MACHINE LEARNING ON GRAPHS

Link prediction, Node classification, Graph Embedding

- Wikipedia:
 - Machine learning(ML) involves computers discovering how they can perform tasks without being explicitly programmed to do so
- Subset of artificial intelligence
- Objective of machine learning: make a program learn automatically something about your data

- Supervised Machine learning:
 - Train the program with examples (properties => associated value), the program can then predict the result given input properties
- Unsupervised Machine learning:
 - Given the data, the program should find by itself its rules/organization.
 - =>Most common example: clustering.
 - =>Community detection is unsupervised machine learning on graphs

- Examples of supervised machine learning
 - Given properties of an apartment, predict its energy consumption
 - Given a picture, recognize objects in it
 - Given a student profile, predict its success
 - Given a criminal profile, predict its probability of recidivism
 - Given past values and collected news, predict market fluctuations
 - Given a patient profile, predict effect of a drug
 - Given a fingerprint/face, recognize the user

. . .

Difference between linear regression and Advanced machine learning ?

("Black box" models, random forest, deep neural networks)

What about multicolinearity, heteroscedasticity ?

SUPERVISED MACHINE LEARNING I: LINK PREDICTION

LINK PREDICTION

- Do you know why Facebook "People you may know" is so accurate?
- How youtube/Spotify/amazon recommend you the right item?
- =>Link prediction
 - More generally, recommendation, but link prediction is a popular way to do it

LINK PREDICTION

- Observed network: current state
- Link prediction: What edge
 - Might appear in the future (future link prediction)
 - Might have been missed (missing link prediction)

LINK PREDICTION

• Overview:

- Link prediction based on network structure:
 - Local: High clustering (friends of my friends will become my friends)
 - Global: Two unrelated hubs more likely to have links that unrelated small nodes
 - Meso-scale organisation: different edge probability for nodes in different communities/blocks
- Link prediction can also be based on node properties
 - e.g., age, revenue, genre, etc.
 - Combining with usual machine learning, outside of the scope of this course

FIRST APPROACH TO LINK PREDICTION:

HEURISTIC BASED

(HEURISTICS, NOT MACHINE LEARNING)

HEURISTICS

- Network science experts can design heuristics to predict where new edge might appear/be missing
- Principle: design a score based on network topology f(v1,v2) which, given two nodes, express their likeliness of being connected (if they aren't already)
 - Common neighbors
 - Jaccard coefficient
 - Hub promoted
 - Adamic Adar
 - Ressource allocation
 - Community based

COMMON NEIGHBORS

- "Friends of my friends are my friends"
- High clustering in most networks
- =>The more friends in common, the highest probability to become friends

$$CN(x, y) = |\Gamma(x) \cap \Gamma(y)|$$

 $\Gamma(x) = \text{Neighbors of } x$

PREDICTION

How to predict links based on Common Neighbors (CN)?

JACCARD COEFFICIENT

- Used in many applications:
 - Measure of similarity of sets of different sizes

$$JC(x, y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$

- Intuition:
 - Two people who know only the same 3 people
 - =>high probability
 - Two people who know 1000 people, only 3 in commons
 - =>Lower probability

ADAMIC ADAR

- Intuition:
 - For previous scores: all common nodes are worth the same
 - For AA:
 - A common node with ONLY them in common is worth the most
 - A common node connected to everyone is worth the less
 - The higher the size of its neighborhood, the lesser its value

$$AA(x,y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$

PREFERENTIAL ATTACHMENT

- Preferential attachment:
 - Every time a node join the network, it creates a link with nodes with probability proportional to their degrees
 - In fact, closer to the definition of the configuration model
- Score not based on common neighbors
 - >>Assign different scores to nodes at network distance >2
- Intuition: Two nodes with many neighbors more likely to have new ones than nodes with few neighbors

$$PA(x, y) = |\Gamma(x)| \cdot |\Gamma(y)|$$

COMMUNITY STRUCTURE

- General idea:
 - I)Compute community structure on the whole graph
 - 2)Assign high score for 2 nodes in a same community, a low score otherwise
- How to choose the score?

ML APPROACH TO LINK PREDICTION:

SIMILARITY SCORE, SUPERVISED

- Use Machine Learning algorithms to **learn** how to combine heuristics for optimizing predictions
- Two steps:
 - Training: show features + value to predict
 - Using/Validating: try to predict value from features

- Our features: similarity indices (CN, AA, PA, ...)
 - Nodes attributes can be added if available (age, salary, etc.) (pairs, average...)
- Our label/value to predict: Link(1) or No link(0) (2 classes)
- These types of ML algorithms are called classifiers
 - Logistic Classifier
 - Decision Tree Classifier
 - Neural networks Classifier

. . . .

