
Bitcoin Transactions Network Analysis :
Actors Identification and Predictions

References

Course : Bitcoin Network analysis, 2020, R. Cazabet, Université Paris 1 Panthéon-
Sorbonne, Université de Lyon
Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search
Engine. In: Seventh International World-Wide Web Conference (WWW 1998), April
14-18, 1998, Brisbane, Australia.
Kondor et al., Do the Rich Get Richer? An Empirical Analysis of the Bitcoin
Transaction Network. PLOS ONE 9(5): e97205.
Möser, Böhmen and Breuker, Inquiry into money laundering tools in the Bitcoin
ecosystem, Conference: 2013 eCrime Researchers Summit (eCRS)
Dorit Ron and Adi Shamir, Quantitative Analysis of the Full Bitcoin Transaction
Graph, 2012
Zhou, T., Lü, L., & Zhang, Y. C. (2009). Predicting missing links via local information.
The European Physical Journal B, 71(4), 623-630
node2vec: Scalable Feature Learning for Networks, 2016, A. Grover and J.
Leskovec, Stanford University

Import packages

In [4]:

Import data

import os
import pandas as pd
import numpy as np
import networkx as nx
from networkx import read_graphml
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
import random
import datetime
from matplotlib.pyplot import figure
from numpy import mean
from cdlib import algorithms, viz, NodeClustering, evaluation

http://cazabetremy.fr/Teaching/bitcoinClass/time_split/year=2014/month=2/day=7/
(http://cazabetremy.fr/Teaching/bitcoinClass/time_split/year=2014/month=2/day=7/)

The file imported corresponds to 7 February 2014. Format is "parquet".

value: value in satoshi.
time: timestamp of the transaction.
src_identity: source of the transaction.
dst_identity: destination of the transaction.
PriceUSD: Value of a bitcoin in USD for that day.

The id of actors can be: a name (known actor), an integer (group of addresses, "wallet"),
a bitcoin address (address belongs to no cluster).

7 February 2014 :

Hacking day
The victim of a massive hack, Mt. Gox lost about 740,000 bitcoins (6% of all bitcoin
in existence at the time), valued at the equivalent of €460 million

Setting our directory

Muge directory

In [7]:

Chloe directory

In [2]:

Louis directory

In [97]:

Data preparation

In [98]:

Out[98]: (207116, 5)

os.chdir(r'/Users/mugefirsat/Downloads')
data = pd.read_parquet("7fev2014.parquet",engine='pyarrow')

os.chdir(r'/Users/Daudenthun/Documents/M2/Network analysis/Data')
data = pd.read_parquet("7fev2014.parquet",engine='pyarrow')

os.chdir(r'/Users/Louis/Downloads')
data = pd.read_parquet("7fev2014.parquet",engine='pyarrow')

data.shape

http://cazabetremy.fr/Teaching/bitcoinClass/time_split/year=2014/month=2/day=7/

The initial dataset is composed of 207 116 rows (transactions) and 5 columns (value,
time, source, destination, priceUSD).

value : value in satoshi
time : timestamp of the transaction
src_identity : source of the transaction
dst_identity : destination of the transaction
PriceUSD : Value of a bitcoin in USD for that day.

The id of actors can be: a name (known actor), an integer (group of addresses, "wallet"),
a bitcoin address (address belongs to no cluster).

In [99]:

Rename columns

In [100]:

Add the date

In [101]:

Add the hour

In [102]:

Convert to numeric

In [103]:

Add the equivalent bitcoin amount and dollar amount

In [104]:

For convinience, we reduce the length of addresses.

Out[99]: value time src_identity dst_identity

0 10860 1391783589 73346613 nonstandard141df9d18f92c7efe8e5cd927c2e9be7c78... 711.571273419053

1 10860 1391784042 ePay.info nonstandarde7284c974affd2b089a7df844876067ba49... 711.571273419053

2 10860 1391810470 22801559 nonstandard3ec04a56a71c58b3ee99a71ebfa9ffecb17... 711.571273419053

3 10860 1391730636 69408508 nonstandardfb0bdcc6b8e9ecec58cd04b89cb3dfd54b3... 711.571273419053

4 10860 1391783589 82818 nonstandardd676f0143edff9d402846eb4f568a9bd1f8... 711.571273419053

data.head()

data = data.rename(columns = {'src_identity':'Source', 'dst_identity'

data['Date'] = pd.to_datetime(data['Time'],unit='s')

data['Hour'] = data.apply(lambda x: x['Date'].hour, axis=1)

data['PriceUSD'] = pd.to_numeric(data['PriceUSD'])

data['Bitcoin'] = pd.DataFrame(data['Montant']*0.00000001)
data['Dollar'] = data.apply(lambda x: x['Bitcoin']*x['PriceUSD'], axis

In [105]:

Data informations

Description of the transactions amount in dollar

In [106]:

The average amount sent by transaction is 2 979 dollars with a median of 35 dollars, the
minimal amount sent is 0 dollars and the maximal amount sent is 14 299 594 dollars. Just
to recall that at this date, a bitcoin was worth 711.57 dollars.

Sorted by amount

In [107]:

Out[106]: count 207116.000000
mean 2979.761162
std 53682.132124
min 0.000000
25% 7.752252
50% 35.875815
75% 285.169151
max 14299594.707946
Name: Dollar, dtype: object

Out[107]: Dollar Source Destination

43878 1.429959e+07 72539960 72539960
2014-
02-07

06:12:19

43879 1.252060e+07 72539960 72539960
2014-
02-07

07:20:24

160505 7.115713e+06 72539960 Bitstamp.net-old
2014-
02-07

06:12:19

38366 4.891207e+06 Bitstamp.net-old 1GTPMZyBZidSwifYcdzH
2014-
02-07

06:17:04

60131 3.452625e+06 1GTPMZyBZidSwifYcdzHZhNzyMkJi7FZgy 1Gm8Ag9aVujX28Yc6mm5
2014-
02-07

06:31:08

data['Destination'] = data['Destination'].apply(lambda x: x[:20])

data['Dollar'].describe().apply(lambda x: format(x, 'f'))

sorted_asc = data.sort_values("Dollar", ascending=[False])
sorted_asc[['Dollar','Source','Destination','Date','Hour']].head()

Above, we can see the five most important transactions by amount. It's interesting to
highlight that a transaction from Bitstamp.net-old to the public adsress
"1GTPMZyBZidSwifYcdzHZhNzyMkJi7FZgy" and this same public adress send a large
amount to another public address "1Gm8Ag9aVujX28Yc6mm5b8eNJKp5KjD6e".

Distribution of values of transaction

In [108]:

Here we can see the distribution of the dollar amount for the transactions of the 7th of
febuary 2014. They are concentrated between 0 and 2 000 000 dollars.

