DESCRIPTION OF GRAPHS

DEFINITIONS

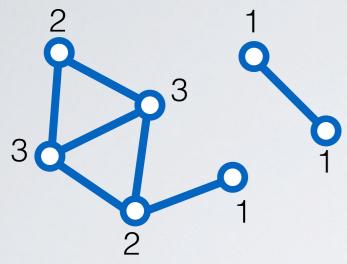
Node-Edge description

N_u	Neighbourhood of u , nodes sharing a link with u .
k_u	Degree of u , number of neighbors $ N_u $.
$\overline{N_u^{out}}$	Successors of u , nodes such as $(u,v) \in E$ in a directed
	graph
N_u^{in}	Predecessors of u , nodes such as $(v, u) \in E$ in a directed
J.	graph
k_{u}^{out}	Out-degree of u , number of outgoing edges $ N_u^{out} $.
$k_u^{ar{i}n}$	In-degree of u , number of incoming edges $ N_u^{in} $
$\overline{w_{u,v}}$	Weight of edge (u, v) .
s_u	Strength of u , sum of weights of adjacent edges, $s_u =$
	$\sum_{v} w_{uv}$.

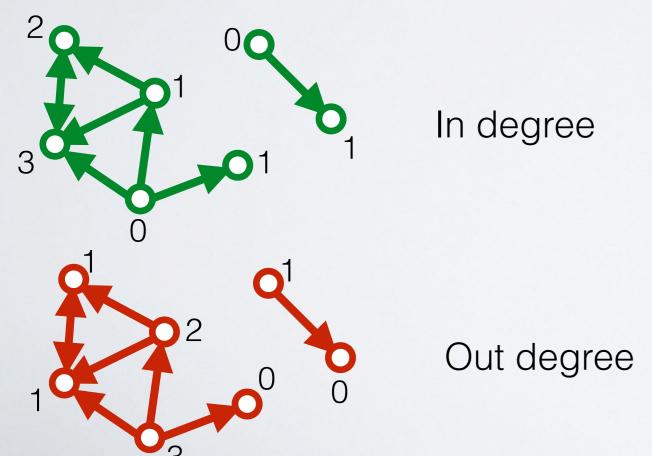
Node degree

Number of connections of a node

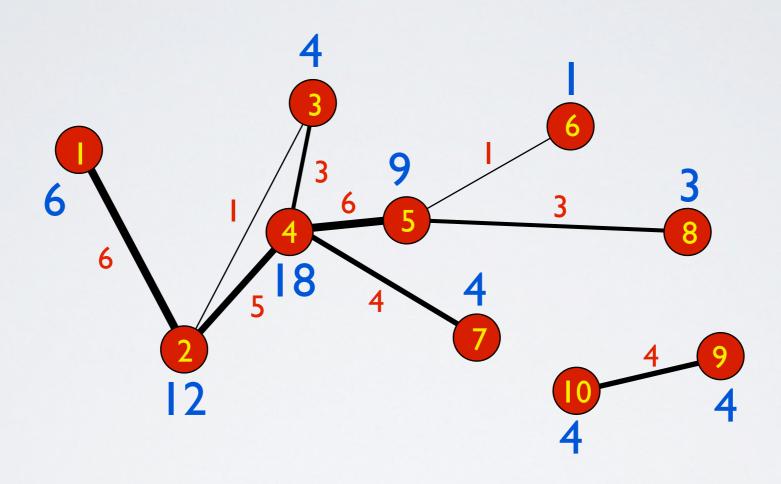
Undirected network



Directed network



Weighted degree: strength



USAGES OF NETWORK DESCRIPTION

- · Understand an observed graph
- Compare graphs modeling related items
 - Graph of two different cryptocurrencies, two different users
 - Graphs of the same system taken at different points in time
- Compare an observed graph with a random model
 - Is my graph random?
 - Is property **p** exceptional or also observed in a similar random network?

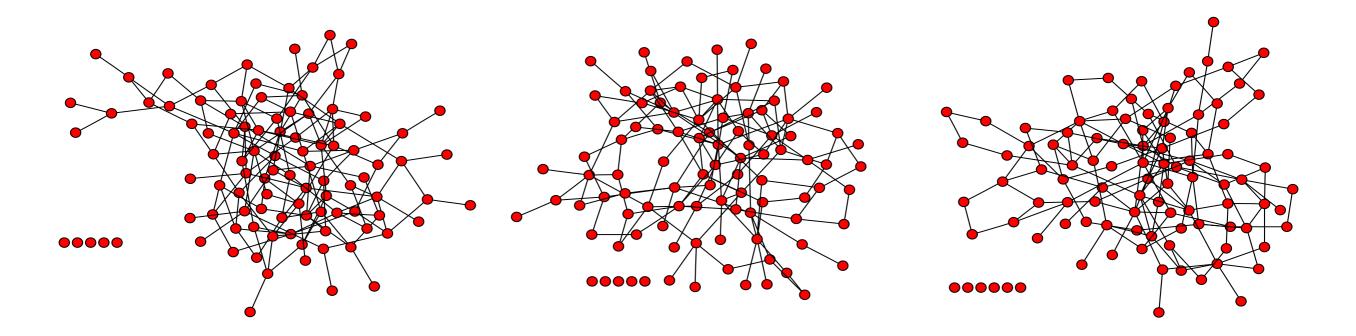
ER Random Graphs

Erdős-Rényi model: simple way to generate random graphs

- The G(n,L) definition
 - 1. Take *n* disconnected nodes
 - 2. Add *L* edges uniformly at random

p=0.03 N=100

- The G(n,p) definition
 - 1. Take *n* disconnected nodes
 - 2. Add an edge between any of the nodes independently with



