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#Import liabraries
import pandas as pd
import numpy as np
import os
import csv
import pyarrow.parquet as pq
from operator import itemgetter
import networkx as nx
from IPython.display import Image
from IPython.core.display import HTML 

#Set the directory
os.chdir('/Users/alina/Desktop/Bitcoin network/Data')

#Import data
#The two baseline periods representing bearish and bullish market will be february 2019 (df_feb19) and December 2020 (df_dec20) respectively
#We have also included a month before the baseline period to see how the market evolved
df_jan19 = pd.read_parquet("part-2019-1-f6fd1362-3dce-44ad-8999-939ec1d5ca2d-c000.snappy.parquet"
df_feb19 = pd.read_parquet("part-2019-2-77cbc838-f67c-4ad9-864e-40e3422bb4de-c000.snappy.parquet"
df_nov20 = pd.read_parquet("part-2020-11-e7988a0e-482b-43ed-8d0a-50f337daa6c5-c000.snappy.parquet"
df_dec20 = pd.read_parquet("part-2020-12-83aa3ab8-7475-4768-941b-69efc9aaf959-c000.snappy.parquet"
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Graphs

#Filter the data to have only identified users:
def filter_out_unique(df_dec20,src_identity=True,dst_identity=True):
    if src_identity:
        df_dec20 = df_dec20[df_dec20["src_identity"].str.len()<20]
    if dst_identity:
        df_dec20 = df_dec20[df_dec20["dst_identity"].str.len()<20]
    return df_dec20
 
def filter_out_anonym_cluster(df_dec20,src=True,dst=True):
    if src:
        df_dec20 = df_dec20[~df_dec20["src_identity"].astype(str).str
    if dst:
        df_dec20 = df_dec20[~df_dec20["dst_identity"].astype(str).str
    return df_dec20 
 
def filter_out_self_spending(df_dec20):
    return df_dec20 [df_dec20 ["src_identity"]!=df_dec20 ["dst_identity"
 
#Filtering for december 2020 data
df_dec20 = filter_out_unique(df_dec20)
df_dec20 =  filter_out_anonym_cluster(df_dec20)
df_dec20 = filter_out_self_spending(df_dec20)
#Filtering for november 2020 data
df_nov20 = filter_out_unique(df_nov20)
df_nov20 =  filter_out_anonym_cluster(df_nov20)
df_nov20 = filter_out_self_spending(df_nov20)
#Filtering for february 2019 data
df_feb19 = filter_out_unique(df_feb19)
df_feb19 =  filter_out_anonym_cluster(df_feb19)
df_feb19 = filter_out_self_spending(df_feb19)
#Filtering for january 2019 data
df_jan19 = filter_out_unique(df_jan19)
df_jan19 =  filter_out_anonym_cluster(df_jan19)
df_jan19 = filter_out_self_spending(df_jan19)

#Create the network on python
G_dec20 = nx.from_pandas_edgelist(df_dec20, 'src_identity', 'dst_identity'
G_nov20 = nx.from_pandas_edgelist(df_nov20, 'src_identity', 'dst_identity'
G_feb19 = nx.from_pandas_edgelist(df_feb19, 'src_identity', 'dst_identity'
G_jan19 = nx.from_pandas_edgelist(df_jan19, 'src_identity', 'dst_identity'
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#To export a graph from python to Gephi with the networkx package (works on spyder but not on Jupyter):
#nx.write_gexf(G_dec20, 'dec20.gexf')
#nx.write_gexf(G_nov20, 'nov20.gexf')
#nx.write_gexf(G_feb19, 'feb20.gexf')
#nx.write_gexf(G_jan19, 'jan20.gexf')
 
#To display the graphs jan19 in Jupyter 
Image(filename = "jan19.PNG", width=700, height=100)
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#To display the graphs feb19 in Jupyter 
Image(filename = "feb19.PNG", width=700, height=100)
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#To display the graphs nov20 in Jupyter 
Image(filename = "nov20.PNG", width=700, height=100)
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                Dec 20  Nov 20  Feb 19  Jan 19
Nodes            40.00   35.00   54.00   52.00
Edges           141.00  159.00  296.00  326.00
Density           0.18    0.27    0.21    0.25
Av. degree        7.05    9.09   10.96   12.54
Transitivity      0.48    0.55    0.49    0.50
Av. clustering    0.57    0.66    0.66    0.74

#To display the graphs dec20 in Jupyter 
Image(filename = "dec20.PNG", width=700, height=100)