Evolution of the number of transaction per hour

Out[108]: Text(0.5, 1.0, 'Distribution of transactions amount')

ax = data["Dollar"].plot.hist(stacked=True, bins=100, color = "royalblue"
ax.set_yscale("log")
plt.title("Distribution of transactions amount", size=15)

In [109]:

In [110]:

The graphic below shows us the evolution of the number of Bitcoin intra day transactions
on the 7 Feburary 2014.
Between 5am and 6am (between 05:00-06:59), the number of transactions skyrockets. At
6 am (between 06:00-06:59), a pick can be seen. Between 6 am and 9 am (between
06:00-09:59), the number of transactions increases and at 9am (between 09:00-09:59),
one of the lowest transactions number is observed.
The avarage intra day transaction number is arround 3.61 x 10^12.
The lowest intra day transaction number that is 1.29 x 10^12 and is observed at between
01:00-01:59.

Out[109]: Text(0.5, 1.0, 'Evolution of the number of Bitcoin transactions in
tra day on 7 February 2014')

count 2.400000E+01
mean 3.613811E+12
std 1.675063E+12
min 1.299850E+12
25% 2.585641E+12
50% 3.525616E+12
75% 4.301000E+12
max 9.241505E+12
Name: Montant, dtype: object

plt.figure(figsize = (8,5))
data.groupby(data["Hour"])["Montant"].sum().plot(color="royalblue")
plt.ticklabel_format(axis="y", style="plain")
plt.xticks(range(0,25))
plt.grid(True)
plt.title('Evolution of the number of Bitcoin transactions intra day on 7 February 2014'

print(data.groupby(data["Hour"])["Montant"].sum().describe().apply(lambda

Overall network

Create an empty graph

In [195]:

Define edges and nodes

In [196]:

Descriptive Informations

In [197]:

In [201]:

Number of nodes : 94539
Number of edges : 139161
Number of connected components : 4329
Density : 3.114082557957132e-05
avg degree: 2.943991368641513
Transitivity : 0.0012238298379050325

G = nx.Graph()

G = nx.from_pandas_edgelist(data, 'Source','Destination',["Dollar"])

n = G.number_of_nodes()
m = G.number_of_edges()

print("Number of nodes :", str(n))
print("Number of edges :", str(m))
print("Number of connected components :",str(nx.number_connected_components
print('Density :', nx.density(G))
print ("avg degree: "+str(mean([n for n in dict(nx.degree(G)).values
print('Transitivity :', nx.transitivity(G))

On the 7th of febraury 2014, there were 94 539 nodes and 139 161 edges on the bitcoin
network. Recall that in our bitcoin network representation, an edge represents a
trasaction. Moreover, a Bitcoin holder can send his/her Bitcoin(s) to multiple receviers. In
that case, one transaction can generate multiple edges. In addition, people can make
reccurent transactions or also multiple receivers transactions. For instance, if Alice sends
x Bitcoin to Bob at 6am and Bob sends Alice z Bitcoin at 10pm, thiw will generate 2
transactions but only 1 edge, this is a recurrent transaction. If Bob sends x Bitcoin to
Alice, Chloé, Louis and Müge at once, this will generate 5 transactions (1 change and 4
sending) but only 4 edges. Thus, if one trasaction had had only one sender and one
recevier and a couple of sender/receiver would have realised only one transaction which
each other, this would have lead to 94 539 (nodes) * 2 = 189 078 edges. The fact that the
number of edges are less than 189 078 underlines that there are transactions with
multiple receviers and/or reccurent transactions.

The density which is the fraction of pairs of nodes connected by an edge was equal to
0,0000311.

The average degree was 2.94, in other words, on average one person has 2.94
neighbors.

The transitivity, or clustering coefficient, is the overall probability for the network to have
adjacent nodes interconnected, thus revealing the existence of tightly connected
communities, in our network this value was equal to 0.0012, which is close to 0.

--> The network is too heavy to plot, we will need to apply some filters to be able to plot
it.

Filtrer le network

In [202]:

Study the network for different hours intervals

Out[202]: (207116, 9)

data.shape

In [203]:

In [204]:

In [205]:

 Shape Nodes Edges Density Avg Deg Conc
Clust
Hour Interval
[0,24] (207116, 9) 94539 139161 0.000031 2.94399 4329
0.00122
[24,5) (42764, 9) 24036 29023 0.000100 2.41496 1187
0.00050
[5,10) (32516, 9) 17978 23105 0.000143 2.57036 1178
0.00628
[10,15) (43388, 9) 23890 30180 0.000106 2.52658 1576
0.00615
[15,20) (45126, 9) 24978 33854 0.000109 2.71071 1548
0.00402
[20,24) (43322, 9) 22338 29510 0.000118 2.64213 1512
0.00649

def filter_out_Hour(data,hourlist):
 if hourlist:
 data = data[data.Hour.isin(hourlist)]
 return data

Data1_4= filter_out_Hour(data,range(1,5))
Data5_9= filter_out_Hour(data,range(5,10))
Data10_14= filter_out_Hour(data,range(10,15))
Data15_19= filter_out_Hour(data,range(15,20))
Data20_0= filter_out_Hour(data,[20,21,22,23,0])

listdata = [data,Data1_4,Data5_9,Data10_14,Data15_19,Data20_0]
datashape = []
datanodes = []
dataedges = []
datadensity = []
dataclustering = []
dataconnectedcom = []
dataavgdeg = []

for df in listdata:
 g = nx.from_pandas_edgelist(df, 'Source','Destination',['Dollar'
 datashape.append(df.shape)
 datanodes.append(g.number_of_nodes())
 dataedges.append(g.number_of_edges())
 datadensity.append(nx.density(g))
 dataavgdeg.append(str(mean([n for n in dict(nx.degree(g)).values
 dataconnectedcom.append(str(nx.number_connected_components(g)))
 dataclustering.append(str(nx.transitivity(g)))

d={'Shape':datashape , 'Nodes':datanodes, 'Edges':dataedges, 'Density'
df_sum = pd.DataFrame(d,index=['[0,24]','[24,5)','[5,10)','[10,15)',
df_sum['Avg Deg'] = (df_sum['Avg Deg'].astype('float64')).map('{:,.5f}'
df_sum['Clust'] = (df_sum['Clust'].astype('float64')).map('{:,.5f}'.
df_sum.index.name = 'Hour Interval'

print(df_sum)

Above we can see different caracteristics (nodes, edges, density, average degree etc...)
of the network for different time slopes. For the folowing analysis we have decided to
focus on the transactions that occur between 5:00am and 10:00am (not included) as it
represented a peak of activity.

During the interval 5am to 10am, the network has 17 978 nodes and 23 105 edges. The
density (fraction of pairs of nodes connected by an edge) was at his higher value,
0.000143.

Filters to apply (focus on 5am - 10am slope)

As mentionned previously we need to apply some filters in order to reduce the size of the
network.

Filter to remove transactions with the same adress as source and
destination

With this filter we want to remove transactions that have the same adress as source and
destination, which might be the change.

