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NODE

 Node centrality measures = being important in the network
(not necessarily central In term of being In the center)

» Usage:
» Discover important nodes

» Rank nodes by importance
» +machine learning => classification of nodes



Degree centrality - recap

Number of connections of a node
« Undirected network

* Directed network
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NODE DEGRES

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

S

» But not always

» Facebook users with the most friends are spam
» Webpages/wikipedia pages with most links are simple lists of references

M



NODE CLUSTERING
COEFFICIENT

- Clustering coefficient: density of neighborhood
» ells you If the neighbors of the node are connected

* Be careful!

» Degree 2:value O or |
» Degree 1000: Not O or | (usually)
» Ranking them is not meaningful

- Can be used as a proxy for “communities’ belonging:

» If node belong to single group: high CC

» If node belong to several groups: lower CC
5



PERINESS, CLOSENESS
HARMONIC CENTRALITY



FARNESS, CLOSENESS

* How close the node Is to all other nodes

» Parallel with the center of a figure:

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighted




FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

Farness(u):N . Z Lo ,v



EEOSENESS CEN TRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =

| e il 11
C.(i) = =— =0.55

Bx1+7%x2+1x%x3) 20



EEOSENESS CENTRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other

nodes in term of shortest paths. AmsterdamPart_CLS_nolimit

Closeness
I 0.000000
N —1
ClOSGI’]eSS(u) = [ 0,000001 - 0,000000
Zv eViu lu U 0,000001 - 0,000000

0,000001 - 0,000000

\ 0,000001 - 0,000000
2k I 0.000001 - 0,007673
= I 0.007674 - 0034569
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Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of
the inverse of distance to all other nodes (Harmonic mean). Well defined
on disconnected network with é = 0. Its interpretation is the same as the

closeness.
1

1
Harmonic(u) = ——— D
o veV\u

U,V




BE TWEENNESS CENTRALITY

* Measure how much the node plays the role of a bridge

* Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cr (”U) . Z Ust(v)

sFvAteEV O st

with os: the number of shortest paths between nodes s and t and o5+ (v)
the number of those paths passing through wv.

The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: C'X™ (v) = (ijﬁ((ﬁ)_z)-

192



Betweenness Centrality

Cp(v) = Z 75(v)

Ost

sHEvAtEV
: . ,~ynorm i Cp)
directed graph: C5"" (v) = i (N =)

5% 6+1+-+= 64
Coltt) = 2 E i
11*10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity

13
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EDGE - BETWEENNESS

Same definition as for nodes
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RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

* Recursive iImportance:
» Important nodes are those connected to important nodes

« Several centralities based on this idea:

» Eigenvector centrality
» PageRank



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» If every node “sends’’ its score 1o 1ts neighbors, the sum of all scores received
oy each node will be equal to Its original score

@i — i el (1)

& i A 2 normalisation constant



RECURSIVE DEFINITION

» I his problem can be solved by what s called the power
method:

» |) We initialize all scores to random values

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!

» Perron-Frobenius theorem (see next slide)
» =>]rue for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

* What we just described Is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a column vector of size n, which can be interpreted as the scores of nodes

* What Perron-Frobenius algorithm says is that the power
method will always converge to the leading eigenvector, I.e., the
elgenvector associated with the highest eigenvalue

20



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) o b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree)

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component
21



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

22



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/

23



PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-“[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[...], we expect that advertising funded search engines will be inherently biased towards the
advertisers and away from the needs of the consumers.”

24



PAGERANK

* 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even If that Is their only in-coming link)
- =>What each node "is worth" Is divided equally among its neighbors (normalization by the

degree)
oL Lz ok t4+1 C,
(0 S A\ v St > CU T Z out + B

UEN’I?:Ln UEN&TL v

With by convention =1 and a a parameter (usually 0.85) controlling the

relative importance of f
25



PAGERANK

* Then how do Google rank when we do a research!?

» Compute pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
“Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]

26



o i siss

- Many other centralities have been proposed
* The problem Is how to interpret them ¢

» Can be used as supervised tool:

Compute many centralities on all nodes

Learn how to combine them to find chosen nodes

Discover new similar nodes

(roles In social networks, key elements in an infrastructure, ...)

v
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v
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Which i1s which ?