SIZE

Counting nodes and edges

 $N/n \ L/m \ L_{max}$

size: number of nodes |V|. number of edges |E| Maximum number of links

Undirected network:
$${N \choose 2} = N(N-1)/2$$

Directed network:
$$\binom{N}{2} = N(N-1)$$

SIZE

	#nodes (n)	#edges (m)
Wikipedia HL	2M	30M
Twitter 2015	288M	60B
Facebook 2015	1.4B	400B
Brain c. Elegans	280	6393
Roads US	2M	2.7M
Airport traffic	3k	31k

Bitcoin 'transactions' ≈ 700M

Bitcoin ''addresses'' ≈ 800M Non-zero balance ''entities'' in 2020: 20M

DENSITY

Network descriptors 1 - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically $\langle k \rangle \ll n$. Increases slowly with network size, e.g., $d \sim \log(m)$

$$\langle k \rangle = \frac{2m}{n}$$

Density: Fraction of pairs of nodes connected by an edge in G.

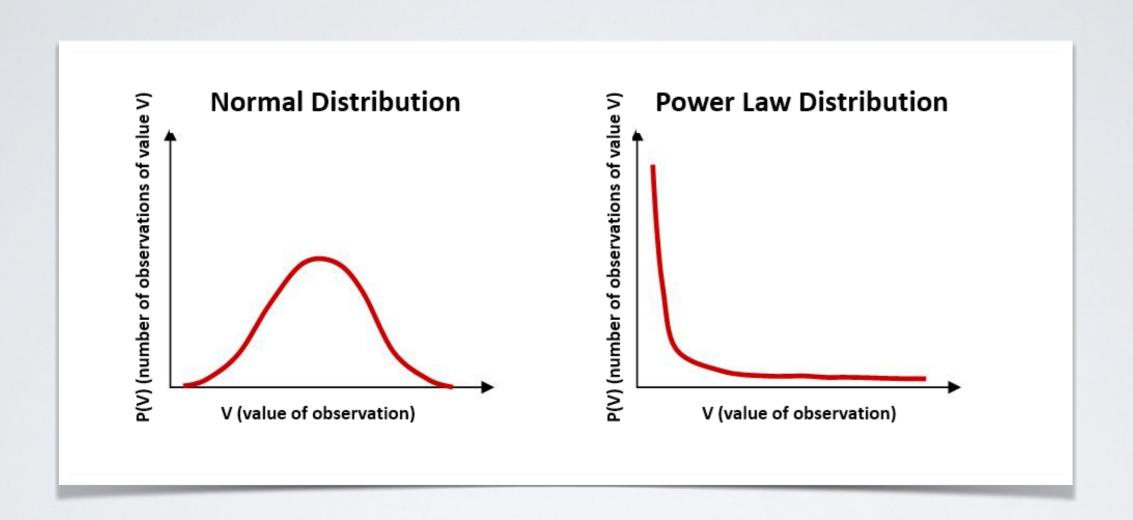
$$d = L/L_{\text{max}}$$

DENSITY

	#nodes	#edges	Density	avg. deg
Wikipedia	2M	30M	1.5x10 ⁻⁵	30
Twitter 2015	288M	60B	1.4x10 ⁻⁶	416
Facebook	1.4B	400B	4x10 ⁻⁹	570
Brain c.	280	6393	0,16	46
Roads Calif.	2M	2.7M	6x10 ⁻⁷	2,7
Airport	3k	31k	0,007	21

Beware: density hard to compare between graphs of different sizes

DEGREE DISTRIBUTION



PDF (Probability Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is (close to) a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
 - A high majority of small degree nodes
 - A small minority of nodes with very high degree (Hubs)
- Often modeled by a power law

DEGREE DISTRIBUTION

- · Power law degree distribution has important implications:
 - There is no "scale" in the degree: the average degree is not representative
 - The variance is non-converging, i.e., cannot be interpreted
- How to recognize a power law?
 - Simple approximation: it is a line on a log-log plot
 - If you want to be sure, use existing packages in R or python (Maximum Likelihood Estimation)