In [206]:

Filter to remove adresses which belong to no cluster

We made the hypothesis taht people steal from known adresses but send to unkown
addresses. Thus, we want to remove address that have a lenght superior to 20
characters but keep addresses with lenth superior to 20 characters (dst = false, because
we do not want to remove unknown destination).

In [207]:

Out[206]: (25623, 9)

Out[207]: (15242, 9)

def filter_out_self_spending(data):
 return data[data["Source"]!=data["Destination"]]

Data5_9 = filter_out_self_spending(Data5_9)
Data5_9.shape

def filter_out_unique(data,src=True,dst=True):
 if src:
 data = data[data["Source"].str.len()<20]
 if dst:
 data = data[data["Destination"].str.len()<20]
 return data

Data5_9 = filter_out_unique(Data5_9,src=True,dst=False)
Data5_9.shape

Filter to remove the integers which represent a group of adresses.

With this filter we want to remove all transactions that belong to a group of addresses.

In [208]:

Filter to keep transactions with large amount

With this filter we want to remove transactions where the amount sent is inferior to the
median value (percentile = 50).

In [209]:

Filter to keep recurrent recipient

With this filter we want to remove recipient that received Bitcoin from only source.

In [210]:

Filter to remove transaction with a degree of 1

Out[208]: (1276, 9)

Out[209]: (638, 9)

Out[210]: (465, 9)

def filter_out_anonym_cluster(data,src=True,dst=True):
 if src:
 data = data[~data["Source"].astype(str).str.isnumeric()]
 if dst:
 data = data[~data["Destination"].astype(str).str.isnumeric()]
 return data

Data5_9 = filter_out_anonym_cluster(Data5_9,src=True,dst=True)
Data5_9.shape

def filter_out_trasactionD_percentile(data,percentile):
 data = data[data['Dollar'] > np.percentile(data['Dollar'], percentile
 return data

Data5_9 = filter_out_trasactionD_percentile(Data5_9,50)
Data5_9.shape

def filter_out_reccurent_recp(data):
 grp = data.groupby('Destination')['Source'].count().reset_index()
 grp = grp[grp['Source']>1]
 id_list=list(grp['Destination'].unique())
 data = data[data['Destination'].isin(id_list)]
 return data

Data5_9 = filter_out_reccurent_recp(Data5_9)
Data5_9.shape

With the same idea as the previous filter, we want to remove nodes with a degree of 1.

In [211]:

In [212]:

Define a new network ((focus on 5am - 10am
slope)

In [213]:

Informations

In [214]:

Out[212]: (462, 9)

Number of nodes : 45
Number of edges : 145
Number of connected components : 1
avg degree: 6.444444444444445
Density : 0.14646464646464646
Transitivity : 0.35067437379576105

def filter_out_self_spending(data):
 g = nx.Graph()
 g = nx.from_pandas_edgelist(data, 'Source','Destination',['Dollar'
 degree_dict = dict(g.degree(g.nodes()))
 degree_dict = dict(filter(lambda elem: elem[1] != 1, degree_dict
 id_list=list(degree_dict.keys())
 data = data[data['Source'].isin(id_list)]
 return data

Data5_9 = filter_out_self_spending(Data5_9)
Data5_9.shape

G = nx.Graph()
G = nx.from_pandas_edgelist(Data5_9, 'Source','Destination',["Dollar"

n = G.number_of_nodes()
m = G.number_of_edges()
print("Number of nodes :", str(n))
print("Number of edges :", str(m))
print("Number of connected components :",str(nx.number_connected_components
print ("avg degree: "+str(mean([n for n in dict(nx.degree(G)).values
print('Density :', nx.density(G))
print('Transitivity :', nx.transitivity(G))

The filtered network has 45 nodes with 145 edges.

The density is equal to 0.1464, largely higher than the one obtain previously with the
entire network, suggesting that there are more pairs of nodes connected between them.

The average degree is 6.44, in other words, on average one person has 6.44 neighbors,
more than two times the average degree of the entire network.

The transitivity is equal to 0.305, largely higher than the one obtain previously with the
entire network.

Plot the network

The reduced network is vizualized below thanks to different methods.

In [215]:

Out[215]: Text(0.5, 1.0, 'Bitcoin network transaction from 5am to 10am on th
e 7th of february of 2014')

nx.draw_networkx(G)
plt.title('Bitcoin network transaction from 5am to 10am on the 7th of february of 2014'

In [224]:

Out[224]: Text(0.5, 1.0, 'Bitcoin network transaction from 5am to 10am on th
e 7th of february of 2014')

fig, ax = plt.subplots(figsize=(10, 10))
nx.draw(G,
 with_labels=True,
 ax=ax,
 node_size=75,
 node_color='#b3d1ff',
 edge_color='#b3e6cc',
 width =2.0,
 stype= 'dashed',
 font_size=10.0,
 font_color='#002966',
 alpha=0.75)
ax.set_title('Bitcoin network transaction from 5am to 10am on the 7th of february of 2014'

In [216]:

Network Influencers

Degree Centrality

Degree centrality is a measure of the number of connections a particular node has in the
network. It is based on the fact that important nodes have many connections.

In [217]:

Eigenvector Centrality

It not just assess how many addresses one is connected too, but the type of addresses
one is connected with that can decide the importance of a node. It decides that a node is
important if it is connected to other important nodes.

Out[216]: Text(0.5, 1.0, 'Bitcoin network transaction from 5am to 10am on th
e 7th of february of 2014')

Out[217]: ['Bitstamp.net-old',
 'AnxPro.com',
 'CoinTrader.net',
 'BTC-e.com-old',
 'ePay.info']

nx.draw_circular(G, with_labels=True)
plt.title('Bitcoin network transaction from 5am to 10am on the 7th of february of 2014'

degree_centrality = nx.degree_centrality(G)
dc = sorted(degree_centrality, key=degree_centrality.get, reverse=True
dc

In [218]:

Betweenness Centrality

The Betweenness Centrality quantifies how many times a particular node comes in the
shortest chosen path between two other nodes. The nodes with high betweenness
centrality play a significant role in the communication/information flow within the network.
The nodes with high betweennesss centrality can have strategic control and influence on
others.

Visualization of the network such that the node color varies with "Degree" and node size
with "Betweenness Centrality".

Out[218]: ['Bitstamp.net-old',
 'BTC-e.com-old',
 'ePay.info',
 'AnxPro.com',
 'CoinTrader.net']

eigenvector_centrality = nx.eigenvector_centrality(G)
evc = sorted(eigenvector_centrality, key=eigenvector_centrality.get,
evc

In [219]:

We obtain the following labels of nodes with the highest betweenness centrality.

