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NODE

• Node centrality measures = being important in the network 
(not necessarily central in term of being in the center)

• Usage:
‣ Discover important nodes
‣ Rank nodes by importance
‣ +machine learning => classification of nodes
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Degree centrality - recap
Number of connections of a node
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NODE DEGREE

• Often enough to find important nodes
‣ Main characters of a series talk with the more people
‣ Largest airports have the most connections
‣ …

• But not always
‣ Facebook users with the most friends are spam
‣ Webpages/wikipedia pages with most links are simple lists of references
‣ …
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NODE CLUSTERING 
COEFFICIENT

• Clustering coefficient: density of neighborhood

• Tells you if the neighbors of the node are connected

• Be careful! 
‣ Degree 2: value 0 or 1
‣ Degree 1000: Not 0 or 1 (usually)
‣ Ranking them is not meaningful 

• Can be used as a proxy for “communities” belonging:
‣ If node belong to single group: high CC
‣ If node belong to several groups: lower CC
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FARNESS, CLOSENESS
HARMONIC CENTRALITY
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FARNESS, CLOSENESS

• How close the node is to all other nodes

• Parallel with the center of a figure:
‣ Center of a circle is the point of shorter average distance to any points in the 

circle
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a votemecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

FARNESS, CLOSENESS
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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Harmonic Centrality

Ch(i) =
1

12 − 1 (3 ×
1
1

+ 7 ×
1
2

+ 1 ×
1
3 ) =

41
66

= 0.6212
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a votemecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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BETWEENNESS CENTRALITY

• Measure how much the node plays the role of a bridge

• Betweenness of u: fraction of all the shortest paths between all 
the pairs of nodes going through u.
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-

11

u

CB(u) = 2
5 * 6 + 1 + 1

2 + 1
2

11 * 10
=

64
110

Exact computation:

Floyd-Warshall:  O(n3) time complexity  
          O(n2) space complexity 

Approximate computation
 Dijskstra: O(n(m+n log n)) time complexity  

Network Science
Cheatsheet

Made by
Remy Cazabet

� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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BETWEENNESS CENTRALITY

(blue higher) (red higher)
14



EDGE - BETWEENNESS 

Can you guess the edge of
highest betweenness in 

the European rail network ?

Same definition as for nodes

15



RECURSIVE DEFINITIONS

16



RECURSIVE DEFINITIONS

• Recursive importance:
‣ Important nodes are those connected to important nodes

• Several centralities based on this idea:
‣ Eigenvector centrality
‣ PageRank
‣ …

17



RECURSIVE DEFINITION

• We would like scores such as :
‣ Each node has a score (centrality), 
‣ If every node “sends” its score to its neighbors, the sum of all scores received 

by each node will be equal to its original score

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes, i.e., kin = 0. Those nodes have by de�nition a, eigenvector central-
ity of � at t+�, and thus send a value of � at t+�, which might in turn result in
a score of � for its successors, and so on and so forth.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:

C
t+1
u

= ↵

X

v2Nin
u

C
t

v

kout
v

+ � (�)

with, by convention, � = 1,↵ a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Edge Structural indices
Edges situation in the network can also be described using srtuctural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

• With  a normalisation constantλ
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RECURSIVE DEFINITION

• This problem can be solved by what is called the power 
method:
‣ 1) We initialize all scores to random values
‣ 2)Each score is updated according to the desired rule, until reaching a stable 

point (after normalization)

• Why does it converge?
‣ Perron-Frobenius theorem (see next slide)
‣ =>True for undirected graphs with a single connected component

19



EIGENVECTOR CENTRALITY

• What we just described is called the Eigenvector centrality

• A couple eigenvector ( ) and eigenvalue ( ) is defined by the 
following relation: 
‣  is a column vector of size n, which can be interpreted as the scores of nodes

• What Perron-Frobenius algorithm says is that the power 
method will always converge to the leading eigenvector, i.e., the 
eigenvector associated with the highest eigenvalue

x λ
Ax = λx

x

20



Eigenvector Centrality
Some problems in case of directed network:
• Adjacency matrix is asymmetric
• 2 sets of eigenvectors (Left & Right)
• 2 leading eigenvectors 

• Use right eigenvectors : consider nodes that 
are pointing towards you 

17

Eigenvector centrality — Bonacich centrality 
I am important if my friends are important too

Vertex A is connected but 
has only outgoing link 
= Its centrality will be 0 

Vertex B has outgoing and 
ingoing 

But Ingoing comes from A 
= Its centrality will be 0 

Only in strongly connected component 

Acyclic networks (citation network) do not have strongly connected 
component 

-Vertex A is connected but has only outgoing link = Its centrality will be 0 

-Vertex B has outgoing and an incoming link, but incoming link comes from A 
= Its centrality will be 0 
-etc.