Proper definition

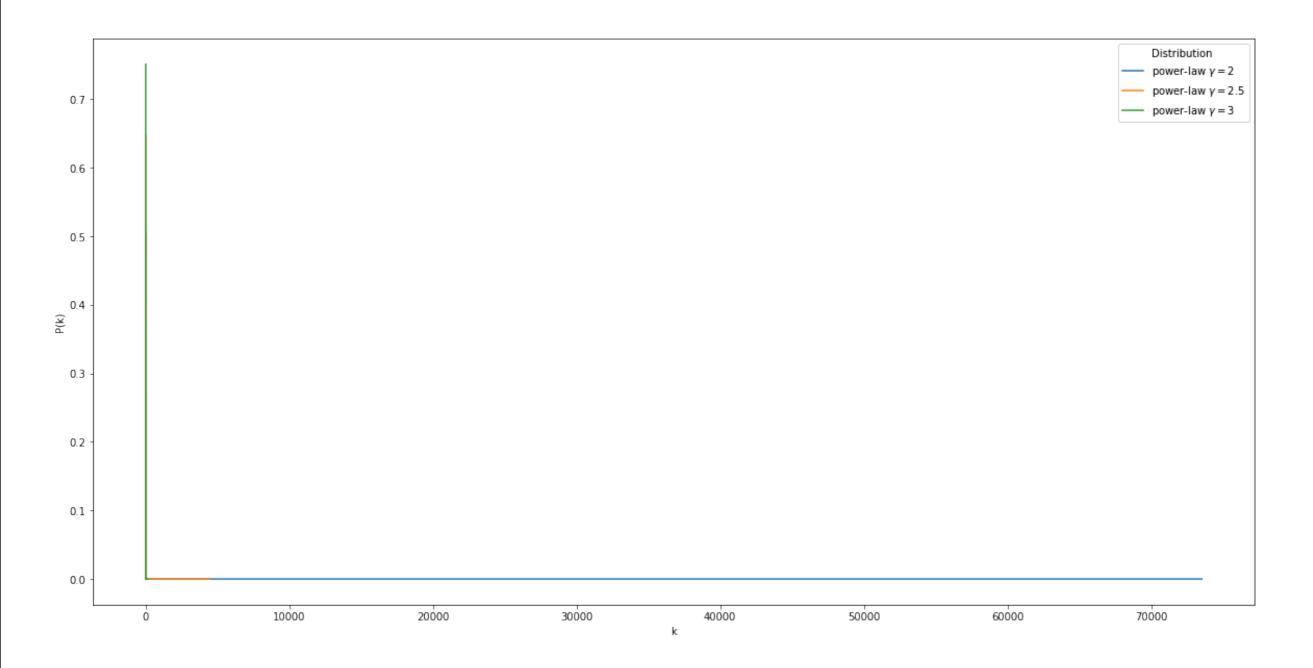
$$P(k) \sim Ck^{-\alpha}$$

The distribution is controlled by the exponent α

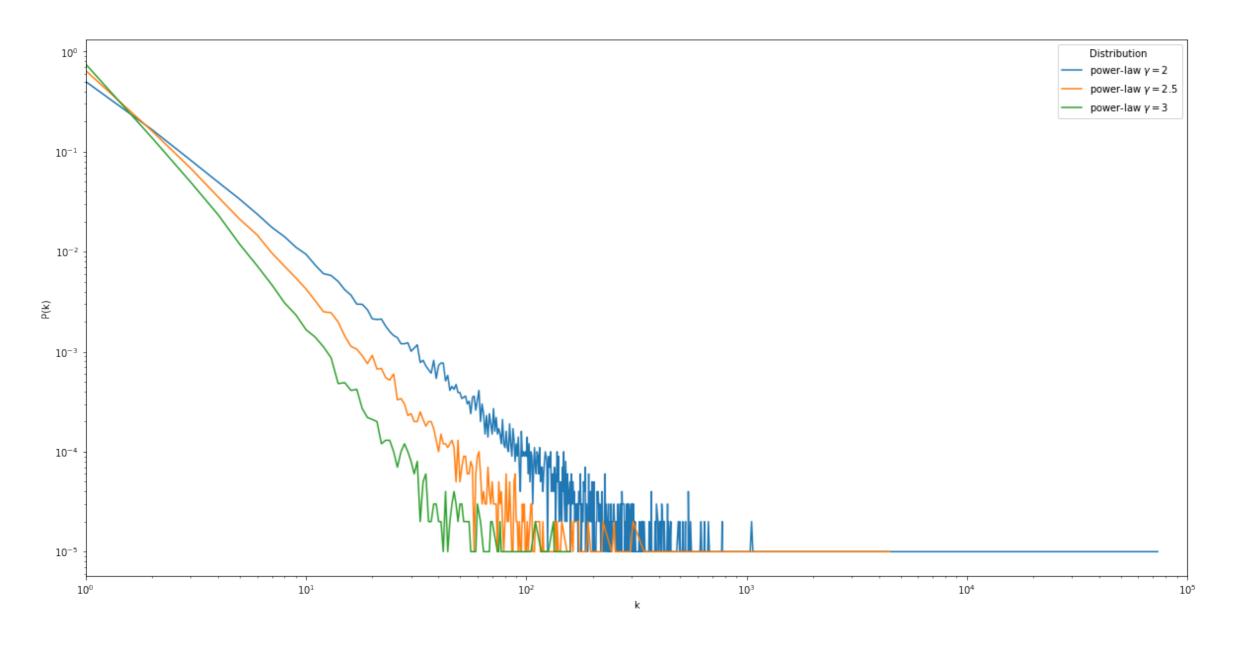
$$P(k) = (\alpha - 1)k_{\min}^{\alpha - 1}k^{-\alpha}$$

$$P(k) = \frac{\alpha - 1}{k_{\min}} \left(\frac{k}{k_{\min}}\right)^{-\alpha}$$

Power law plotted with a linear scale, for k<100000 (100 000 samples)

