DESCRIPTION OF GRAPHS

DEFINITIONS

Node-Edge description

$\begin{aligned} & N_{u} \\ & k_{u} \end{aligned}$	Neighbourhood of u, nodes sharing a link with u. Degree of u, number of neighbors $\left\|N_{u}\right\|$.
$N_{u}^{\text {out }}$	Successors of u, nodes such as $(u, v) \in E$ in a directed graph
$N_{u}^{i n}$	Predecessors of u, nodes such as $(v, u) \in E$ in a directed graph
$\begin{aligned} & k_{u}^{o u t} \\ & k_{u}^{i n} \end{aligned}$	Out-degree of u, number of outgoing edges $\left\|N_{u}^{o u t}\right\|$. In-degree of u, number of incoming edges $\left\|N_{u}^{i n}\right\|$
$w_{u, v}$ s_{u}	Weight of edge (u, v). Strength of u, sum of weights of adjacent edges, $s_{u}=$ $\sum_{v} w_{u v}$.

Node degree

Number of connections of a node

- Undirected network

- Directed network

Weighted degree: strength

USAGES OF NETWORK DESCRIPTION

- Understand an observed graph
- Compare graphs modeling related items
- Graph of two different cryptocurrencies, two different users
- Graphs of the same system taken at different points in time
- Compare an observed graph with a random model
- Is my graph random?
- Is property \mathbf{p} exceptional or also observed in a similar random network?

ER Random Graphs

Erdős-Rényi model: simple way to generate random graphs

- The $G(n, L)$ definition

1. Take n disconnected nodes
2. Add L edges uniformly at random

- The $G(n, p)$ definition

1. Take n disconnected nodes
2. Add an edge between any of the nodes independently with

$$
\begin{aligned}
& p=0.03 \\
& N=100
\end{aligned}
$$

SIZE

Counting nodes and edges

$N / n \quad$ size: number of nodes $|V|$.
L / m
$L_{\text {max }}$
number of edges $|E|$
Maximum number of links
Undirected network: $\binom{N}{2}=N(N-1) / 2$
Directed network: $\binom{N}{2}=N(N-1)$

SIZE

	\#nodes (n)	\#edges (m)
Wikipedia HL	2 M	30 M
Twitier 2015	288 M	60 B
Facebook 2015	1.4 B	400 B
Brain c. Elegans	280	6393
Roads US	2 M	2.7 M
Airport trafific	3 k	31 k

Bitcoin "transactions" $\approx 700 \mathrm{M}$
Bitcoin "addresses" $\approx 800 \mathrm{M}$
Non-zero balance "entities" in 2020: 20M

DENSITY

Network descriptors 1 - Nodes/Edges

$\langle k\rangle \quad$ Average degree: Real networks are sparse, i.e., typically $\langle k\rangle \ll n$. Increases slowly with network size, e.g., $d \sim$ $\log (m)$

$$
\langle k\rangle=\frac{2 m}{n}
$$

$d / d(G)$ Density: Fraction of pairs of nodes connected by an edge in G.

$$
d=L / L_{\max }
$$

DENSITY

	\#nodes	\#edges	Density	avg. deg
Wikipedia	2 M	30 M	1.5×10^{-5}	30
Twitter 2015	288 M	60 B	1.4×10^{-6}	416
Facebook	1.4 B	400 B	4×10^{-9}	570
Brain c.	280	6393	0,16	46
Roads Calif.	2 M	2.7 M	6×10^{-7}	2,7
Airport	3 k	31 k	0,007	21

Beware: density hard to compare between graphs of different sizes

DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is (close to) a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
- A high majority of small degree nodes
- A small minority of nodes with very high degree (Hubs)
- Often modeled by a power law

DEGREE DISTRIBUTION

- Power law degree distribution has important implications:
- There is no "scale" in the degree: the average degree is not representative
- The variance is non-converging, i.e., cannot be interpreted
- How to recognize a power law?
- Simple approximation: it is a line on a log-log plot
- If you want to be sure, use existing packages in R or python (Maximum Likelihood Estimation)

Scale-free distribution

Proper definition

$$
P(k) \sim C k^{-\alpha}
$$

The distribution is controlled by the exponent α

$$
\begin{aligned}
& P(k)=(\alpha-1) k_{\min }^{\alpha-1} k^{-\alpha} \\
& P(k)=\frac{\alpha-1}{k_{\min }}\left(\frac{k}{k_{\min }}\right)^{-\alpha}
\end{aligned}
$$

Scale-free networks

Power law plotted with a linear scale, for $k<100000$ (100 000 samples)

Scale-free networks

Power law plotted with a log-log scale, for $k<100000$ (100 000 samples)

Scale-free networks

Comparing a poisson distribution and a power law

$$
\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Scale-free networks

Comparing a poisson distribution and a power law

$$
\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

SUBGRAPHS

Subgraphs

Subgraph $H(W)$ (induced subgraph): subset of nodes W of a graph $G=(V, E)$ and edges connecting them in G, i.e., subgraph $H(W)=$ $\left(W, E^{\prime}\right), W \subset V,(u, v) \in E^{\prime} \Longleftrightarrow u, v \in W \wedge(u, v) \in E$
Clique: subgraph with $d=1$
Triangle: clique of size 3
Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph
Strongly Connected component: In directed networks, a subgraph in which

Figure after Newman, 2010

Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

CLUSTERING COEFFICIENT

- Clustering coefficient or triadic closure
- Triangles are considered important in real networks
- Think of social networks: friends of friends are my friends
- \# triangles is a big difference between real and random networks