.
Y . ‘#4// Degree
4 ! - ; Rls Clustering coefficient
| Closeness
Harmonic Centrality
£ Betweenness
| . Katz
_ Eigenvector
PageRank



Which i1s which ?

v e

» Degree
'ustermg coefficient
Closeness
Harmonic Centrality
Betweenness
Katz
Figenvector
PageRank



Which i1s which ?

» Degree

ustermg coefficient

- Closeness

* Harmonic Centrality
Betweenness

2 Katz

. X Figenvector

“PageRank
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Try again :)
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D: Eigenvector
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ASSORITATIVITY - HOMOPHILY



Homophily - Assortativity

"birds of a feather flock together”

 Property of (social) networks that nodes of the same attitude tends to be connected with
a higher probability than expected

- It appears as correlation between vertex properties of x(i) and x(j) if (i j)EE

Vertex properties

« age
« gender

- nationality
- political beliefs .
« socioeconomic status

 habitual place

* Obesity

Highschool network

Colored by ethnic groups (J Moody)




Homophily - Assortative mixing

"Opposites attract"

Disassortativity - Heterophily
« Opposite of homophily: dissimilar nodes tend to be connected
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Homophily - Assortativity

Note on interpreting homophily

Homophily can be a link creation mechanism (nhodes have a pref-
erence to connect with similar ones, so the network end up to
be assortative), or a consequence of influence phenomenons (be-
cause nodes are connected, they tend to influence each other and
thus become more similar).

Without access to the dynamic of the network and its properties,
It Is not possible to differentiate those effects.




Homophily - Assortative mixing

| | D2 €ii — 2295
Categorical attributes P S a2

S

e;:: fraction of edges between nodes with same attributes

a; fraction of all edges having at least an end with property 1.
=>5um of degrees of nodes with property | divided by L

No assortative mixing : r=0 (e;; = al.z)
Perfectly assortative: r=1
Assortative: r>0



Homophily - Assortative mixing

Assortativity index - Example

Let's see a fictional example of how to compute the assortativity
index. Nodes are individuals, edges represent for instance some
social interaction. Columns/Rows correspond to blood types, and
numbers are expressed in fraction of the total number of edges.
Blood Types | A AB B O a;
030 005 01 005 05
AB 005 005 O O 0.1
0.1 O 02 O 0.3
005 O O 005 Ol1
0.5 0.1 03 01 1

_ (0.340.0540.240.05)—(0.5%24+0.1240.32+0.1%) _ 0.64+0.36 __
- 1—(0.5240.124+0.3240.12) — 1-0.36
0.375




Homophily - Assortative mixing

Numeric attributes

Pearson correlation coefficient of properties
at both extremities of edges

40 T T T T

O N ]| ey, fraction of edges joining nodes with values x and y

age of wife [years]

20 —

E Doy — L E Dy = B g g = Uy
Ty Y a8

0 20 30 w0 s nyajy(escy_amby)

age of husband [years] y o .
Oa0b

with o, standard deviation of a,

(Here, discrete version)



Mixing patterns

Beyond assortative and disassortative, we can study more generally
Mixing patterns,
=>preference of nodes with attribute @ to connect with nodes with
attribute b (where a,b can be identical or different)

Mixing Patterns - example

Example of mixing patterns of age in a network of interaction be-

tween individuals, reproduced from?,
%0

&0

70

&0

50

Agei

T o

30

0 20 30 40 so &0 70 80 80
Age |
We can see that there is some level of assortativity (hig hvalues
on the diagonal), but that there are also some more complex
mixing patterns, for instance between age 10 and 40,
approximately, here interpreted as child-parents relationships.

Del Valle et al. 2007.




Mixing patterns

S —
© — Age 20
w—  Age 30
— Age 40
o w— Age 50
== Age 60
== Random edge

Fraction
0.10
I

0.05
|

20 40 60 80 100
Neighbor’s age

[ The Anatomy of the Facebook Social Graph, Ugander et al. 201 |]