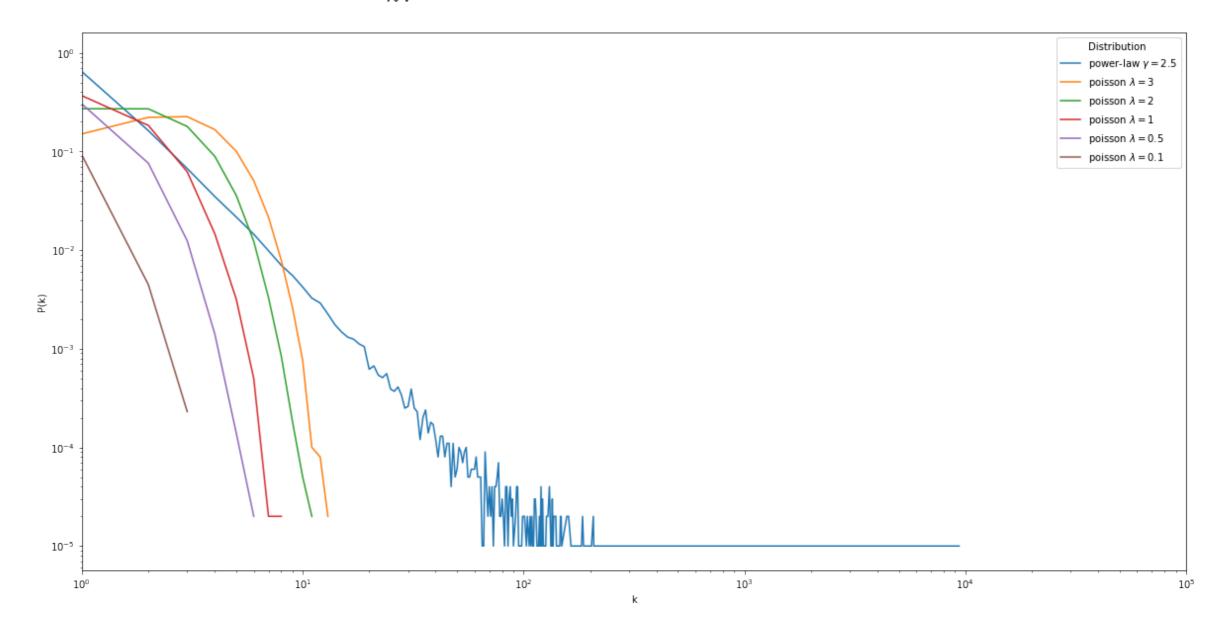


Power law plotted with a log-log scale, for k<100000 (100 000 samples)



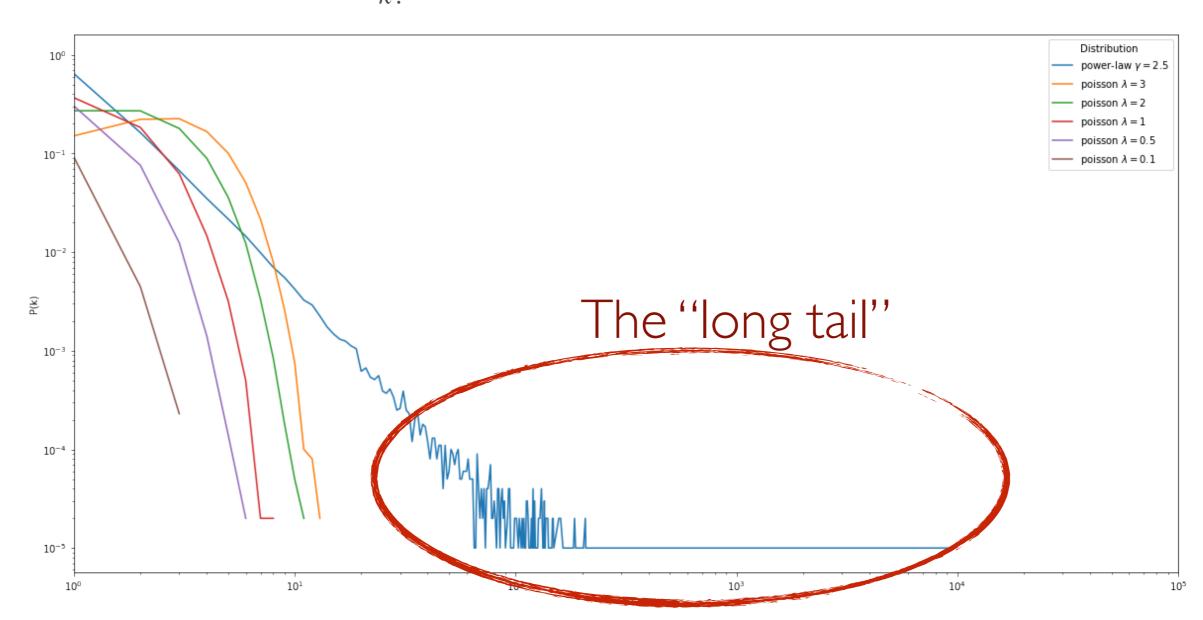
Comparing a poisson distribution and a power law