#Create a table with full info on nodes, edges, density, av degree, transitivity and average clusteriing
var = {'Dec 20': [nx.number_of_nodes(G_dec20), nx.number_of_edges(G_dec20
       'Nov 20': [nx.number_of_nodes(G_nov20), nx.number_of_edges(G_nov20
       'Feb 19': [nx.number_of_nodes(G_feb19), nx.number_of_edges(G_feb19
       'Jan 19': [nx.number_of_nodes(G_jan19), nx.number_of_edges(G_jan19
       }
df = pd.DataFrame(var, columns = ['Dec 20', 'Nov 20', 'Feb 19', 'Jan 19'
rounded_df = df.round(decimals=2)
print (rounded_df)



The table above contains several basic tools to analyze a network. Those tools are
presented by line and each column correspond to one period studied:

-The first and the most simple one is the number of nodes. More nodes means more
exchange platforms in our network, since we only keep some of their public keys (with
letter). We can see it as the size of the network.

-The second one is the number of edges. An edge is the connexion between two nodes.
Accordingly, the number of edges can be perceived as a measure of network intensity,
although it also depends on the size of edges and their location.

-In third, we can see the density. The density is a good complement of the number of
edges to observe the intensity on a network. Indeed, this indicator allows us to observe
the connexion between nodes regarding maximum capacity of the network. To be more
precise, it is the ratio of pairs of nodes connected by edge in a network. In our case, it is
the ratio between the current intensity of bilateral transactions and the maximum intensity
of bilteral transactions.

-The forth indicator is the average degree. The degree of a node is the number of its
neighbour in the most basic definition. From this point, other elements have been
developed as the weighted degree, which correspond to the number of connexions of a
node by taking into account the weight of each of those connexions. In this line, we have
computed the average basic degree in our entire network, corresponding to the average
number of transaction counterparties for each exchange platform. As before, the average
degree can be seen as a complement for the study of the intensity and the utilization of
the network.

-The fifth indicator is the transitivity also called global clustering coefficient. This is a way
to study and modelize the intensity of the network activity through different subgroups of
nodes. A triangle is the subgraph built with three nodes connected. The transitivity is
computed as the ratio between the existing triangle and the maximum possible number
of triangle in our graph. Consequently, we can see this measure of the interconnection
between nodes.

-The last indicator is the average clustering coefficient which is another way to observe if
there are a lot of cluster possibilities in our graph. This measure is just the arithmetic
mean of of existing triangles.

In [36]: ###Create a dataframe that shows number of conections of each node for each time period
#Creat dictionaries for each year and store there nbr of connections of each node
dict_dec20 = {}
for x in G_dec20.nodes:
 dict_dec20[x] = G_dec20.degree[x]    
dict_nov20 = {}
for x in G_nov20.nodes:
 dict_nov20[x] = len(G_nov20[x]) 
dict_feb19 = {}
for x in G_feb19.nodes:
 dict_feb19[x] = len(G_feb19[x]) 
dict_jan19 = {}
for x in G_jan19.nodes:
 dict_jan19[x] = len(G_jan19[x]) 



                     Dec 20  Nov 20  Feb 19  Jan 19
Poloniex.com           26.0    21.0    34.0    33.0
Bittrex.com            25.0    22.0    35.0    37.0
ePay.info              23.0    24.0    40.0    40.0
Huobi.com-2            22.0    22.0    27.0    29.0
CoinPayments.net       21.0    24.0    32.0    36.0
Xapo.com               17.0    16.0    23.0    26.0
SlushPool.com          16.0    17.0    29.0    30.0
Bitcoin.de             13.0    16.0    18.0    22.0
Luno.com               12.0    16.0    21.0    22.0
Cryptonator.com        10.0    21.0    26.0    30.0
CoinMotion.com          8.0     8.0     9.0    12.0
Cryptopay.me            7.0     8.0    14.0    20.0
HaoBTC.com              7.0     8.0    17.0    16.0
BlockTrades.us          7.0     5.0     7.0    11.0
CoinSpot.com.au         7.0     9.0    11.0    10.0
BitcoinWallet.com       7.0     8.0    11.0    10.0
HolyTransaction.com     6.0    10.0    11.0    14.0
Bitstamp.net            6.0     8.0    38.0    37.0
Bitcoin.de-old          5.0     7.0     3.0     9.0
CoinHako.com            5.0     5.0    10.0    10.0
MoonBit.co.in           4.0     9.0    15.0    16.0
YABTCL.com              3.0     6.0     8.0     9.0
SatoshiMines.com        3.0     5.0     6.0     5.0
Paymium.com             2.0     NaN     9.0    11.0
Bitbond.com             2.0     1.0     8.0     9.0
Bleutrade.com           2.0     2.0    11.0     8.0
BetMoose.com            2.0     4.0     3.0     1.0
BitcoinFog              2.0     3.0     4.0     8.0
FYBSG.com               1.0     NaN     3.0     9.0
LakeBTC.com             1.0     NaN     3.0     4.0
CoinJar.com             1.0     1.0    11.0    15.0
Bit-x.com               1.0     1.0     6.0     7.0
CoinCafe.com            1.0     2.0     1.0     3.0
OKCoin.com              1.0     NaN     1.0     1.0
999Dice.com             1.0     4.0    14.0    14.0
VirWoX.com              1.0     1.0     7.0     5.0
Matbea.com              1.0     1.0     1.0     2.0
Coingi.com              1.0     2.0     1.0     NaN
Cubits.com              1.0     NaN     1.0     NaN
OKCoin.com-2            1.0     NaN     1.0     2.0
BTCCPool                NaN     1.0     NaN     NaN

