
MACHINE LEARNING
ON GRAPHS

Link prediction, Node classification, Graph Embedding

1

MACHINE LEARNING

• Wikipedia:
‣ Machine learning(ML) involves computers discovering how they can perform

tasks without being explicitly programmed to do so

• Subset of artificial intelligence

• Objective of machine learning: make a program learn
automatically something about your data

2

MACHINE LEARNING

• Supervised Machine learning:
‣ Train the program with examples (properties => associated value), the

program can then predict the result given input properties

• Unsupervised Machine learning:
‣ Given the data, the program should find by itself its rules/organization.
‣ =>Most common example: clustering.
‣ =>Community detection is unsupervised machine learning on graphs

3

MACHINE LEARNING

• Examples of supervised machine learning
‣ Given properties of an apartment, predict its energy consumption
‣ Given a picture, recognize objects in it
‣ Given a student profile, predict its success
‣ Given a criminal profile, predict its probability of recidivism
‣ Given past values and collected news, predict market fluctuations
‣ Given a patient profile, predict effect of a drug
‣ Given a fingerprint/face, recognize the user
‣ …

4

MACHINE LEARNING

5

Difference between linear regression and
Advanced machine learning ?

(“Black box” models, random forest, deep neural networks)

What about multicolinearity, heteroscedasticity ?

SUPERVISED MACHINE LEARNING1:
LINK PREDICTION

6

LINK PREDICTION

• Do you know why Facebook “People you may know” is so
accurate?

• How youtube/Spotify/amazon recommend you the right item?

• =>Link prediction
‣ More generally, recommendation, but link prediction is a popular way to do it

7

LINK PREDICTION

• Observed network: current state

• Link prediction: What edge
‣ Might appear in the future (future link prediction)
‣ Might have been missed (missing link prediction)

8

LINK PREDICTION

• Overview:

• Link prediction based on network structure:
‣ Local: High clustering (friends of my friends will become my friends)
‣ Global: Two unrelated hubs more likely to have links that unrelated small nodes
‣ Meso-scale organisation: different edge probability for nodes in different

communities/blocks

• Link prediction can also be based on node properties
‣ e.g., age, revenue, genre, etc.
‣ Combining with usual machine learning, outside of the scope of this course

9

FIRST APPROACH TO LINK PREDICTION:

HEURISTIC BASED

(HEURISTICS, NOT MACHINE LEARNING)

10

HEURISTICS
• Network science experts can design heuristics to predict

where new edge might appear/be missing

• Principle: design a score based on network topology f(v1,v2)
which, given two nodes, express their likeliness of being
connected (if they aren’t already)
‣ Common neighbors
‣ Jaccard coefficient
‣ Hub promoted
‣ Adamic Adar
‣ Ressource allocation
‣ Community based

Zhou, T., Lü, L., & Zhang, Y. C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623-630.11

COMMON NEIGHBORS

• “Friends of my friends are my friends”

• High clustering in most networks

• =>The more friends in common, the highest probability to
become friends

Neighbors of xΓ(x) = 12

PREDICTION

• How to predict links based on Common Neighbors (CN)?

A

C

D

E

B

(D,C)=2

(A,E)=1
(D,E)=0

Original Graph Heuristic
(e.g., Common Neighbors)

(D,C)
(A,E)
(D,E)

Node pairs sorted
by score

Less likely

More likely

… …

13

JACCARD COEFFICIENT

• Used in many applications:
‣ Measure of similarity of sets of different sizes

• Intuition:
‣ Two people who know only the same 3 people

- =>high probability
‣ Two people who know 1000 people, only 3 in commons

- =>Lower probability

14

ADAMIC ADAR
• Intuition:

‣ For previous scores: all common nodes are worth the same
‣ For AA:

- A common node with ONLY them in common is worth the most
- A common node connected to everyone is worth the less
- The higher the size of its neighborhood, the lesser its value

15

PREFERENTIAL ATTACHMENT
• Preferential attachment:

‣ Every time a node join the network, it creates a link with nodes with probability
proportional to their degrees

‣ In fact, closer to the definition of the configuration model

• Score not based on common neighbors
‣ =>Assign different scores to nodes at network distance >2

• Intuition: Two nodes with many neighbors more likely to have
new ones than nodes with few neighbors

16

COMMUNITY STRUCTURE

• General idea:
‣ 1)Compute community structure on the whole graph
‣ 2)Assign high score for 2 nodes in a same community, a low score otherwise

• How to choose the score?