 $\frac{\lambda^k e^{-\lambda}}{k!}$



Comparing a poisson distribution and a power law

 $\frac{\lambda^k e^{-\lambda}}{k!}$



SUBGRAPHS

Subgraphs

Subgraph H(W) (induced subgraph): subset of nodes W of a graph G=(V,E) and edges connecting them in G, i.e., subgraph $H(W)=(W,E'),W\subset V,(u,v)\in E'\iff u,v\in W\land (u,v)\in E$

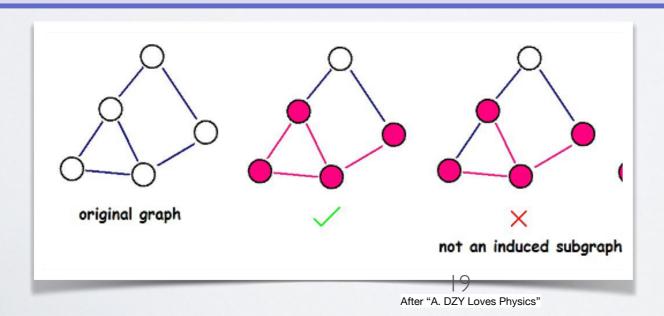
Clique: subgraph with d=1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

Strongly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions



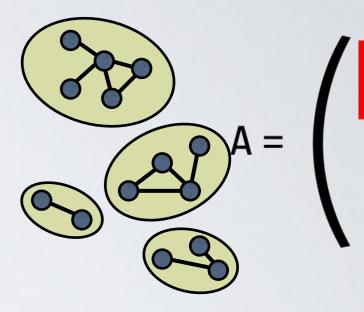
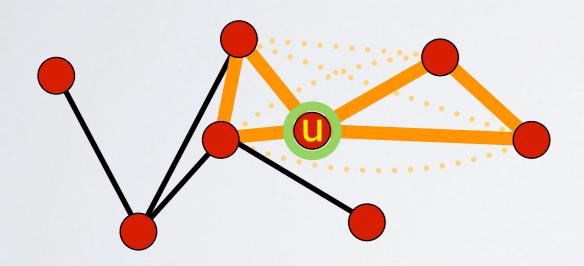


Figure after Newman, 2010

- Clustering coefficient or triadic closure
- Triangles are considered important in real networks
 - Think of social networks: friends of friends are my friends
 - # triangles is a big difference between real and random networks

 C_u - **Node clustering coefficient**: density of the subgraph induced by the neighborhood of u, $C_u = d(H(N_u))$. Also interpreted as the fraction of all possible triangles in N_u that exist, $\frac{\delta_u}{\delta^{\max}}$



Edges: 2

Max edges: 4*3/2=6 $C_{11}=2/6=1/3$

$$C_{\nu} = 2/6 = 1/3$$

 $\langle C \rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C}=\frac{1}{N}\sum_{u\in V}C_u$.

 C^g - **Global clustering coefficient**: Fraction of all possible triangles in the graph that do exist, $C^g=\frac{3\Delta}{\Delta^{max}}$

• Global CC:

- In random networks, GCC = density
 - =>very small for large graphs
- Facebook ego-networks: 0.6
- ▶ Twitter lists: 0.56
- California Road networks: 0.04

PATH RELATED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., **1.2.1.6.5** is a valid walk)

Path: a walk in which each node is distinct.

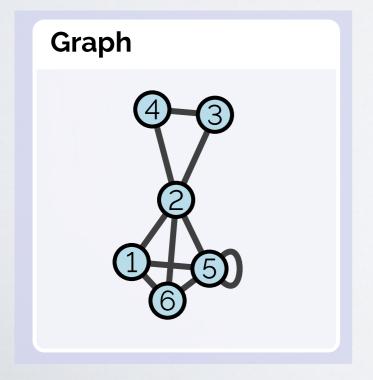
Path length: number of edges encountered in a path

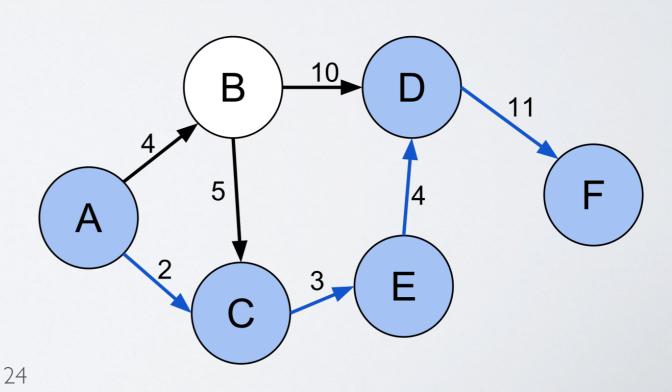
Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

 $\ell_{u,v}$: **Distance**: The distance between nodes u,v is the length of the shortest path





PATH RELATED SCORES

Network descriptors 2 - Paths

 $\ell_{\max} \ \langle \ell \rangle$

Diameter: maximum *distance* between any pair of nodes. **Average distance**:

$$\langle \ell \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij}$$

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment)
 - (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