But problem with source nodes (0 in-degree)

Solution: Only in strongly connected component 
Note: Acyclic networks (citation network) do not have strongly connected component 

21



PageRank Centrality
• Eigenvector centrality generalised for directed networks

PageRank
The Anatomy of a Large-Scale Hypertextual Web Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International 
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Wednesday, November 14, 12
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PageRank Centrality
• Eigenvector centrality generalised for directed networks

PageRank
The Anatomy of a Large-Scale Hypertextual Web Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International 
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Wednesday, November 14, 12
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PageRank Centrality
(Side notes)

-“We chose our system name, Google, because it 
is a common spelling of googol, or  and fits well with our goal of building very large-
scale search “

10100

-“[…] at the same time, search engines have migrated from the academic domain to the 
commercial. Up until now most search engine development has gone on at 
companies with little publication of technical details. This causes search 
engine technology to remain largely a black art and to be advertising 
oriented (see Appendix A). With Google, we have a strong goal to push 
more development and understanding into the academic realm.”

-“[...], we expect that advertising funded search engines will be inherently biased towards the 
advertisers and away from the needs of the consumers."

24



PAGERANK

• 2 main improvements over eigenvector centrality: 
‣ In directed networks, problem of source nodes

-  => Add a constant centrality gain for every node
‣ Nodes with very high centralities give very high centralities to all their neighbors 

(even if that is their only in-coming link)
- => What each node “is worth” is divided equally among its neighbors (normalization by the 

degree)

=>
With by convention =1 and  a parameter (usually 0.85) controlling the 

relative importance of 
β α

β

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:

C
t+1
u

= ↵

X

v2Nin
u

C
t

v

kout
v

+ � (�)

with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|

|Nu [ Nv| � 2

Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :

�
cos
xy

=
x.y

|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

�
cos
uv

=
|Nu \ Nv|p

kukv

Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv

N

which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,
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with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:
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with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|

|Nu [ Nv| � 2

Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :

�
cos
xy

=
x.y

|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

�
cos
uv

=
|Nu \ Nv|p

kukv

Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv

N

which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.
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PAGERANK

• Then how do Google rank when we do a research?

• Compute pagerank (using the power method for scalability)

• Create a subgraph of documents related to our topic

• Of course now it is certainly much more complex, but we don’t really know:   
“Most search engine development has gone on at companies with little publication of technical 
details. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]
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OTHERS

• Many other centralities have been proposed

• The problem is how to interpret them ?

• Can be used as supervised tool:
‣ Compute many centralities on all nodes
‣ Learn how to combine them to find chosen nodes
‣ Discover new similar nodes
‣ (roles in social networks, key elements in an infrastructure, …)
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.
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score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
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characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
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as a measure of importance, of popularity, e.g., the more friends I have in a
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This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
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group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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Katz centrality
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
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a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.
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as a measure of importance, of popularity, e.g., the more friends I have in a
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:
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with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
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Degree
Clustering coefficient

Closeness
Harmonic Centrality

Betweenness
Katz

Eigenvector
PageRank
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
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v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
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↵
`(A`)vu

in which A
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vu
means the number of paths of length ` from v to u, and

↵ <
1
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph
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Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
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Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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(c) Closeness (d) Harmonic Centrality
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
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in which A
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1
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v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples
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(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1
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Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
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in which A
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means the number of paths of length ` from v to u, and
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Degree
Clustering coefficient

Closeness
Harmonic Centrality

Betweenness
Katz

Eigenvector
PageRank

Which is which ?



Try again :)

Degree
Betweenness

Closeness
Eigenvector

31



Try again :)

A: Degree
B:Closeness

C: Betweenness
D: Eigenvector
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Homophily - Assortativity
"birds of a feather flock together"
• Property of (social) networks that nodes of the same attitude tends to be connected with 

a higher probability than expected

• It appears as correlation between vertex properties of x(i) and x(j) if (i,j)∈E

Vertex properties

• age
• gender
• nationality
• political beliefs
• socioeconomic status
• habitual place
• obesity
• …

Highschool network 

Colored by ethnic groups (J Moody)



Homophily - Assortative mixing

• Opposite of homophily: dissimilar nodes tend to be connected
Disassortativity - Heterophily

Examples
• Sexual/Sentimental 

networks
• Predator - prey 

ecological networks

"Opposites attract"
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Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (high values
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
i a

2
i

1�
P

i a
2
i

where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total number of edges.