17

ML APPROACH TO LINK PREDICTION:

SIMILARITY SCORE,
SUPERVISED

18

SUPERVISED MACHINE
LEARNING

• Use Machine Learning algorithms to learn how to combine
heuristics for optimizing predictions

• Two steps:
‣ Training: show features + value to predict
‣ Using/Validating: try to predict value from features

19

SUPERVISED MACHINE
LEARNING

• Our features: similarity indices (CN, AA, PA, …)
‣ Nodes attributes can be added if available (age, salary, etc.) (pairs, average…)

• Our label/value to predict: Link(1) or No link(0) (2 classes)

• These types of ML algorithms are called classifiers
‣ Logistic Classifier
‣ Decision Tree Classifier
‣ Neural networks Classifier
‣ …

20

SUPERVISED MACHINE
LEARNING

A

C

D

E

B

Original Graph

Training set
With Positive and Negative Examples

…

D,C
D,E

Pair

2
0

H1

4
2

H2

A,C
B,C

1
1

3
4

0
0

Edge

1
1

Node pairs for prediction

…

A,E
B,E

Pair

1
1

H1

3
3

H2

Trained Model
f(H1,H2)->p(1)

ML Algorithm
Logistic,

Classification Tree,
Neural Networks,

etc.

…

A,E
B,E

Pair

1
1

H1

3
3

H2
0.31
0.24

Edge
(A,E)

(B,E)

Node pairs sorted
by score

Less likely

More likely

…

1 ML training

2 Prediction

21

SUPERVISED MACHINE
LEARNING

• Dozens of methods, very different in their mechanisms, but
same input and output

Let’s see 2 simple examples: Logistic classification,
Decision Trees

22

LOGISTIC CLASSIFICATION
• Value to predict :

‣ 0 (no edge)
‣ 1 (edge)

• Linear relations between variables
‣

• Find that minimizes

yt

yi = β0 + β1xi1 + ⋯ + βpxip + εi

β0, β1, . . . yt − yi

https://en.wikipedia.org/wiki/Logistic_regression

23

DECISION TREES
• Measure of heterogeneity (Gini, entropy…)

• Split recursively data in 2 to maximize homogeneity in child
nodes

https://en.wikipedia.org/wiki/Decision_tree24

LINK PREDICTION
EVALUATION

25

EVALUATION

• In order to choose a method for link prediction, it is needed
to evaluate the quality of the prediction

• Several measures of prediction quality exists, but all takes the
same inputs:
‣ A set of test examples, and for each of them:

- The ground truth value to predict (edge/not-edge)
- The score provided by the prediction algorithm

‣ We introduce two scores:
- Precision @k
- Area Under the Receiver Operating Characteristic Curve (AUROC, usually only AUC)

26

PRECISION @K

• Simple approach : Precision @k

• Fraction of correct prediction among k pairs of highest score

• Problem: which value of k to choose?
‣ Affects strongly the score
‣ =>Solution: a value combining scores of any k

27

AUC - AUROC

• AUC: Area Under the Curve. Short (erroneous) name for
AUROC (Area under the Receiver Operating Characteristic
Curve)

• Analyze the relationship between
‣ False positives rate

‣ True positives rate

• Take the area under the curve

28

AUC - AUROC

• Probabilistic interpretation:
‣ If we pick a random positive example and a random negative example,

probability that the positive one has a higher score

• Pros:
‣ Independent on the fraction of positive examples, i.e., a balanced dataset can be

used

• Cons:
‣ Often very high values, (>0.95), thus small relative improvements

29

NODE CLASSIFICATION

Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in social networks. In Social network data analytics (pp. 115-148). Springer, Boston, MA.30

