
Machine Learning on Bitcoin

1. Create intepretable graphs
(a) Get the data for two successive days of Bitcoin activity. To avoid computation difficulties, I recom-

mend to start with some days around 2014 or 2015 to begin with. When the code is ready, you can
try on more recent dates.

(b) We will write a function that takes one day of data and create a graph from it. To create a function,
use def my function name(df): . You can test each line independently and then add it to the
function when you’re confident about its result.

(c) write a line to compute the sum of transactions between any two pair of nodes. You can use
groupby , sum() and reset index() to obtain a simple to manipulate dataframe from the

groupby result.
(d) Filter out all actors (sources, destination) that have interactions with less than k different actors(for

instance using k = 5). You can use value counts() to count how many times an element ap-
pear in a column, and something like .isin(list[list>=threshold].index to get the elements
appearing more than a threshold. If unsure, google for a way to do it.

(e) Write a line to remove self-spending, i.e., lines where the source and the destination are equal
(f) Write a line to remove all lines in which the sum of the value of the transaction is below a threshold,

for instance, less than 1 BTC (you can lower this threshold later if you want)
(g) Transform the resulting dataframe into a graph, typically using from pandas edgelist .

(h) You might want to check your graph, for instance using Gephi.

2. Link Prediction
(a) First, apply your function on the two days, to get 2 graphs constructed according to the same

process.
(b) Compute some heuristics, for instance Common neighbors, Adamic Adar and Preferential attach-

ment. You can use the networkx functions of the same name (https://networkx.org/documentation/
networkx-1.10/reference/algorithms.link_prediction.html).

(c) A simple way to use the resulting prediction is first to build a dataframe out of it with
prediction = pd.DataFrame.from records(list(AA),columns=["n1","n2","score"]) where

AA is the result of the Adamic Adar function.

(d) Now, you can iterate the rows of this dataframe using iterrows()

(e) To make a meaningful link prediction from the first graph, we need to: keep only predictions between
two nodes that appear also in the second graph. You can easily test this for each prediction by
using a condition such as if n1 in g2 and n2 in g2 .

(f) Finally, we want to evaluate the quality of the prediction using the auc score, typically from
sklearn library: from sklearn.metrics import roc auc score . This score takes 2 ordered

lists: One contains a list of scores (e.g., AA) for each pair of node, and the other contains the value
of the class, i.e., 0 if the pair of node is not connected in g2 and 1 if an edge exists between the
two nodes in g2 . You can test if an edge exist using g2.has edge(u,v) .

(g) If the auc score is above 0.5, then the prediction is better than random. The closer to 1, the better.
(h) You can compare different heuristics, different days, and different thresholds for your graph con-

struction

3. Embeddings

https://networkx.org/documentation/networkx-1.10/reference/algorithms.link_prediction.html
https://networkx.org/documentation/networkx-1.10/reference/algorithms.link_prediction.html


(a) For this class, we will use the karateclub library, which contains implementation of various graph
embedding methods. As usual, you can install it with pip install karateclub .

(b) karateclub library requires graph to respect some specific properties: the graph must be composed
of a single connected component, and node names must be integers from 0 to n. First, load the
airport graph.

(c) Extract the highest connected component. You can use
G=G.subgraph(max(nx.connected components(G), key=len)).copy()

(d) Rename nodes from 0 to n, using nx.relabel nodes . To easily retrieve names later, you should
keep a dictionary associating node numbers to names

(e) Using karateclub library, initialize a DeepWalk embedding model with
model= DeepWalk(dimensions=8,window size=4) . dimensions corresponds the number of di-

mensions in the resulting embedding, and window size corresponds to how far away in a random
walk 2 nodes can be and still considered in the context of one another.

(f) With model.fit(G) , you can compute the embedding on graph G . It can take a few minutes on
a large graph.

(g) With X = model.get embedding() , you can now retrieve the embedding of all nodes as a matrix.
X[0] returns a vector with d elements corresponding to the vector of node 0 in the embedded

space.
(h) Now, you can use your embedding in different ways. As an example, you can search what are the

actors considered the most similar to a particular actor, e.g. "Kraken.com" . To do so, you should
compute the similarity between vectors. For instance, you can use spatial.distance.cosine(vect1, vect2) ,
with spatial from from scipy import spatial

Page 2


