COMMUNITY DETECTION
(GRAPH CLUSTERING)



EOMMUNITY DE | EC THEHS.

» Community detection Is equivalent to “clustering” in
unstructured data

» Clustering: unsupervised machine learning

» Find groups of elements that are similar to each other
- People based on DNA, apartments based on characteristics, etc.

» Hundreds of methods published since 1950 (k-means)
» Problem: what does “similar to each other’ means !



MUNITY DETECTICHS

MiniBatchKMeansAffinityPropagation = MeanShift SpectralClustering

Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




EOMMUNITY DE | EC THEHS.
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» Community detection: »

» FIind groups of nodes that are:
- Strongly connected to each other
- Weakly connected to the rest of the network
- |deal form: each community is |)A clique, 2) A separate connected component

» No formal definition
» Hundreds of methods published since 2003



WHY COMMUNITY
e T EC O

* One of the key properties of complex networks was

» High clustering coefficient
» (friends of my friends are my friends)

» Different from random networks. How to explain it ?
» Watts strogatz (spatial structure?)

* => |n real networks, presence of dense groups: communities

» Small, dense (random) networks have high density.

» Large networks could be interpreted as aggregation of smaller; denser
networks, with much fewer edges between them



COMMUNITY STRUCTURE IN
REAL GRAFTS

* If you plot the graph of your Facebook/linked-in contacts, it
looks like this
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COMMUNITY STRUCTURE IN
REAL GRAFTS

« Connections In the brain ?

A

O = Occipital

O = Central

O = Frontoparietal
@ = Default mode
[] = Rich club

Deactivations




COMMUNITY STRUCTURE IN
REAL GRAFTS

* Phone call communications in Belgium ?




FIRST METHOD BY GIRVAN &
NEWMAN

» | )Compute the betweenness of all edges
 2)Remove the edge of highest betweenness

» 3)Repeat untll all edges have been removed

» Connected components are communities

« => |t Is called a divisive method
* =>What you obtain Is a dendrogram

BEIEWATO cut this dendrogram at the best level ¢



NEWMAN

Cluster Dendrogram
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FIRST METHOD BY GIRVAN &
NEWMAN

* Introduction of the Modularity

* The modularity 1s computed for a partition of a graph

» (each node belongs to one and only one community)

* [t compares :
» The observed fraction of edges inside communities

» To the expected fraction of edges inside communities In a random network



MODULARITY

Original formulation



MODULARITY

Sum over all pairs of nodes



MODULARITY
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| It In same community



MODULARITY

| If there Is an edge between them



MODULARITY

Probability of an edge In
a configuration model



MODULARITY

* Modularity compares the observed network to a null

model

» Usually the configuration model
- Multi-edges and loops are allowed
» Other models could be used, such as ER random graphs.

» Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN &
NEWMAN

* Back to the method:

» Create a dendrogram by removing edges
» Cut the dendrogram at the best level using modularity

* =>|n the end, your objective Is... to optimize the Modularity,
right ¢

* Why not optimizing it directly !
» But NP complete problem



LOUVAIN ALGORITHM

* Simple, greedy approach
» Easy to implement
» Fast

* Yields a hierarchical community structure

» Beat state of the art on all aspects (when introduced)
» Speed
» Max modularity obtained
» Do not fall in some traps (see later)



LOUVAIN ALGORITHM

Move nodes

Level 1
Level 2
Mave nadec

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



RESOLUTION LIMIT

» Modularity == Definition of good communities !

» 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]

» Resolution limit of Modularity

BB cc ARl example

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.
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RESOLUTION LIMIT

Let's consider a ring of cliques
~ &K Cligues are as dense as possible

Single edge between them:
& | =>As separated as possible

Any acceptable algorithm=>tach cligue I1s a community



RESOLUTION LIMIT

But with modularity:
Small graphs=> OK

Large graphs=>
The max of modularity obtained
by merging cliques




RESOLUTION LIMIT

» Discovery that Modularity has a “favorite scale™”

* For a graph of given density and size:

» Communities cannot be smaller than a fraction of nodes
» Communities cannot be larger than a fraction of nodes

- Modularity optimisation will never discover

» Small communities in large networks
» Large communities in small networks



RESOLUTION LIMIT

» Multi-resolution modularity

ieii—aiz * Ze — la?

A = Resolution parameter

More a patch than a solution...



OCHAS 11C BLOCK MOE S

» Stochastic Block Models (SBM) are based on statistical models
of networks

* They are In fact more general than usual communities.

* The model Is:

» Each node belongs to | and only | community
» To each pair of communities, there Is an associated density (probability of each
EeSERiO eXiST)



OCHAS 11C BLOCK MOE S

B EIRCan represent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

Meso-scale organization -1

Examples of different types of organization that can be obtained
using block structure

0.3

(2) Disassortative Structure

(3) Core Periphery Structure

0.05 0.05

(4) Hierarchical Structure

Meso-scale organization -2

(5) Uniform/ Random

-~ 0.15 0.08 0.025 0

(7) Nested Structure




EVALUATION OF
COMMUNITY STRUCTURE



INTRINSIC EVALUATION

» Partition quality function
» Already defined: Modularity, graph compression, etc.

» Quality function for individual community

» Internal Clustering Coefficient

| Epye |
t
B Eondlciance: =
|E0ut|+|Ein| | E |5
- Fraction of external edges # of links to nodes inside

(respectively, outside) the
community



MEASURING PARTITION
SIMILARITIES

B itaetc or G, we get:

» Reference communities
» Communities found by algorithms

* How to measure their similarity ¢
» NMI => AM|
» AR|



MEASURING PARTITION
SIMILARITIES

H(Y

 NMI: Normalized Mutual Information

» Classic notion of Information Theory: Mutual Information

» How much knowing one variable reduces uncertainty about the other
» Or how much in common between the two variables

I(X;Y) :ZZP(w,y)log( p(z, ) )

yeY zeX p(w) p(y)

L —

 Normalized version: NMl

» O independent, |: identical

MI(U,V)—-E{MI(U,V)}

e Adjusted fOI” chance: aNMI A O max {H(U), H(V)} — E{MI(U,V))
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