In [220]:

Out[219]: Text(0.5, 1.0, 'Bitcoin network transaction from 5am to 10am on th
e 7th of february of 2014')

Out[220]: ['ePay.info', 'Bitstamp.net-old', 'mining', 'AnxPro.com', 'CoinTra
der.net']

pos = nx.spring_layout(G)
betCent = nx.betweenness_centrality(G, normalized=True, endpoints=True
node_color = [20000.0 * G.degree(v) for v in G]
node_size = [v * 10000 for v in betCent.values()]
plt.figure(figsize=(12,12))
nx.draw_networkx(G, pos=pos, with_labels=True,
 node_color=node_color,
 node_size=node_size)
plt.axis('off')
plt.title('Bitcoin network transaction from 5am to 10am on the 7th of february of 2014'

bc = sorted(betCent, key=betCent.get, reverse=True)[:5]
bc

Conclusions : Degree centrality, Eigenvector centrality, Betweenness
centrality

In [221]:

We can see that some nodes are common between Degree Centrality, which is a
measure of degree, and Betweenness Centrality which controls the information flow. It is
natural that nodes that are more connected also lie on shortest paths between other
nodes. The node "Bitstamp.net-old" is an important node as it is crucial according to all
three centrality measures that we had considered.

Network Structures

In network theory, a "clique" is essentially defined on the social version of a clique : a set
of nodes (addresses) that are completely connected by an edge to every other node in
the set. It is then, a completely connected graph.

Simplest clique : an edge is the simplest clique possible

Simplest complex clique : 3 nodes fully connected : a triangle

Please do not run !

In [135]:

Please do not run !

Out[221]: Degree centrality Eigenvector centrality Betweenness centrality

0 Bitstamp.net-old Bitstamp.net-old ePay.info

1 AnxPro.com BTC-e.com-old Bitstamp.net-old

2 CoinTrader.net ePay.info mining

3 BTC-e.com-old AnxPro.com AnxPro.com

4 ePay.info CoinTrader.net CoinTrader.net

Out[135]:

total = pd.DataFrame({'Degree centrality':dc, 'Eigenvector centrality'
total

from IPython.display import Image
PATH = "/Users/Louis/Downloads/"
Image(filename = PATH + "Triangle.png", width=100, height=100)

In [136]:

Triangles

Triangles correspond to the simplest complex clique.

Identify triangle relationships

In the Bitcoin Transactions Network, each node has an associated address label. One
potential application of triangle-finding algorithms is to find out whether a particular type
of address is more likely to be in a triangle with one another.

In [137]:

Out[136]:

Out[137]: True

Image(filename = PATH + "Capture.png", width=100, height=100)

from itertools import combinations

Define is_in_triangle()
def is_in_triangle(G, n):
 """
 Checks whether a node `n` in graph `G` is in a triangle relationship or not.

 Returns a boolean.
 """
 in_triangle = False

 # Iterate over all possible triangle relationship combinations
 for n1, n2 in combinations(G.neighbors(n), 2):

 # Check if an edge exists between n1 and n2
 if G.has_edge(n1, n2):
 in_triangle = True
 break
 return in_triangle

is_in_triangle(G, "Bitstamp.net-old")

In [138]:

Find nodes involved in triangles

We can then use a function to extract all of the nodes involved in a triangle relationship
with a given node (address).

In [139]:

Find open triangles

Identify whether a node is present in an open triangle with its neighbors.

1P2uSPZnxxrka1ps29xW: True
AnxPro.com: True
BTC-e.com-old: True
Bitstamp.net-old: True
CoinTrader.net: True
Coins-e.com: True
Cryptsy.com-old: True
LocalBitcoins.com-ol: True
Luno.com: True
Poloniex.com: True

Out[139]: {'AgoraMarket', 'BTC-e.com-old', 'BitcoinFog', 'SilkRoad2Market'}

for node in sorted(list(G.nodes())[:10]):
 x = is_in_triangle(G, node)
 if x == True:
 print(f'{node}: {x}')

Write a function that identifies all nodes in a triangle relationship with a given node.
def nodes_in_triangle(G, n):
 """
 Returns the nodes in a graph `G` that are involved in a triangle relationship with the node `n`.
 """
 triangle_nodes = set([n])

 # Iterate over all possible triangle relationship combinations
 for n1, n2 in combinations(G.neighbors(n), 2):

 # Check if n1 and n2 have an edge between them
 if G.has_edge(n1, n2):

 # Add n1 to triangle_nodes
 triangle_nodes.add(n1)

 # Add n2 to triangle_nodes
 triangle_nodes.add(n2)
 return triangle_nodes

nodes_in_triangle(G, "AgoraMarket")

In [140]:

Maximal Cliques

Maximal cliques correspond to clique that cannot be extended by adding another node in
the graph.

In [141]:

28 nodes in graph G are in open triangles.

Out[141]:

Define node_in_open_triangle()
def node_in_open_triangle(G, n):
 """
 Checks whether pairs of neighbors of node `n` in graph `G` are in an 'open triangle' relationship with node `n`.
 """
 in_open_triangle = False

 # Iterate over all possible triangle relationship combinations
 for n1, n2 in combinations(G.neighbors(n), 2):

 # Check if n1 and n2 do NOT have an edge between them
 if not G.has_edge(n1, n2):

 in_open_triangle = True

 break

 return in_open_triangle

Compute the number of open triangles in T
num_open_triangles = 0

Iterate over all the nodes in T
for n in G.nodes():

 # Check if the current node is in an open triangle
 if node_in_open_triangle(G, n):

 # Increment num_open_triangles
 num_open_triangles += 1

print(f'{num_open_triangles} nodes in graph G are in open triangles.'

Image(filename = PATH + "Max_ex.png", width=150, height=150)

For example, the sub-clique of the 3 green nodes can be extended by one blue node to
form a large clique.

As such, these 3 green nodes do not form a maximal clique in the graph.

The 4 nodes connected as a clique together cannot be extended and still remain a clique,
as the remaining node is not fully connected to the other four nodes.

As such, these 4 nodes constitute a maximal clique.

NetworkX provides a function that allows you to identify the nodes involved in each
maximal clique in a graph: nx.find_cliques(G).

In [142]:

Finding Cliques

Cliques are "groups of nodes that are fully connected to one another", while a maximal
clique is a clique that cannot be extended by adding another node in the graph.

Out[142]: [['Bitstamp.net-old',
 'Bitcoin.de',
 'SilkRoad2Market',
 'AnxPro.com',
 'CoinTrader.net',
 'LocalBitcoins.com-ol'],
 ['Bitstamp.net-old',
 'BTC-e.com-old',
 'SilkRoad2Market',
 'AnxPro.com',
 'CoinTrader.net',
 'ePay.info'],
 ['Bitstamp.net-old',
 'BTC-e.com-old',
 'CoinTrader.net',
 'AnxPro.com',
 'Bitfinex.com-old2',
 'ePay.info']]

Define maximal_cliques()
def maximal_cliques(G, n):
 """
 Finds all maximal cliques in graph `G` that are of size `size`.
 """
 mcs = []
 for clique in nx.find_cliques(G):
 if len(clique) == n:
 mcs.append(clique)
 return mcs

maximal_cliques(G, 6)

In [143]:

Finding a particular maximal clique, and then plotting that clique.