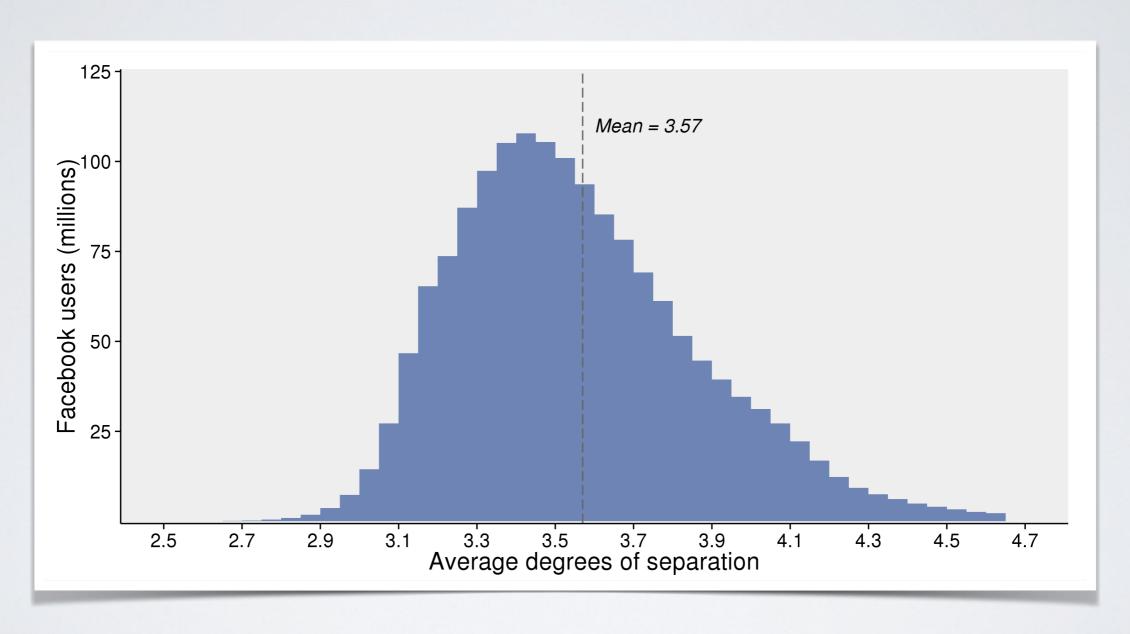
SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
 - Give a (physical) mail to random people
 - Ask them to send to someone they don't know
 - They know his city, job
 - They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY: MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
 - Some mails did not arrive
 - Small sample
 - **...**
- Checked on "real" complete graphs (giant component):
 - MSN messenger
 - Facebook
 - The world wide web
 - **)**

SIDE-STORY: MILGRAM EXPERIMENT



Facebook

SMALL WORLD

Small World Network

A network is said to have the **small world** property when it has some structural properties. The notion is not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle \ell \rangle \approx \log(N)$
- Clustering coefficient must be high, i.e., much larger than in a random network , e.g., $C^g\gg d$, with d the network density

CORE-PERIPHERY: CORENESS

Goal: To identify dense cores of high degree nodes in networks

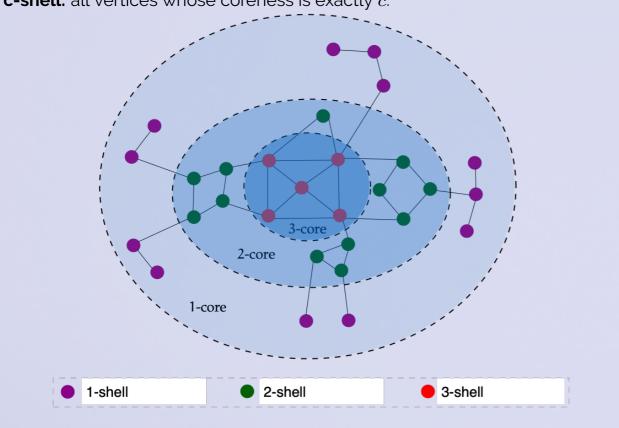
Cores and Shells

Many real networks are known to have a core-periphery structure, i.e., there is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest subgraph H(C) such as all nodes have at least a degree k, i.e., $\forall u \in C, k_u^H \leq k$, with k_u^H the degree of node u in subgraph H. coreness: A vertex u has coreness k if it belongs to the k-core but not to

the k+1-core.

c-shell: all vertices whose coreness is exactly c.



 A k-core of G can be obtained by recursively removing all the vertices of degree less than k, until all vertices in the remaining graph have at least degree k.

GRAPHS AS MATRICES

Matrices in short

Matrices are mathematical objects that can be thought as *tables* of numbers. The size of a matrix is expressed as $m \times n$, for a matrix with m rows and n columns. The order (row/column) is important.

 M_{ij} is a notation representing the element on **row** m and **column** j.