- Dozens of methods, very different in their mechanisms, but same input and output
 - #lm = linear_model.LinearRegression()
 #lm = linear_model.ElasticNet()
 #lm = linear_model.ElasticNet()
 #lm = ensemble.GradientBoostingRegressor()
 #lm = ensemble.RandomForestRegressor()
 lm = MLPRegressor(hidden_layer_sizes=(3,3,3)
 lm.fit(X_train,y_train)

Let's see 2 simple examples: Logistic classification, Decision Trees

https://en.wikipedia.org/wiki/Logistic_regression

LOGISTIC CLASSIFICATION

• Find β_0, β_1, \ldots that minimizes $y_t - y_i$

DECISION TREES

- Measure of heterogeneity (Gini, entropy...)
- Split recursively data in 2 to maximize homogeneity in child nodes

LINK PREDICTION EVALUATION

EVALUATION

- In order to choose a method for link prediction, it is needed to evaluate the quality of the prediction
- Several measures of prediction quality exists, but all takes the same inputs:
 - A set of test examples, and for each of them:
 - The ground truth value to predict (edge/not-edge)
 - The score provided by the prediction algorithm
 - We introduce two scores:
 - Precision @k
 - Area Under the Receiver Operating Characteristic Curve (AUROC, usually only AUC)

PRECISION @K

- Simple approach : Precision @k
- Fraction of correct prediction among k pairs of highest score
- Problem: which value of k to choose?
 - Affects strongly the score
 - Solution: a value combining scores of any k

AUC - AUROC

- AUC: Area Under the Curve. Short (erroneous) name for AUROC (Area under the Receiver Operating Characteristic Curve)
- Analyze the relationship between
 - False positives rate
 - True positives rate
- Take the area under the curve

AUC - AUROC

- Probabilistic interpretation:
 - If we pick a random positive example and a random negative example, probability that the positive one has a higher score
- Pros:
 - Independent on the fraction of positive examples, i.e., a balanced dataset can be used
- Cons:
 - Often very high values, (>0.95), thus small relative improvements

NODE CLASSIFICATION

Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in social networks. In Social network data analytics (pp. 115-148). Springer, Boston, MA.

NODE CLASSIFICATION

- For the node classification task, we want to predict the class/ category (or numerical value) of some nodes
 - Missing values in a dataset
 - Learn to predict, in a social network/platform(Netflix...) individuals':
 - Political position, opinion on a given topic, possible security threat, ...
 - Interests, tastes, etc.
 - Age, genre, sexual orientation, language spoken, salary, etc.
 - Fake accounts, spammers, bots, malicious accounts, etc.

- ...

• Wikipedia article category, types of road in an urban network, etc.

NODE FEATURES

- Non-network approach: Use a classification algorithm based on features of the node itself (age, salary, etc.)
- The network structure can be integrated using node centralities: Degree, clustering coefficient, betweenness, etc.
- But we can do much better:
 - "Tell me who your friends are, and I will tell you who you are"

NEIGHBORHOOD BASED CLASSIFICATION

- Classification based on the distribution of features in the neighborhood
- For each node, compute the distribution of labels in its neighborhood (vectors of length *m*, with *m* the set of all possible labels)
 - Pick the most frequent
 - e.g., political opinions
 - Train a classifier on this distribution
 - e.g., distribution of age, language in the neighborhoods to recognize bots (unexpectedly random)

EXAMPLE: BITCOIN USER CATEGORY PREDICTION

- Suppose we have clusters of addresses (actors)
 - For some, we know the category (exchange, mining pool, mixer, ransomware, etc.)
 - For others, we don't
- What do you propose to predict the class of unknown actors ?

GRAPH/NODE EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. *IEEE Transactions on Knowledge and Data Engineering*, *30*(9), 1616-1637.

VARIANT

- We can differentiate:
 - Node embedding
 - Edge Embedding
 - Substructure embedding
 - Whole graph Embedding
- In this course, only node embedding (often called graph embedding)

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. *IEEE Transactions on Knowledge and Data Engineering*, *30*(9), 1616-1637. 36

HOPE: HIGHER-ORDER PROXIMITY PRESERVED EMBEDDING

• Preserve a proximity matrix

$$y^* = \min \sum_{i,j} |S_{ij} - y_i y_j^T|$$

- *S* can be the adjacency matrix, or number of common neighbors, Adamic Adar, etc.
- As similarity tends towards 0, embedding vectors must tend towards orthogonality (orthogonal vectors: $y_i y_j^T = 0$)

RANDOM WALKS BASED

DEEPWALK

- The first Random Walk+Neural Networks graph embedding method.
 - First of a long series
- Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710). ACM.

Word embedding Corpus => Word = vectors Similar embedding= similar **context**

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]

Output weights for "car"

Probability that if you randomly pick a word nearby "ants", that it is "car"

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

N=embedding size. **V**=vocabulary size

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

GENERIC "SKIPGRAM"

• Algorithm that takes an input:

- The element to embed
- A list of "context" elements
- Provide as output:
 - An embedding with interesting properties
 - Works well for machine learning
 - Similar elements are close in the embedding
 - Somewhat preserves the overall structure

DEEPWALK

- Skipgram for graphs:
 - I)Generate "sentences" using random walks
 - 2)Apply Skipgram
- Parameters:
 - Embedding dimensions d
 - Context size
 - More technical parameters: length of random walks, number of walks starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710). ACM.

NODE2VEC

- Use biased random walk to tune the context to capture *what we want*
 - "Breadth first" like RW => local neighborhood (edge probability ?)
 - "Depth-first" like RW => global structure ? (Communities ?)
 - 2 parameters to tune:
 - **p**: bias towards revisiting the previous node
 - q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in *node2vec*. The walk just transitioned from t to v and is now evaluating its next step out of node v. Edge labels indicate search biases α .

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In *Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 855-864). ACM.

EMBEDDING ROLES

STRUC2VEC/ROLE2VEC

- In node2vec/Deepwalk, the context collected by RW contains the labels of encountered nodes
- Instead, we could memorize the properties of the nodes: attributes if available, or computed attributes (degrees, CC, ...)
- =>Nodes with a same context will be nodes in a same "position" in the graph
- =>Capture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In *Proceedings of the 23rd* ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 385-394). ACM.