 dict_jan19[x] = len(G_jan19[x]) 
#Conver the dictionaries into pandas series 
s = pd.Series(dict_dec20, name='Dec 20')
s_1 = pd.Series(dict_nov20, name='Nov 20')
s_2 = pd.Series(dict_feb19, name='Feb 19')
s_3 = pd.Series(dict_jan19, name='Jan 19')
#Make the data frames, sort the dec descending order
df1 = s.to_frame().sort_values('Dec 20', ascending=False)
df2 = s_1.to_frame()
df3 = s_2.to_frame()
df4 = s_3.to_frame()
#Concatinate all dataframes
Connection_table = pd.concat([df1, df2, df3, df4], axis=1)
 
print(Connection_table)



The table above shows how the degree for each node changes in the bullish and bearish
market.

Detecting top nodes in bullish and bearish
markets

BitoEX.com              NaN     NaN    10.0    11.0
Vaultoro.com            NaN     NaN     7.0     7.0
BitBargain.co.uk        NaN     NaN     2.0     3.0
SatoshiDice.com         NaN     NaN     5.0     5.0
Hashnest.com            NaN     NaN    10.0     9.0
Bter.com-old            NaN     NaN     1.0     NaN
AnxPro.com              NaN     NaN     6.0     8.0
CoinTrader.net          NaN     NaN     6.0     8.0
SafeDice.com            NaN     NaN     7.0     5.0
HitBtc.com              NaN     NaN     2.0     2.0
SatoshiCircle.com       NaN     NaN     1.0     NaN
HappyCoins.com          NaN     NaN     3.0     5.0
TheRockTrading.com      NaN     NaN     1.0     2.0
LocalBitcoins.com       NaN     NaN     1.0     1.0
CoinGaming.io           NaN     NaN     NaN     2.0
Cex.io                  NaN     NaN     NaN     1.0
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Top 5 nodes in bullish market (dec 20) by degree:
('Poloniex.com', 26)
('Bittrex.com', 25)
('ePay.info', 23)
('Huobi.com-2', 22)
('CoinPayments.net', 21)
 
Top 5 nodes in bearish market (feb 19) by degree:
('ePay.info', 40)
('Bitstamp.net', 38)
('Bittrex.com', 35)
('Poloniex.com', 34)
('CoinPayments.net', 32)

###Top 5 nodes by degree (similar to connection table)
#Copute the degree
degree_dict = dict(G_dec20.degree(G_dec20.nodes()))
#Sort it
sorted_degree = sorted(degree_dict.items(), key=itemgetter(1), reverse
#Print
print("Top 5 nodes in bullish market (dec 20) by degree:")
for a in sorted_degree[:5]:
    print(a)
 
print (' ')
 
degree_dict1 = dict(G_feb19.degree(G_feb19.nodes()))
sorted_degree1 = sorted(degree_dict1.items(), key=itemgetter(1), reverse
print("Top 5 nodes in bearish market (feb 19) by degree:")
for b in sorted_degree1[:5]:
    print( b)
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As the name suggests, centrality measures allow us to observe if some subgraphs or
nodes are more central in the network. However there exists several definitions of
centrality. For example it can mean a geographical centrality or a centrality linked with the
node size. In this work, we chose the betweenness centrality measure: in this case
centrality is observed from another point of view which is the importance of some nodes
in terms of traffic. Accordingly, a central node is seen as a node which is a bridge, a
crossing point for other nodes.