Addresses that are part of the largest maximal clique, and plot the subgraph of that/one
of those clique(s) using a CircosPlot.

In [145]:

Finding important addresses

Look at important nodes using of the degree_centrality() and betweenness_centrality()
functions in NetworkX to compute each of the respective centrality scores, and then use
that information to find the "important nodes".

In other words, here we investigate the addresses that have collaborated with the most
number of addresses.

[6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2]
There are 55 cliques.

Out[145]:

cliques = sorted([len(cl) for cl in nx.find_cliques(G)], reverse=True
print(cliques)
print(f'There are {len(cliques)} cliques.')

Image(filename = PATH + "Maximal.png", width=1000, height=1000)

In [146]:

In [147]:

In [148]:

Community

Compute communities

The most prolific address: ['Bitstamp.net-old']

Out[147]: 0.5

Out[148]: {'Bitstamp.net-old': 0.5,
 'AnxPro.com': 0.4545454545454546,
 'CoinTrader.net': 0.4545454545454546,
 'BTC-e.com-old': 0.4545454545454546,
 'ePay.info': 0.4318181818181818,
 'Cryptsy.com-old': 0.38636363636363635,
 'LocalBitcoins.com-ol': 0.25,
 'SilkRoad2Market': 0.25,
 'Coins-e.com': 0.2272727272727273,
 'Bitfinex.com-old2': 0.20454545454545456,
 'Cex.io': 0.18181818181818182,
 'Bitcoin.de': 0.18181818181818182,
 'McxNOW.com': 0.1590909090909091,
 'BTCGuild.com': 0.1590909090909091,
 'Huobi.com': 0.1590909090909091,
 'CoinJar.com': 0.13636363636363635,
 'mining': 0.13636363636363635,
 'Poloniex.com': 0.11363636363636365,
 'Luno.com': 0.11363636363636365,
 'Kraken.com': 0.11363636363636365,

Compute the degree centralities of G: deg_cent
deg_cent = nx.degree_centrality(G)

Sorting the dictionary
deg_cent = {k: v for k, v in sorted(deg_cent.items(), key=lambda item

Compute the maximum degree centrality: max_dc
max_dc = max(list(deg_cent.values()))

Find the user(s) that have collaborated the most: prolific_address
prolific_address = [n for n, dc in deg_cent.items() if dc == max_dc]

Print the most prolific address
print(f'The most prolific address: {prolific_address}')

Maximal degree centrality
max_dc

Degree centrality of the different addresses
deg_cent

In [149]:

Set node attributes

In [150]:

Out[149]: defaultdict(list,
 {'Coins-e.com': [0],
 'Cryptsy.com-old': [0],
 'Poloniex.com': [0],
 'Bitstamp.net-old': [0],
 'BTC-e.com-old': [0],
 'CoinJar.com': [0],
 'McxNOW.com': [0],
 'Bitfinex.com-old2': [0],
 'Dagensia.eu': [0],
 '1KW4Wmo2XBw8X2sYtWEq': [0],
 'BTCGuild.com': [0],
 'Cavirtex.com': [0],
 'OrderBook.net': [0],
 'Huobi.com': [0],
 'Cryptorush.in': [0],
 'Bitcoin.de-old': [0],
 'Crypto-Trade.com': [0],
 'Vircurex.com': [0],
 'Justcoin.com': [0],
 'AnxPro.com': [1],
 '1P2uSPZnxxrka1ps29xW': [1],
 'CoinTrader.net': [1],
 'LocalBitcoins.com-ol': [1],
 'Luno.com': [1],
 'BitBargain.co.uk': [1],
 'HappyCoins.com': [1],
 'PandoraOpenMarket': [1],
 '1H9Ugsim2TaG5HZrr7su': [1],
 'BlueSkyMarketplace': [1],
 '1AtEhqyccigEgnzNWiAU': [1],
 '158dPP7Z5Nb5J7CwBArx': [1],
 '14o678qnBDKJuKnmD1bt': [1],
 'Cex.io': [2],
 'ePay.info': [2],
 'SilkRoad2Market': [2],
 'Kraken.com': [2],
 'Bitcoin.de': [2],
 'BitPay.com-old': [2],
 'BitcoinFog': [2],
 'AgoraMarket': [2],
 'mining': [3],
 'EclipseMC.com-old': [3],
 'SlushPool.com-old2': [3],
 'KnCMiner.com': [3],
 'GHash.io': [3]})

coms = algorithms.louvain(G, weight='weight', resolution=1., randomize
coms.to_node_community_map()

nx.set_node_attributes(G, coms, "Community")

Plot the communities

On the following graph, each color represents a different community in the network.

In [151]:

Out[151]: Text(0.5, 1.0, 'Bitcoin network communities from 5am to 10am in th
e 7th of february of 2014')

viz.plot_network_clusters(G, coms)
plt.title('Bitcoin network communities from 5am to 10am in the 7th of february of 2014'

In [236]:

In [152]:

Betweeness & Page Rank

Betweeness Centrality

Betweenness is a measure of centrality based on shortest paths. The betweenness
centrality for each node is the number of these shortest paths that pass through the
node.

In [153]:

Page Rank

import community as community_louvain
import matplotlib.cm as cm

G = nx.karate_club_graph()
compute the best partition
partition = community_louvain.best_partition(G)

draw the graph
pos = nx.spring_layout(G)
color the nodes according to their partition
cmap = cm.get_cmap('viridis', max(partition.values()) + 1)
nx.draw_networkx_nodes(G, pos, partition.keys(), node_size=40,
cmap=cmap, node_color=list(partition.values()))
nx.draw_networkx_edges(G, pos, alpha=0.5)
plt.title('Bitcoin network communities from 5am to 10am in the 7th of february of 2014'
plt.show()

#from nxviz import CircosPlot
#c = CircosPlot(G, node_color='coms', node_grouping='coms')
#c.draw()

betweenness_dict = nx.betweenness_centrality(G)
nx.set_node_attributes(G, betweenness_dict, 'betweenness')

PageRank is an algorithm used by Google Search to rank web pages in their search
engine results. It is a way of measuring the importance of website pages. PageRank
works by counting the number and quality of links to a page to determine a rough
estimate of how important the website is.

In [154]:

Top 5

Below are the five most important nodes regarding their betweeness measure,
suggesting that they are at the heart of the network.

In [155]:

In [156]:

Shortest path

Pathfinding algorithms are important because they provide another way of assessing
node importance.

To compute the average shortest path, we need to first compute the largest connected
component, otherwise the distance is infinite between some nodes.