CLUSTERING COEFFICIENT

C_{u} - Node clustering coefficient: density of the subgraph induced by the neighborhood of $u, C_{u}=d\left(H\left(N_{u}\right)\right.$. Also interpreted as the fraction of all possible triangles in N_{u} that exist, $\frac{\delta_{u}}{\delta_{u}^{\text {max }}}$

$$
\begin{array}{|c|}
\text { Edges: } 2 \\
\text { Max edges: } 4 * 3 / 2=6 \\
C_{u}=2 / 6=1 / 3 \\
\hline
\end{array}
$$

CLUSTERING COEFFICIENT

$\langle C\rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C}=\frac{1}{N} \sum_{u \in V} C_{u}$.
C^{g} - Global clustering coefficient: Fraction of all possible triangles in the graph that do exist, $C^{g}=\frac{3 \Delta}{\Delta^{\text {max }}}$

CLUSTERING COEFFICIENT

- Global CC:
- In random networks, GCC = density
=>very small for large graphs
- Facebook ego-networks: 0.6
- Twitter lists: 0.56
- California Road networks: 0.04

PATH RELATED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk) Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
$\ell_{u, v}$: Distance: The distance between nodes u, v is the length of the shortest path

Graph

Network descriptors 2 - Paths

$\ell_{\max } \quad$ Diameter: maximum distance between any pair of nodes.
$\langle\ell\rangle$ Average distance:

$$
\langle\ell\rangle=\frac{1}{n(n-1)} \sum_{i \neq j} d_{i j}
$$

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment) - (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
- Give a (physical) mail to random people
- Ask them to send to someone they don't know
- They know his city, job
- They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY:MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
- Some mails did not arrive
- Small sample
- Checked on "real" complete graphs (giant component):
- MSN messenger
- Facebook
- The world wide web

SIDE-STORY:MILGRAM EXPERIMENT

Facebook

SMALL WORLD

Small World Network

A network is said to have the small world property when it has some structural properties. The notion is not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle\ell\rangle \approx \log (N)$
- Clustering coefficient must be high, i.e., much larger than in a random network, e.g., $C^{g} \gg d$, with d the network density

CORE-PERIPHERY : CORENESS

Goal: To identify dense cores of high degree nodes in networks

Cores and Shells

Many real networks are known to have a core-periphery structure, i.e., there is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.
k-core: The k-core (core of order k) of $G(V, E)$ is the largest subgraph $H(C)$ such as all nodes have at least a degree k, i.e., $\forall u \in C, k_{u}^{H} \leq k$, with k_{u}^{H} the degree of node u in subgraph H.
coreness: A vertex u has coreness k if it belongs to the k-core but not to the $k+1$-core.
c-shell: all vertices whose coreness is exactly c.

- A k-core of G can be obtained by recursively removing all the vertices of degree less than k, until all vertices in the remaining graph have at least degree k.

GRAPHS AS MATRICES

Matrices in short

Matrices are mathematical objects that can be thought as tables of numbers. The size of a matrix is expressed as $m \times n$, for a matrix with m rows and n columns. The order (row/column) is important.
$M_{i j}$ is a notation representing the element on row m and column j.

ADJACENCY MATRIX

A - Adjacency matrix

The most natural way to represent a graph as a matrix is called the Adjacency matrix A. It is defined as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes N in the graph. Nodes of the graph are numbered from 1 to N, and there is an edge between nodes i and j if the corresponding position of the matrix $A_{i j}$ is not 0 .

- A value on the diagonal means that the corresponding node has a self-loop
- the graph is undirected, the matrix is symmetric: $A_{i j}=A_{j i}$ for any i, j.
- In an unweighted network, and edge is represented by the value 1.
- In a weighted network, the value $A_{i j}$ represents the weight of the edge (i, j)

Graph

A - Adjacency Mat.

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

ADJACENCY MATRIX

Typical operations on A

Some operations on Adjacency matrices have straightforward interpretations and are frequently used

Multiplying A by itself allows to know the number of walks of a given length that exist between any pair of nodes: $A_{i j}^{2}$ corresponds to the number of walks of length 2 from node i to node $j, A_{i j}^{3}$ to the number of walks of length 3, etc.

Multiplying A by a column vector W of length $1 \times N$ can be thought as setting the i th value of the vector to the i th node, and each node sending its value to its neighbors (for undirected graphs). The result is a column vector with N elements, the i th element corresponding to the sum of the values of its neighbors in W. This is convenient when working with random walks or diffusion phenomenon.

RANDOM WALK MATRIX

Random Walk matrix

Another useful matrix of a graph is the Random Walk Transition Matrix R. It is the column normalized version of the adjacency matrix. $R_{i j}$ can be understood as the probability for a random walker located on node i to move to j.

Random W. mat.

$$
\left(\begin{array}{cccccc}
0 & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{3} \\
0 & \frac{1}{5} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{5} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & 0
\end{array}\right)
$$

EXEMPLE OF GRAPH ANALYSIS

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 20 I I]
- The Facebook friendship network in 2011

EXEMPLE OF GRAPH ANALYSIS

- 72 IM users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average \# friends)
- Median degree: 99
- Connected component: 99.9।\%

EXEMPLE OF GRAPH ANALYSIS

Degree distribution

EXEMPLE OF GRAPH ANALYSIS

My friends have more Friends than me!

Many of my friends have the Same \# of friends than me!

EXEMPLE OF GRAPH ANALYSIS

Age homophily
 (More next class)

EXEMPLE OF GRAPH ANALYSIS

Country similarity
84.2\% percent of edges are within countries
(More in the community detection class)