Top 5 nodes in bullish market (dec 20) by betweenness centrality:
('Poloniex.com', 0.2740060621639569)
('Bittrex.com', 0.23172086198401987)
('ePay.info', 0.1993097058886533)
('Huobi.com-2', 0.1462732686416897)
('CoinPayments.net', 0.08529711029711029)
 
Top 5 nodes in bearish market (feb 19) by betweenness centrality:
('ePay.info', 0.2326098641319977)
('Bitstamp.net', 0.16779818210333453)
('SlushPool.com', 0.1237560999716297)
('Bittrex.com', 0.11642738309102604)
('Poloniex.com', 0.08616164516019378)

###Top 5 nodes by betweeness centrality
#Copute bet centrality for all nodes
betweenness_dict = nx.betweenness_centrality(G_dec20) # Run betweenness centrality
#Sort it in ascending order
sorted_betweenness = sorted(betweenness_dict.items(), key=itemgetter
#Print top 5
print("Top 5 nodes in bullish market (dec 20) by betweenness centrality:"
for c in sorted_betweenness[:5]:
    print(c)
 
print (' ') #Space
    
betweenness_dict1 = nx.betweenness_centrality(G_feb19) # Run betweenness centrality
sorted_betweenness1 = sorted(betweenness_dict1.items(), key=itemgetter
print("Top 5 nodes in bearish market (feb 19) by betweenness centrality:"
for d in sorted_betweenness1[:5]:
    print(d) 
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PageRank computes a ranking of the nodes in the graph G based on the structure of the
incoming links. It was originally designed as an algorithm to rank web pages.

Conclusion

Top 5 nodes in bullish market (dec 20) by PageRank:
('Poloniex.com', 0.091924882198585)
('Bittrex.com', 0.08671344900277465)
('ePay.info', 0.07857240207095831)
('Huobi.com-2', 0.07228524350313963)
('CoinPayments.net', 0.06688063322459913)
 
Top 5 nodes in bearish market (feb 19) by PageRank:
('ePay.info', 0.06963703838744668)
('Bitstamp.net', 0.062161345688136964)
('Bittrex.com', 0.05534181685489479)
('Poloniex.com', 0.05278832114149746)
('SlushPool.com', 0.049325203681437765)

#Top 5 nodes by PageRank
pagerank_dict = nx.pagerank(G_dec20)
sorted_pagerank = sorted(pagerank_dict.items(), key=itemgetter(1), reverse
print("Top 5 nodes in bullish market (dec 20) by PageRank:")
for b in sorted_pagerank [:5]:
    print(b)
 
print (' ')
 
pagerank_dict1 = nx.pagerank(G_feb19)
sorted_pagerank1 = sorted(pagerank_dict1.items(), key=itemgetter(1), 
print("Top 5 nodes in bearish market (feb 19) by PageRank:")
for b in sorted_pagerank1 [:5]:
    print(b)



Finally, our objective is to analyse the exchange network between bitcoin centralized
exchange platforms and to compare it in different time periods. Periods studied was
February 2019 and January 2019 (bearish market for Bitcoin) and November and
December 2020 (bullish market for Bitcoin). To analyse networks of each period, we used
the package "networkx" on Python for numerical describing indicators and Gephi for
visual observation of graph. As numerical indicators, on the one hand we computed the
number of nodes, the number of edges, the density, the average degree and the
transitivity for network intensity measures and on the other hand we computed average
clustering coefficient and betweenness centrality to measure the grouping of nodes and
the centralization in this network.

Since the 2019 was a bearish market and 2020 a bullish one, we expected the 2020
networks to have more nodes, edges and a stronger density and average degree than
2019 ones. Indeed, the bullish market is traditionally characterized as more liquid and
fluent than a bearish one. Moreover, it would be normal to think that the interest for
bitcoin increased with the bullish market meaning more intervenant on the market and
therefore more exchanges (nodes).

Concerning the top five members of bullish and bearish market, we can see that Poloniex
has the highest centrality and the highest PageRank in bullish market (dec 2020) which
makes it the most important node. For the bearish market, ePay is the most important
node.

However the results obtained do not correspond to the hypotheses formulated. Indeed,
we can see that over November 2020 and December 2020 the number of nodes and
edges are less important. They are also of a lower intensity. We also observe results that
are not in line with our hypotheses for the average degree and transitivity.

These unexpected results are most probably explained by the fact that our lexicon of
public keys is not accurate and updated for the end of 2020. Centralised exchanges for
confidentiality reasons and to restructure their technical infrastructure are likely to replace
their public key pool in order to better manage and optimise internal flows.

The results obtained over the period Jan 2019 - February 2019 would therefore be rather
representative of the real flows observed, while those over the period Nov 2020 - Dec
2020 would be much less representative. It is therefore quite possible to affirm that the
public key lexicon on which our work is based is at the origin of the inconsistency of our
results.