ADJACENCY MATRIX

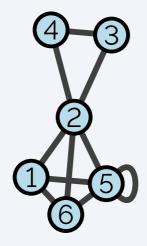
A - Adjacency matrix

The most natural way to represent a graph as a matrix is called the Adjacency matrix A. It is defined as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes N in the graph. Nodes of the graph are numbered from 1 to N, and there is an edge between nodes i and j if the corresponding position of the matrix A_{ij} is not 0.

- A value on the diagonal means that the corresponding node has a self-loop
- the graph is **undirected**, the matrix is **symmetric**: $A_{ij} = A_{ji}$ for any i,j.
- In an **unweighted** network, and edge is represented by the value 1.
- In a **weighted** network, the value A_{ij} represents the **weight** of the edge (i,j)

Graph

3-shell



A - Adjacency Mat.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

ADJACENCY MATRIX

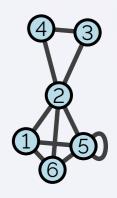
Typical operations on A

me operations on Adjacency matrices have straightforward interpretations and are frequently used

Multiplying A by itself allows to know the number of walks of a given length that exist between any pair of nodes: A_{ij}^2 corresponds to the number of walks of length 2 from node i to node j, A_{ij}^3 to the number of walks of shell

Multiplying A by a column vector W of length $1 \times N$ can be thought as setting the i th value of the vector to the ith node, and each node sending its its $1.3^{3-\text{shell}}$ or undirected graphs). The result is a column vector with N elements, the ith element corresponding to the sum of the values of its neighbors in W. This is convenient when working with random walks or diffusion phenomenon.

Graph



A - Adjacency Mat.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

A^2

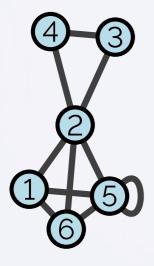
$$\begin{pmatrix} 3 & 2 & 1 & 1 & 3 & 2 \\ 2 & 5 & 1 & 1 & 3 & 2 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 3 & 3 & 1 & 1 & 4 & 3 \\ 2 & 2 & 1 & 1 & 3 & 3 \end{pmatrix}$$

RANDOM WALK MATRIX

Random Walk matrix

Another useful matrix of a graph is the **Random Walk Transition Matrix** R. It is the column normalized version of the adjacency matrix. R_{ij} can be understood as the probability for a random walker located on node i to move to j.

Graph



A - Adjacency Mat.

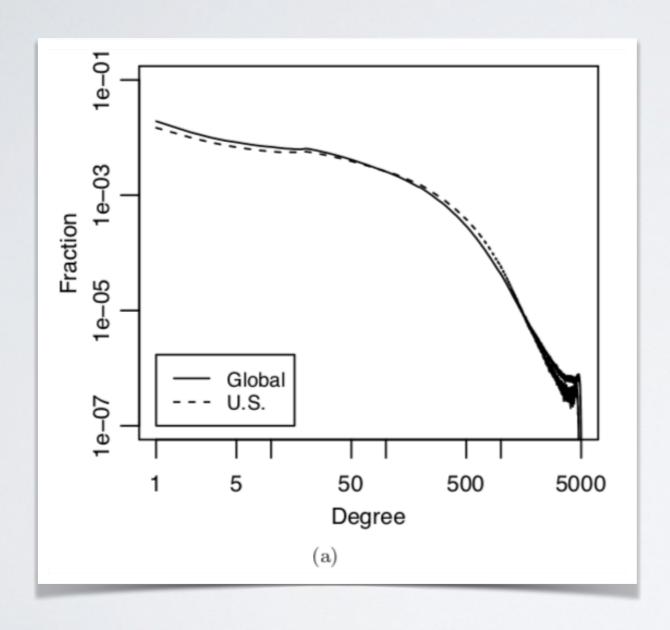
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

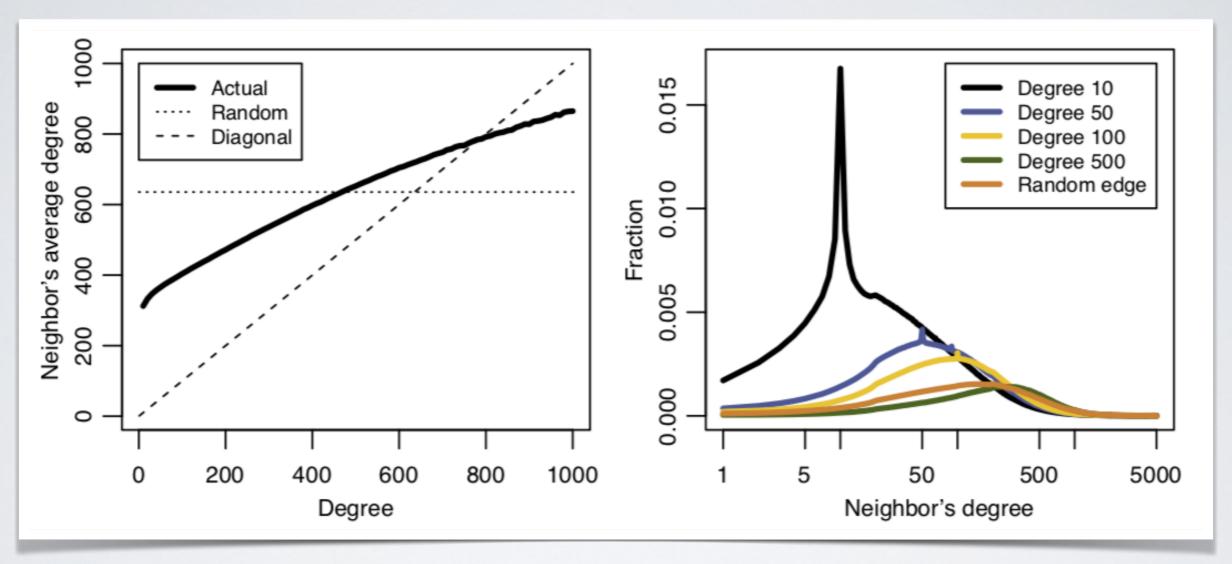
Random W. mat.