NODE CLASSIFICATION

• For the node classification task, we want to predict the class/
category (or numerical value) of some nodes
‣ Missing values in a dataset
‣ Learn to predict, in a social network/platform(Netflix…) individuals’:

- Political position, opinion on a given topic, possible security threat, …
- Interests, tastes, etc.
- Age, genre, sexual orientation, language spoken, salary, etc.
- Fake accounts, spammers, bots, malicious accounts, etc.
- …

‣ Wikipedia article category, types of road in an urban network, etc.

31

NODE FEATURES

• Non-network approach: Use a classification algorithm based
on features of the node itself (age, salary, etc.)

• The network structure can be integrated using node
centralities: Degree, clustering coefficient, betweenness, etc.

• But we can do much better :
‣ “Tell me who your friends are, and I will tell you who you are”

32

NEIGHBORHOOD BASED
CLASSIFICATION

• Classification based on the distribution of features in the
neighborhood

• For each node, compute the distribution of labels in its
neighborhood (vectors of length m, with m the set of all
possible labels)
‣ Pick the most frequent

- e.g., political opinions
‣ Train a classifier on this distribution

- e.g., distribution of age, language in the neighborhoods to recognize bots (unexpectedly
random)

33

EXAMPLE: BITCOIN USER
CATEGORY PREDICTION

• Suppose we have clusters of addresses (actors)
‣ For some, we know the category (exchange, mining pool, mixer, ransomware,

etc.)
‣ For others, we don’t

• What do you propose to predict the class of unknown
actors ?

34

GRAPH/NODE EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.

35

VARIANT
• We can differentiate:

‣ Node embedding
‣ Edge Embedding
‣ Substructure embedding
‣ Whole graph Embedding

• In this course, only node embedding (often called graph
embedding)

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, SEPT 2017 2

8

2

1

3

7
5

6 9 4

1.5

0.3

1.2

0.8

1.5

1

0.6
0.2

1.5

1

(a) Input Graph G1
0.0 1.5 3.0

3

0

-3

1
2

3
4
5

6
7

8 9

(b) Node Embedding
0.0 1.5 3.0

3

0

-3

e67

e79

e78
e45

e56 e46

e13

e12
e23

e34

(c) Edge Embedding
0.0 1.5 3.0

3

0

-3

G{7,8,9}

G{4,5,6}

G{1,2,3}

(d) Substructure Embedding
 0.0 1.5 3.0

3

0

-3

G1

(e) Whole-Graph Embedding

Fig. 1. A toy example of embedding a graph into 2D space with different granularities. G{1,2,3} denotes the substructure containing node v1, v2, v3.

aims to represent a graph as low dimensional vectors while
the graph structures are preserved. On the one hand, graph
analytics aims to mine useful information from graph data.
On the other hand, representation learning obtains data
representations that make it easier to extract useful informa-
tion when building classifiers or other predictors [9]. Graph
embedding lies in the overlap of the two problems and
focuses on learning the low-dimensional representations.
Note that we distinguish graph representation learning
and graph embedding in this survey. Graph representation
learning does not require the learned representations to be
low dimensional. For example, [10] represents each node as
a vector with dimensionality equals to the number of nodes
in the input graph. Every dimension denotes the geodesic
distance of a node to each other node in the graph.

