al. (2007). To this effect, we have indicated on 
the map in Figure 2 the regional cities and the major cities as defined in Van Hecke 
et al. (2007). Note that certain telephone areas encompass two cities (for example, 
the Belgian coast forms a telephone area in itself and groups the cities of Ostend 
and Bruges; other examples: Hasselt and Genk or Mechelen and Leuven), whilst 
other telephone areas do not correspond to a ‘regional city’ as defined by Van 
Hecke et al. (2007) (for example Aalst to the west of Brussels is a telephone area, 
whereas Aalst is not considered as a ‘regional city’; the same is true for the province 

of Luxembourg). 

(2) Surprisingly, the groups of municipalities 
are always made up of adjacent municipali-
ties. As the grouping method does not im-
pose constraints regarding proximity or 
contiguity of municipalities in groups, the 
results could have revealed groups com-
posed of separate parts, but this is not the 
case for the groups obtained. 

(3) The linguistic border is followed by the 
limits of the ‘telephone areas’, with the ex-
ception of the area of Brussels (in red on 
the map) and the municipalities with facili-
ties Espierre-Helchin, Comines-Warneton, 
Herstappe and Fourons. Language there-
fore seems to be a strong barrier in terms 
of telephone communications: this confirms 
the former results of Klaassen et al. (1972), 
Rossera (1990) and Rietveld and Janssen 
(1990). However, it should be noted that 
the barrier around the German-speaking 
region is less clearly marked.

(4) The biggest area obtained (66 munici-
palities) corresponds – not surprisingly – to 
the biggest city: Brussels. Figure 3 presents  
a zoom-in of Figure 2 centred on Brussels. 

Brussels Studies
the e-journal for academic research on Brussels  5

V. BLONDEL, G. KRINGS, I. THOMAS, 
« Regions and borders of mobile telephony in Belgium and in the Brussels metropolitan zone », 

Brussels Studies, Issue 42, 4 October 2010, www.brusselsstudies.be

Figure 2: ‘Telephone areas’ defined based on the frequency of communica-
tions between municipalities. We also indicate (1) = regional city (2) major 
city (definitions from Van Hecke et al., 2007) and (3): provincial borders.

Vilvoorde, Zaventem, Tervuren, Braine-l’Alleud, Ottignies-Louvain-la-Neuve, Wavre, 
Perwez and Jodoigne. However, Leuven is not included and is part of another tele-
phone area with Mechelen (see Figure 2). The Brussels telephone area resembles its 
urban area: it covers a much bigger area than the 19 municipalities of the Brussels-
Capital Region, all around the capital with a stronger spatial extension towards the 
south.

3.2 Division based on the average duration of communications

The municipalities are grouped here using the same method, according to the aver-
age duration of communications. The results are illustrated in Figures 4 (national 
scale) and 5 (a zoom-in on Brussels) and lead to two main commentaries:

(1) the method leads naturally to the constitution of two groups: one to the north 
and the other to the south of the country (Figure 4). Among the more than 200 mil-
lion communications analysed, only 1.05% are from the group in the north to the 
group in the south, and 1.04% are from the group in the south to the group in the 
north. In other words, almost 98% of telephone communications take place be-
tween customers within the same group. Let us note that the municipalities in the 

German-speaking 
community do not 
form a separate 
group, but are part 
of the group in the 
south of the country.

(2) Figure 4 shows 
that the north-south 
division follows the 
linguistic border with 
a few exceptions. 
Not surprisingly, 
these exceptions are 
all municipalities 
with facilities. With 
the exception of 
Wemmel, the mu-
nicipalities with facili-
ties in the outskirts 
of Brussels (Dro-
genbos, Kraainem, 
Linkebeek, Rhode-
Saint-Genèse, 
Wezembeek-
Oppem) are all 
grouped with the 
municipalities in the 
south of the country 
(see Figure 5 for a 
zoom-in). Three 
other municipalities 
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Figure 4: ‘Mobile telephone areas’ defined based on the average duration of communications.



FIRST METHOD BY GIRVAN & 
NEWMAN

• 1)Compute the betweenness of all edges

• 2)Remove the edge of highest betweenness

• 3)Repeat until all edges have been removed
‣ Connected components are communities

• => It is called a divisive method

• =>What you obtain is a dendrogram

• How to cut this dendrogram at the best level ?



FIRST METHOD BY GIRVAN & 
NEWMAN

Maximal 
modularity



FIRST METHOD BY GIRVAN & 
NEWMAN

• Introduction of the Modularity

• The modularity is computed for a partition of a graph
‣ (each node belongs to one and only one community)

• It compares :
‣ The observed fraction of edges inside communities 
‣ To the expected fraction of edges inside communities in a random network



MODULARITY

Original formulation



MODULARITY

Sum over all pairs of nodes



MODULARITY

1 if in same community



MODULARITY

1 if there is an edge between them



MODULARITY

Probability of an edge in 
a configuration model



MODULARITY

• Modularity compares the observed network to a null 
model
‣ Usually the configuration model

- Multi-edges and loops are allowed
‣ Other models could be used, such as ER random graphs.

• Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN & 
NEWMAN

• Back to the method:
‣ Create a dendrogram by removing edges
‣ Cut the dendrogram at the best level using modularity

• =>In the end, your objective is… to optimize the Modularity, 
right ?

• Why not optimizing it directly !
‣ But NP complete problem



LOUVAIN ALGORITHM

• Simple, greedy approach
‣ Easy to implement
‣ Fast

• Yields a hierarchical community structure

• Beat state of the art on all aspects (when introduced)
‣ Speed
‣ Max modularity obtained
‣ Do not fall in some traps (see later)



LOUVAIN ALGORITHM

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



RESOLUTION LIMIT

• Modularity == Definition of good communities ?

• 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]
‣ Resolution limit of Modularity

• Let’s see an example

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.



RESOLUTION LIMIT
Let’s consider a ring of cliques

Cliques are as dense as possible

Single edge between them:
=>As separated as possible

Any acceptable algorithm=>Each clique is a community



RESOLUTION LIMIT

But with modularity:

Small graphs=> OK

Large graphs=> 
The max of modularity obtained

by merging cliques



RESOLUTION LIMIT

• Discovery that Modularity has a “favorite scale”:

• For a graph of given density and size:
‣ Communities cannot be smaller than a fraction of nodes
‣ Communities cannot be larger than a fraction of nodes

• Modularity optimisation will never discover 
‣ Small communities in large networks
‣ Large communities in small networks



RESOLUTION LIMIT
• Multi-resolution modularity 
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More a patch than a solution…



STOCHASTIC BLOCK MODELS

• Stochastic Block Models (SBM) are based on statistical models 
of networks

• They are in fact more general than usual communities.

• The model is:
‣ Each node belongs to 1 and only 1 community
‣ To each pair of communities, there is an associated density (probability of each 

edge to exist)



STOCHASTIC BLOCK MODELS
• SBM can represent different things:

‣ Associative SBM: density inside nodes of a same communities >> density of 
pairs belonging to different communities.

Other meso-scale structures
Beyond the usual community structure, other types of network
structural organizations have been proposed and studied. Some
of the most widely known are:

• Link communities, in which communities are de�ned as
sets of links. Searching for (non-overlapping) partitions of
edges yield a structure in which nodes naturally belong
to several groups, i.e., a community can corresponds to
familial edges, another to professional edges, etc. (Ahn,
Bagrow, and Lehmann ����)

• Fuzzy communities, in which nodes belong to (often sev-
eral) communitieswith a certain probability or strength (Liu
����)

• Core-Periphery structure, already de�nedwhenwe intro-
duced the notion of k-cores

• Nestedness, corresponding to a network with a hierarchi-
cal organization such as elements with few connections
tends to be connected to a subset of the neighbors of a
parent node. (Pawar ����)

• Spatial organization, in which the probability of observ-
ing an edge between nodes depends on their distance.
(Barthélemy ����)

Meso-scale organization -�

Examples of di�erent types of organization that can be obtained
using block structure

(�) Assortative Structure

(�) Disassortative Structure

(�) Core Periphery Structure

(�) Hierarchical Structure

Meso-scale organization -�

(�) Uniform/ Random

(�) Mixed Structure

(�) Nested Structure

Going Further

Surveys: (Fortunato ����) (Fortunato and Hric ����)
On community detection approaches: (Rosvall, Delvenne, et al.
����)
On stochastic Block Models:Funke and Becker ����
Survey overlapping communities: (Xie, Kelley, and Szymanski
����)
Community detection in dynamic networks (Rossetti and Cazabet
����)
On ground Truth and community detection: (Peel, Larremore, and
Clauset ����)
Community detection in neuroscience (Betzel ����)
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EVALUATION OF 
COMMUNITY STRUCTURE



INTRINSIC EVALUATION

• Partition quality function
‣ Already defined: Modularity, graph compression, etc.

• Quality function for individual community
‣ Internal Clustering Coefficient 

‣ Conductance:  

- Fraction of external edges

|Eout |
|Eout | + |Ein | :

# of links to nodes inside 
(respectively, outside) the 

community

|Ein | , |Eout |



MEASURING PARTITION 
SIMILARITIES

• Synthetic or GT, we get:
‣ Reference communities
‣ Communities found by algorithms

• How to measure their similarity ?
‣ NMI => AMI
‣ ARI
‣ …



MEASURING PARTITION 
SIMILARITIES

• NMI: Normalized Mutual Information

• Classic notion of Information Theory: Mutual Information
‣ How much knowing one variable reduces uncertainty about the other
‣ Or how much in common between the two variables

• Normalized version: NMI
‣ 0: independent, 1: identical

• Adjusted for chance: aNMI AMI(U, V ) =
MI(U, V ) − E{MI(U, V )}

max {H(U ), H(V )} − E{MI(U, V )}



CORE-PERIPHERY