$$\begin{pmatrix} 0 & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{5} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{5} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & 0 \end{pmatrix}$$

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]
- The Facebook friendship network in 2011

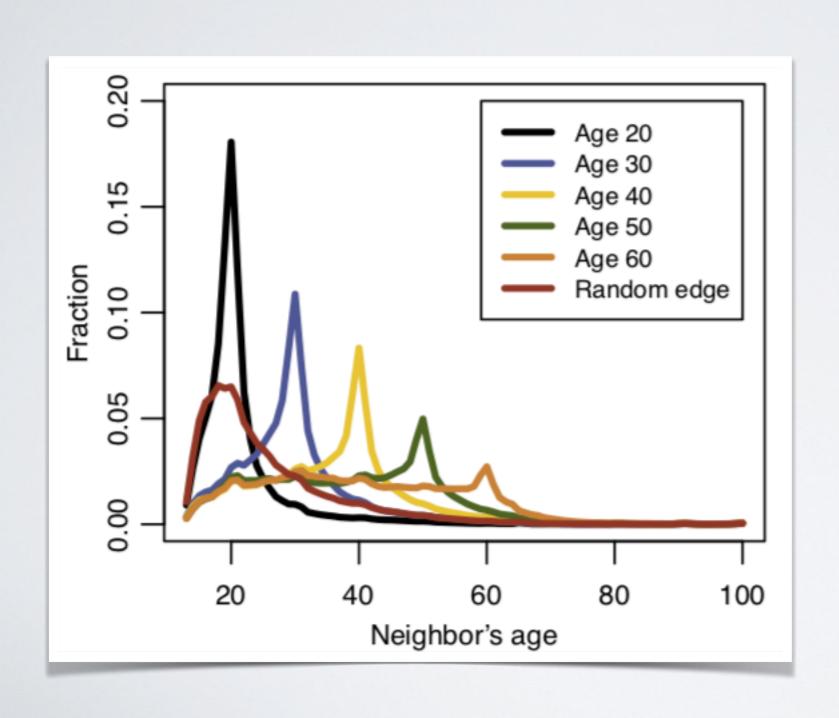
- 72 IM users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average # friends)
- Median degree: 99
- Connected component: 99.91%





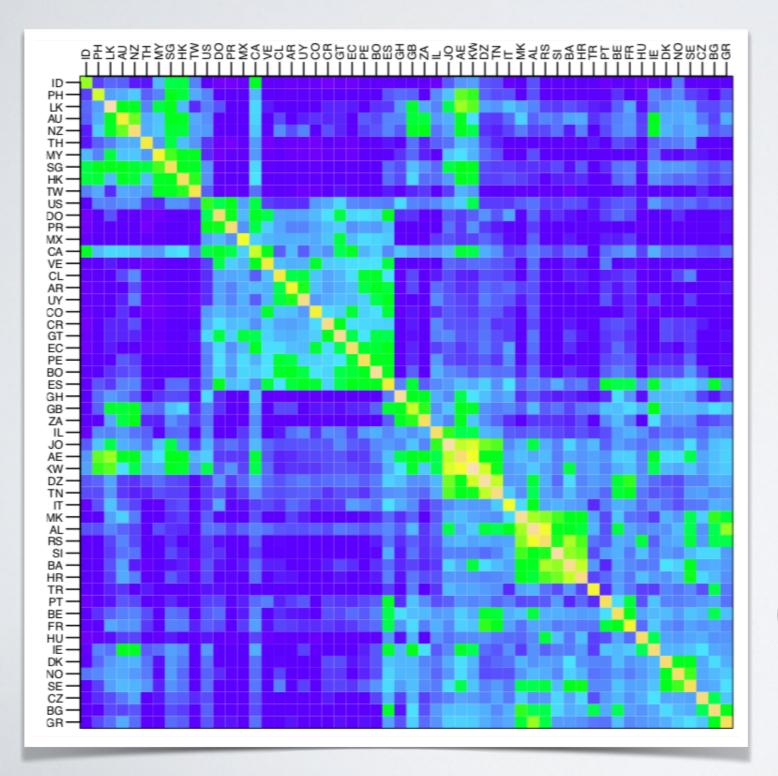
My friends have more Friends than me!

Many of my friends have the Same # of friends than me!



Age homophily

(More next class)



Country similarity

84.2% percent of edges are within countries

(More in the community detection class)