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.
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Categorical attributes

No assortative mixing : r=0 ( )
Perfectly assortative: r=1

Assortative: r>0

eij = a2
i

: fraction of edges between nodes with same attributeseii

: fraction of all edges having at least an end with property i.
=>Sum of degrees of nodes with property i divided by L

ai
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Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (hig hvalues
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
i a

2
i

1�
P

i a
2
i

where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total (total population or
total number of edges).

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is linked to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii�
P

i aibi corresponds to the de�nition of theMod-
ularity, while 1 �

P
i aibi corresponds to the maximal value that

the Modularity could reach if all nodes were in the same commu-
nities.
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Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (high values
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
i a

2
i

1�
P

i a
2
i

where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total number of edges.

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

Pearson correlation coefficient of properties
at both extremities of edges

: fraction of edges joining nodes with values x and yexy

Numeric attributes

(Here, discrete version)
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Assortativity

Assortativity - Homophily - Mixing Pat-

terns

A network is said to be assortative or to demonstrate homophily

if its nodes tend to connectmorewith other nodes that are similar

than to nodes that are di�erent.
Similarity in this case must be understood in term of nodes prop-
erties. Some typical examples can be age, gender, language, po-
litical beliefs, etc.
Homophily is considered a common feature of many networks, in
particular social networksa, as re�ected in the aphorism Birds of a
feather �ock together.
Typical examples would be age, gender, ethnicity or politicla opin-
ions in social networks networks such as Twitterb

aMcPherson, Smith-Lovin, and Cook ����.
bMcPherson, Smith-Lovin, and Cook ����.

Disassortativity - Heterophily

Some networks can also demonstrate heterophily, or disassorta-
tivity, i.e., a greater number of connectionswith nodes that are dif-
ferent (for instance, in a sentimental relationship network, women
tend to connect more with men than with other women, and re-
ciprocally).

Mixing Patterns

The notion of nodes connecting to each other with preferences
based on their attributes can be generalized to the concept of
Mixing Patterns. Beyond homophily/heterophily, nodes with
property p1 can be preferentially connected to nodes with prop-
erty p2 (and not p3 or p4) while nodes having property p3 can have
a preference for nodes having the same property, for instance.

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-
tween individuals, reproduced froma .

We can see that there is some level of assortativity (hig hvalues
on the diagonal), but that there are also some more complex

mixing patterns, for instance between age �� and ��,
approximately, here interpreted as child-parents relationships.

aDel Valle et al. ����.

Note on interpreting homophily

Homophily can be a link creation mechanism (nodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of in�uence phenomenons (be-
cause nodes are connected, they tend to in�uenceeachother and
thus become more similar).
Without access to the dynamic of the network and its properties,
it is not possible to di�erentiate those e�ects.

Categorical or Numerical homophily

Attributes of nodes can be either categorical (no natural order be-
tween values, discrete number of possible values), or numerical
(natural order, discrete or continuous). Although the general idea
remains the same, the way to compute homophily di�ers accord-
ing to type of attributes we are interested in.

Assortativity Index - De�nition

When the property for which we study homophily is categorical,
homophily can be de�neda by comparing the fraction of edges
that connect nodes of the same category, and the expected value
of such edges if the network was random. More formally, it is ex-
pressed as:

r =

P
i eii �

P
i a

2
i

1�
P

i a
2
i

where eii is the fraction of edges connecting two nodes of cat-
egory i, and ai the fraction of all edges connected to a node of
category i (sum of degrees divided by number of edges).

aNewman ����.

Assortativity index - Example

Let’s see a �ctional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total (total population or
total number of edges).

Blood Types A AB B O ai
A �.�� �.�� �.� �.�� �.�
AB �.�� �.�� � � �.�
B �.� � �.� � �.�
O �.�� � � �.�� �.�
ai �.� �.� �.� �.� �

r = (0.3+0.05+0.2+0.05)�(0.52+0.12+0.32+0.12)
1�(0.52+0.12+0.32+0.12)

= 0.6+0.36
1�0.36 =

0.375

Asortativity index - Properties

An assortativity index of r = 0 means that the network has no
assortative mixing, r = 1 corresponds to a perfectly assortative
network (edges exist only between nodes of the same category),
and r = �1 to a perfectly disassortative network (no edge be-
tween nodes of the same category).

Assortativity and Modularity

Assortativity is related to the Modularity, a measure of the quality
of communities, by the following relation:

r =
Q

Qmax

Indeed,
P

i eii �
P

i a
2
i corresponds to the de�nition of the Mod-

ularity, while 1�
P

i a
2
i corresponds to themaximal value that the

Modularity could reach if all nodeswere in the same communities.

Beyond assortative and disassortative, we can study more generally 
Mixing patterns, 

=>preference of nodes with attribute a to connect with nodes with 
attribute b (where a,b can be identical or different)
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• [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]