Name: ePay.info | Betweenness Centrality: 0.285989 | Degree: 19 |
Page Rank: 0.061687
Name: Bitstamp.net-old | Betweenness Centrality: 0.177125 | Degree
: 22 | Page Rank: 0.067274
Name: mining | Betweenness Centrality: 0.175476 | Degree: 6 | Page
Rank: 0.039888
Name: AnxPro.com | Betweenness Centrality: 0.151271 | Degree: 20 |
Page Rank: 0.063359
Name: CoinTrader.net | Betweenness Centrality: 0.151271 | Degree:
20 | Page Rank: 0.063359

pagerank_dict = nx.pagerank(G)
nx.set_node_attributes(G, pagerank_dict, 'pagerank')

sorted_betweenness = sorted(betweenness_dict.items(), key=itemgetter

degree_dict = dict(G.degree(G.nodes()))
degree_dict = dict(filter(lambda elem: elem[1] != 1, degree_dict.items

top_betweenness = sorted_betweenness[:5]

for tb in top_betweenness:
 degree = degree_dict[tb[0]]
 pagerank = pagerank_dict[tb[0]]
 print("Name:", tb[0], "| Betweenness Centrality:", round(tb[1],6

In [157]:

On average, the average number of steps along the shortest paths for all possible pairs
of network nodes is 2.29. Diameter is the maximum distance between any pair of nodes,
here it is 4.

In [158]:

We can see that the highest degree measure is achieved for "Bitstamp.net-old", this
address is connected to 22 other nodes.

In [159]:

This would be the most popular addresses based on Page Rank algorithm.

average shortest parth: 2.294949494949495
Diameter : 4

nodes of highest degree:

Out[158]: [('Bitstamp.net-old', 22),
 ('AnxPro.com', 20),
 ('CoinTrader.net', 20),
 ('BTC-e.com-old', 20),
 ('ePay.info', 19),
 ('Cryptsy.com-old', 17),
 ('LocalBitcoins.com-ol', 11),
 ('SilkRoad2Market', 11),
 ('Coins-e.com', 10),
 ('Bitfinex.com-old2', 9)]

nodes of highest PageRank:

Out[159]: ['Luno.com',
 'Huobi.com',
 'Justcoin.com',
 'Cryptsy.com-old',
 'Kraken.com',
 'OrderBook.net',
 'Cryptorush.in',
 'Crypto-Trade.com',
 'Coins-e.com',
 'Poloniex.com']

cc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=
print ("average shortest parth: ",str(nx.average_shortest_path_length
print('Diameter :', nx.diameter(cc))

print("nodes of highest degree:")
sorted(nx.degree(G), key=lambda x: x[1], reverse=True)[:10]

print("nodes of highest PageRank:")
sorted(nx.pagerank(G), key=lambda x: x[1], reverse=True)[:10]

In [160]:

Explore sub graphs : neighbours

Top 5 destinations by total amounts

In [161]:

Nodes with at least 10 neighbors

Out[161]: Destination Dollar

7 BTC-e.com-old 406379.403938

24 GHash.io 250194.002213

26 Huobi.com 198956.087906

10 BitPay.com-old 172733.784308

15 Bitstamp.net-old 136824.412817

#Drawing with a classic force derected layout
plt.figure(1,figsize=(12,6))
nx.draw_networkx(G, with_labels=True,node_size=3,edge_color="grey")

top5 = Data5_9.groupby('Destination')['Dollar'].sum().reset_index()
top5.sort_values(by='Dollar',ascending=False).head()

In [162]:

BTC-e.com-old

In [163]:

In [164]:

Study Bitstamp.net-old

In [165]:

{'ePay.info', 'SilkRoad2Market', 'CoinTrader.net', 'Bitstamp.net-o
ld', 'AnxPro.com', 'Cryptsy.com-old', 'LocalBitcoins.com-ol', 'BTC
-e.com-old'}

def nodes_with_m_nbrs(G,m):
 nodes = set()
 for n in G:
 if len(list(G.neighbors(n))) > m:
 nodes.add(n)
 return nodes

nodes_list = nodes_with_m_nbrs(G,10)
print(nodes_list)

G_btc_old = nx.Graph()
G_btc_old = nx.from_pandas_edgelist(Data5_9[Data5_9['Destination']==

nx.draw_circular(G_btc_old, with_labels=True, font_weight='bold')

G_bitstamp = nx.Graph()
G_bitstamp = nx.from_pandas_edgelist(Data5_9[Data5_9['Destination']==

In [166]:

Visualize network of transaction

For the reduced network

nx.draw_circular(G_bitstamp, with_labels=True, font_weight='bold')

In [167]:

For the entire network

Out[167]: Text(0.5, 0.98, 'Bitcoin Exchange Network')

nx_plot = pd.Series.to_frame(Data5_9.groupby(['Source', 'Destination'
G1 = nx.from_pandas_edgelist(nx_plot[0:200], 'Source', 'Destination'

color_list = []
for node in G1.nodes():
 if node == 'BTC-e.com-old':
 color_list.append('red')
 else:
 color_list.append('green')

pos = nx.spring_layout(G1)
nx.draw_networkx_nodes(G1,pos,node_color=color_list,node_size=20)
nx.draw_networkx_edges(G1, pos, alpha=0.3)
plt.title('Top 5 wallets to receive funds from BTC-e.com-old', fontsize
plt.suptitle('Bitcoin Exchange Network', fontsize=15)

In [168]:

GEPHI graph
In [3]:

Export to excel

In [5]:

Import image from gephi

Please do not run !

Out[168]: Text(0.5, 0.98, 'Bitcoin Exchange Network')

nx_plot = pd.Series.to_frame(data.groupby(['Source', 'Destination'],
G2 = nx.from_pandas_edgelist(nx_plot[0:200], 'Source', 'Destination'

color_list = []
for node in G2.nodes():
 if node == 'BTC-e.com-old':
 color_list.append('red')
 else:
 color_list.append('green')

pos = nx.spring_layout(G2)
nx.draw_networkx_nodes(G2,pos,node_color=color_list,node_size=20)
nx.draw_networkx_edges(G2, pos, alpha=0.3)
plt.title('Top 5 wallets to receive funds from BTC-e.com-old', fontsize
plt.suptitle('Bitcoin Exchange Network', fontsize=15)

from IPython.display import Image
from IPython.core.display import HTML

Data5_9.to_csv('for_gephi.csv')

In [9]:

The graph above represents the reduced network. Nodes are highlithed regarding their
degree. The node with the higher degree is Bitstamp.net-old.

Please do not run !

Out[9]:

PATH = "/Users/Daudenthun/Documents/M2/Network analysis/Projet/"
Image(filename = PATH + "degree_gephi.png", width=1000, height=1000)

In [10]:

The graph above represents the reduced network. Nodes are bigger regarding their
degree, the color is then determined regarding their connected component. An address is
sorted regarding its cluster coefficient, each color represent a different cluster.

Graph Learning

Link Prediction

Out[10]:

Image(filename = PATH + "connected_cluster_gephi.png", width=1000, height

With Link Prediction, given a graph G, we aim to predict new edges. Predictions are
useful to predict future relations or missing edges when the graph is not fully observed
for example, or when new addresses join the network.

Link prediction for a new address would simple be a suggestion of a destination :
addresses pairs.