Embedding graphs into low dimensional spaces is not
a trivial task. The challenges of graph embedding depend
on the problem setting, which consists of embedding input
and embedding output. In this survey, we divide the input
graph into four categories, including homogeneous graph,
heterogeneous graph, graph with auxiliary information and graph
constructed from non-relational data. Different types of em-
bedding input carry different information to be preserved
in the embedded space and thus pose different challenges
to the problem of graph embedding. For example, when
embedding a graph with structural information only, the
connections between nodes are the target to be preserved.
However, for a graph with node label or attribute infor-
mation, the auxiliary information provides graph property
from other perspectives, and thus may also be considered
during the embedding. Unlike embedding input which is
given and fixed, the embedding output is task driven. For
example, the most common type of embedding output is
node embedding which represents close nodes as similar
vectors. Node embedding can benefit node related tasks
such as node classification, node clustering, etc. However, in
some cases, the tasks may be related to higher granularity
of a graph e.g., node pairs, subgraph, whole graph. Hence,
the first challenge in terms of embedding output is to find a
suitable embedding output type for the application of inter-
est. We categorize four types of graph embedding output,
including node embedding, edge embedding, hybrid embedding
and whole-graph embedding. Different output granularities
have different criteria for a “good” embedding and face
different challenges. For example, a good node embedding
preserves the similarity to its neighbouring nodes in the
embedded space. In contrast, a good whole-graph embedding
represents a whole graph as a vector so that the graph-level

similarity is preserved.
In observations of the challenges faced in different prob-

lem settings, we propose two taxonomies of graph em-
bedding work, by categorizing graph embedding literature
based on the problem settings and the embedding tech-
niques. These two taxonomies correspond to what chal-
lenges exist in graph embedding and how existing studies
address these challenges. In particular, we first introduce
different settings of graph embedding problem as well as
the challenges faced in each setting. Then we describe how
existing studies address these challenges in their work,
including their insights and their technical solutions.

Note that although a few attempts have been made to
survey graph embedding ([11], [12], [13]), they have the fol-
lowing two limitations. First, they usually propose only one
taxonomy of graph embedding techniques. None of them
analyzed graph embedding work from the perspective of
problem setting, nor did they summarize the challenges in
each setting. Second, only a limited number of related work
are covered in existing graph embedding surveys. E.g., [11]
mainly introduces twelve representative graph embedding
algorithms, and [13] focuses on knowledge graph embed-
ding only. Moreover, there is no analysis on the insight
behind each graph embedding technique. A comprehensive
review of existing graph embedding work and a high level
abstraction of the insight for each embedding technique can
foster the future researches in the field.

1.1 Our Contributions

Below, we summarize our major contributions in this survey.
• We propose a taxonomy of graph embedding based on
problem settings and summarize the challenges faced in
each setting. We are the first to categorize graph embedding
work based on problem setting, which brings new perspec-
tives to understanding existing work.
• We provide a detailed analysis of graph embedding tech-
niques. Compared to existing graph embedding surveys,
we not only investigate a more comprehensive set of graph
embedding work, but also present a summary of the insights
behind each technique. In contrast to simply listing how the
graph embedding was solved in the past, the summarized
insights answer the questions of why the graph embedding
can be solved in a certain way. This can serve as an insightful
guideline for future research.
• We systematically categorize the applications that graph
embedding enables and divide the applications as node

36

HOPE: HIGHER-ORDER PROXIMITY
PRESERVED EMBEDDING

• Preserve a proximity matrix

•

• can be the adjacency matrix, or number of common neighbors,
Adamic Adar, etc.

• As similarity tends towards 0, embedding vectors must tend towards
orthogonality (orthogonal vectors:)

y * = min ∑
i,j

|Sij − yiyT
j |

S

yiyT
j = 0

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.37

RANDOM WALKS BASED

38

DEEPWALK

• The first Random Walk+Neural Networks graph embedding
method.
‣ First of a long series

• Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

39

SKIPGRAM
Word embedding

Corpus => Word = vectors
Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]
40

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b41

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b42

N=embedding size. V=vocabulary size

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
43

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
44

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with interesting properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

45

DEEPWALK

• Skipgram for graphs:
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters:
‣ Embedding dimensions d
‣ Context size
‣ More technical parameters: length of random walks, number of walks starting

from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

46

NODE2VEC
• Use biased random walk to tune the context to capture

what we want
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM. 47

EMBEDDING ROLES

48

STRUC2VEC/ROLE2VEC

• In node2vec/Deepwalk, the context collected by RW contains
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes:
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same
“position” in the graph

• =>Capture the role of nodes instead of proximity
Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.49

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC

50