In link prediction, we simply try to build a "similarity measure" between pairs of nodes
and link the most similar nodes.

The question is consequently to identify and compute the right similarity scores.

Adamic-Adar index : for each common neighbor of nodes "i" and "j", we add 1 divided
by the total number of neighbors of that node. The concept is that common elements
with very large neighborhoods are less significant when predicting a connection between
two nodes compared to elements shared between a small number of nodes. AA Intuition:

A common node with ONLY them in common is worth the most
A common node connected to everyone is worth the less
The higher the size of its neighborhood, the lesser its value

Preferential attachment : every time a node join the network, it creates a link with nodes
with probability proportional to their degrees. Score not based on common neighbors. PA
Intuition:

Assign different scores to nodes at network distance > 2
Two nodes with many neighbors more likely to have new ones than nodes with few
neighbors

In [173]:

nb edges for training: 48
nb non-edges for training: 48

import random

g = G

#We first sample existing edges as training examples
training_sample_size=int(g.number_of_edges()/3)
all_edges = {frozenset((u,v)) for (u,v) in g.edges}
training_edges = random.sample(list(all_edges),training_sample_size)

#We then sample an equal number of pairs of nodes without edges
all_node_pairs= {frozenset((u,v)) for u in g.nodes for v in g.nodes
non_edges=all_node_pairs-all_edges
training_non_edges= random.sample(list(non_edges),training_sample_size

print("nb edges for training: ",len(training_edges))
print("nb non-edges for training: ",len(training_non_edges))

In [174]:

In [175]:

In [176]:

In []:

Logistic Classifier

• Value to predict : ‣ 0 (no edge) ‣ 1 (edge)

Minimize a cost function to find best parameters values.

Predict the most likely edges with the model.

Out[175]: [frozenset({'Bitstamp.net-old', 'ePay.info'}),
 frozenset({'Bitcoin.de', 'Bitstamp.net-old'}),
 frozenset({'BTC-e.com-old', 'Bitstamp.net-old'}),
 frozenset({'BTC-e.com-old', 'McxNOW.com'}),
 frozenset({'Bitfinex.com-old2', 'CoinTrader.net'}),
 frozenset({'BTC-e.com-old', 'BitcoinFog'}),
 frozenset({'Cex.io', 'CoinTrader.net'}),
 frozenset({'LocalBitcoins.com-ol', 'ePay.info'}),
 frozenset({'Bitfinex.com-old2', 'Dagensia.eu'}),
 frozenset({'BTC-e.com-old', 'Luno.com'})]

Out[176]: [frozenset({'Bitstamp.net-old', 'ePay.info'}),
 frozenset({'BTC-e.com-old', 'Bitstamp.net-old'}),
 frozenset({'CoinTrader.net', 'Cryptsy.com-old'}),
 frozenset({'Bitfinex.com-old2', 'CoinTrader.net'}),
 frozenset({'Bitstamp.net-old', 'Cryptsy.com-old'}),
 frozenset({'AnxPro.com', 'Cryptsy.com-old'}),
 frozenset({'LocalBitcoins.com-ol', 'ePay.info'}),
 frozenset({'BTC-e.com-old', 'LocalBitcoins.com-ol'}),
 frozenset({'Bitstamp.net-old', 'LocalBitcoins.com-ol'}),
 frozenset({'SilkRoad2Market', 'ePay.info'})]

#We remove edges in the training set from the original graph
training_graph = g.copy()
training_graph.remove_edges_from([(u,v) for u,v in training_edges])

#And then compute some heuristics, for the sake of example, Adamic Adar and Preferential Attachment
AA = nx.adamic_adar_index(training_graph)
PA = nx.preferential_attachment(training_graph)

AA_as_dict= {frozenset((u,v)):aa for u,v,aa in AA}

#Let's select the pairs of nodes with highest values, print and plot them.
#We observe that they sounds like very likely edges to exist. (Addresses located at reasonable distances)
sorted_key_AA=sorted(AA_as_dict, key=AA_as_dict.get,reverse=True)[:
sorted_key_AA

#Same analysis for preferntial attachment.
PA_as_dict= {frozenset((u,v)):cn for u,v,cn in PA}
sorted_key_PA=sorted(PA_as_dict, key=PA_as_dict.get,reverse=True)[:
sorted_key_PA

We have to transform data in the right form
features_positive=[[PA_as_dict[np],AA_as_dict[np]] for np in training_edges
features_negatives=[[PA_as_dict[np],AA_as_dict[np]] for np in training_non_edges

In [177]:

Decision Tree Classifier

Out[177]: nodePair score

1227 (Bitcoin.de-old, Justcoin.com) 0.770787

1475 (Justcoin.com, Bitcoin.de-old) 0.770787

1712 (158dPP7Z5Nb5J7CwBArx, BitBargain.co.uk) 0.770787

463 (BitBargain.co.uk, 158dPP7Z5Nb5J7CwBArx) 0.770787

89 (1KW4Wmo2XBw8X2sYtWEq, Poloniex.com) 0.767945

699 (1KW4Wmo2XBw8X2sYtWEq, Poloniex.com) 0.767945

1785 (158dPP7Z5Nb5J7CwBArx, 14o678qnBDKJuKnmD1bt) 0.760219

458 (BitBargain.co.uk, 1AtEhqyccigEgnzNWiAU) 0.760219

1743 (158dPP7Z5Nb5J7CwBArx, 14o678qnBDKJuKnmD1bt) 0.760219

1528 (158dPP7Z5Nb5J7CwBArx, 1AtEhqyccigEgnzNWiAU) 0.760219

1754 (BitBargain.co.uk, 14o678qnBDKJuKnmD1bt) 0.760219

from sklearn import linear_model,tree

#We can now create and train a Logistic classifier
model = linear_model.LogisticRegression()
predictor = model.fit(features_positive+features_negatives,[1]*len(features_positive

#Let's now predict most likely edges to appear. We use predict_proba to have a score, instead of a simple edges/non -edges binary answer
nodePairs=[frozenset((u,v)) for u in training_graph.nodes for v in training_graph
prediction = predictor.predict_proba([[PA_as_dict[np],AA_as_dict[np]]

#We sort the predictions from most likely to least likely, and plot them
prediction=pd.DataFrame({"nodePair":nodePairs,"score":[x[0] for x in
prediction = prediction.sort_values("score",ascending=False)

prediction.head(20)

In [193]:

Out[193]: [Text(209.25, 195.696, 'PA <= 27.0\ngini = 0.5\nsamples = 96\nvalu
e = [48, 48]'),
 Text(167.4, 152.208, 'PA <= 7.0\ngini = 0.437\nsamples = 65\nvalu
e = [44, 21]'),
 Text(83.7, 108.72, 'PA <= 0.5\ngini = 0.285\nsamples = 29\nvalue
= [24, 5]'),
 Text(41.85, 65.232, 'gini = 0.469\nsamples = 8\nvalue = [5, 3]'),
 Text(125.55000000000001, 65.232, 'gini = 0.172\nsamples = 21\nval
ue = [19, 2]'),
 Text(251.10000000000002, 108.72, 'AA <= 1.362\ngini = 0.494\nsamp
les = 36\nvalue = [20, 16]'),
 Text(209.25, 65.232, 'AA <= 0.84\ngini = 0.5\nsamples = 33\nvalue
= [17, 16]'),
 Text(167.4, 21.744, 'gini = 0.495\nsamples = 29\nvalue = [16, 13]
'),
 Text(251.10000000000002, 21.744, 'gini = 0.375\nsamples = 4\nvalu
e = [1, 3]'),
 Text(292.95, 65.232, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
 Text(251.10000000000002, 152.208, 'gini = 0.225\nsamples = 31\nva
lue = [4, 27]')]

#Same thing, but using a Decision tree Classifier.
model = tree.DecisionTreeClassifier(max_leaf_nodes=6)
predictor = model.fit(features_positive+features_negatives,[1]*len(features_positive

tree.plot_tree(predictor, filled=True,feature_names=["PA","AA"])

Measure of heterogeneity (Gini, entropy…)
Split recursively data in 2 to maximize homogeneity in child nodes

A classification tree learns a sequence of if then questions with each question involving
one feature and one split point.

Plotting the tree. Can be read as follows (might be different if you re-run the code).

First, we observe at the top 48 positive examples and 48 negative examples. The first
criterium is: if PA < 0.27, then predict no link. (44 negative examples, 21 positive ones).

It could potentially makes sense : high PA tends to be correlated with having edges

If PA is > 0.27, we have mostly positive examples, so we would tend to predict an edge.

If PA is > 0.7 but AA <= 1.362, then 20 of the training examples are negative, while only
16 are positive.

Although unintuitive, this can be understood as follows: if 2 Addresses are large (high PA)
but have a moderate AA, then probably it means that they are not already connected.
Thus it is unlikely that they will be connected in the future. We see the importance of
Machine Learning here: it can discovert non-intuitive way to predict from data.

Graph Embedding

One of the limitations of graphs is the absence of vector features. However, we can learn
an embedding of the graph.

There are several levels of embedding in a graph :

Embedding graph components (nodes, edges, features…) (Node2Vec)
Embedding sub-parts of a graph or a whole graph (Graph2Vec)

Node Embedding

We will follow "Node2Vec", a paper that was published by Aditya Grover and Jure
Leskovec from Stanford University in 2016. A. Grover, J. Leskovec. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2016.

According to the authors, "node2vec" is an algorithmic framework for representational
learning on graphs. Given any graph, it can learn continuous feature representations for
the nodes, which can then be used for various downstream machine learning tasks.

The model learns low-dimensional representations for nodes by optimizing a
neighborhood preserving objective, using random walks.

In [180]:

What can we do with this embedding ? One can for example identify the most similar
node. It returns a list of the most similar nodes and the corresponding probabilities.

If the nodes have labels, we can train an algorithm based on the embedding and attach a
label (node labeling, most similar node…).

In [186]:

Edge Embedding

Edges can also be embedded, and the embedding can be further used for classification.

In [187]:

HBox(children=(FloatProgress(value=0.0, description='Computing tra
nsition probabilities', max=45.0, style=Prog…

Out[186]: [('Cryptsy.com-old', 0.6288605332374573),
 ('Justcoin.com', 0.5948702096939087),
 ('Kraken.com', 0.5699283480644226),
 ('Bitfinex.com-old2', 0.5599614381790161),
 ('Cavirtex.com', 0.555366039276123),
 ('Cryptorush.in', 0.545860230922699),
 ('BTC-e.com-old', 0.5246950387954712),
 ('Bitcoin.de-old', 0.5203766226768494),
 ('CoinJar.com', 0.5110173225402832),
 ('Luno.com', 0.5092356204986572)]

Generating edge features: 100%|███████████████████████████████████
███████████| 1035/1035.0 [00:00<00:00, 138410.43it/s]

import networkx as nx
from node2vec import Node2Vec

Create a graph
graph = G

Precompute probabilities and generate walks
node2vec = Node2Vec(graph, dimensions=64, walk_length=30, num_walks=

Embed nodes
model = node2vec.fit(window=10, min_count=1, batch_words=4) # Any keywords acceptable by gensim.Word2Vec can be passed, `dimensions` and `workers` are automatically passed (from the Node2Vec constructor)

Look for most similar nodes of "Luno.com"
model.wv.most_similar('Bitstamp.net-old') # Output node names are always strings

Embed edges using Hadamard method
from node2vec.edges import HadamardEmbedder

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

Get all edges in a separate KeyedVectors instance - use with caution could be huge for big networks
edges_kv = edges_embs.as_keyed_vectors()

Then, retrieve the vectors by specifying the name of the 2 linked nodes.

Again, we can retrieve the most similar edge, which can be used for missing edges
prediction for example.

In [190]:

Nodes Classification

Given a graph where some nodes are not labeled, we want to predict their labels. This is
in some sense a semi-supervised learning problem.

One common way to deal with such problems is to make the assumption that there is a
certain smoothness on the graph. The Smoothness assumption states that points
connected via a path through high-density regions on the data are likely to have similar
labels. This is the main hypothesis behind the Label Propagation Algorithm.

The Label Propagation Algorithm (LPA) is a fast algorithm for finding communities in a
graph using network structure alone as its guide, without any predefined objective
function or prior information about the communities.

Convolution Neural Networks (CNN)

These are deep neural networks used to analyze image data. They solve image
processing tasks.

CNNs structures share weights, local connections and consist of many layer stacked
together. These structural properties of a CNN are also shared within a GNN.

The shared weight property is important in graphs as it leads to a reduction in the
computation cost. Many layers stacked together are able to capture meaningful features
in graphs networks. The existence of local connections are what graphs networks are all
about. They are locally connected structures.

Out[190]: [("('Bitstamp.net-old', 'Cex.io')", 0.8269777297973633),
 ("('Bitstamp.net-old', 'Cryptsy.com-old')", 0.7886377573013306),
 ("('Bitstamp.net-old', 'Huobi.com')", 0.77458655834198),
 ("('Cryptsy.com-old', 'Kraken.com')", 0.7680836915969849),
 ("('Bitstamp.net-old', 'Luno.com')", 0.7572905421257019),
 ("('Justcoin.com', 'Kraken.com')", 0.7509183287620544),
 ("('Cryptorush.in', 'Kraken.com')", 0.7472730278968811),
 ("('Bitstamp.net-old', 'Bitstamp.net-old')", 0.7430604696273804),
 ("('Kraken.com', 'Kraken.com')", 0.7368906736373901),
 ("('Bitstamp.net-old', 'Cryptorush.in')", 0.7260271310806274)]

Look for most similar edges - this time tuples must be sorted and as str
edges_kv.most_similar(str(('Bitstamp.net-old', 'Kraken.com')))

