BITCOIN NETWORK AND MACHINE LEARNING Cazabet Rémy

WHO AM I

- Rémy Cazabet
- Associate Professor (Maître de conférences)
 - Université Lyon I
 - LIRIS, DM2LTeam (Data Mining & Machine Learning)
- Computer Scientist => Network Scientist
- Member of IXXI, Lyon's institute of Complex Systems

SHORT NOTICE

Launch Gephi download

- https://gephi.org/users/download/
- Course content, resources...

http://cazabetremy.fr/Teaching/BitcoinNetwork.html

COMPLEX SYSTEMS

• Complex systems:

- Systems composed of multiple parts in interactions
- The macro level behavior of the system depends on the micro level, and reciprocally (\u03c4 micro, macro in economics...)
- Interdisciplinary field, thought to solve the problems of the reductionist approach.
 - Reductionism: to understand a system, we need to understand its parts
 - Complex system: we need to understand how parts are interacting.

EXAMPLE OF CS

- Typical complex systems:
 - Organisations, cities, human body, brain, ecosystems, etc.
- Brain:
 - Micro level: neurons, synapses, receptors (light, sound, ...), chemicals, ...
 - Macro level: Signals, synchronization, ... => Intelligence, decisions...
- Social networking platforms:
 - Micro level: individuals, companies, bots, hackers, posts, communications...
 - Macro level: information diffusion, patterns of activity, echo chamber/filter bubble, fake news, rich get richer phenomenon, etc.

EXAMPLE OF CS

• Economy ? (Financial) Markets ?

NETWORK SCIENCE

- Study interactions between entities at the micro level => represent interactions as a **network**
- Analyse this network based on tools from network science
- Vocabulary: network science ≈ Complex/Social network analysis ≈ Graph mining

NETWORKS

- Online social networks, e.g., Facebook, Twitter...
 - Nodes: accounts
 - Edges: relations (friend/follow) or interactions (wall post, like, retweet, mentions, etc.)
- Cryptocurrency
 - Nodes: addresses or actors (wallet ? Set of addresses ?)
 - Edges: transactions

NETWORK ANALYSIS

http://networksciencebook.com

Google: "network science finance" => I'm not an expert in economic networks :)

Pop-science books REFERENCES

GRAPHS & NETWORKS

Networks often refers to real systems

- www,
- social network
- metabolic network.
- Language: (Network, node, link)

Graph is the mathematical representation of a network • Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

Vertex	Edge
person	friendship
neuron	synapse
Website	hyperlink
company	ownership
gene	regulation

Types of Networks

Undirected networks

G = (V, E) $(u, v) \in E \equiv (v, u) \in E$

- The directions of edges do not matter
- Interactions are possible between connected entities in both directions

Directed networks

G = (V, E) $(u, v) \in E \neq (v, u) \in E$

- The directions of edges matter
- Interactions are possible between connected entities only in specified directions

Citation network: Nodes - publications, Links - references

Weighted networks

G = (V, E, w) $w: (u, v) \in E \Longrightarrow R$

 Strength of interactions are assigned by the weight of links

Social interaction network: Nodes - individuals Links - social interactions

Bipartite network

Bhavnani et.al. BMC Bioinformatics 2009, **10**(Suppl 9):S3 Gene-desease network:

Nodes - Desease (7)&Genes (747)

Links - gene-desease relationship

G = (U, V, E) $U \cap V = \emptyset$ $\forall (u, v) \in E, u \in U \text{ and } v \in V$

Multiplex and multilayer networks

$G = (V, E_i), i = 1...M$

- Nodes can be present in multiple networks simultaneously
- These networks are connected (can influence each other) via the common nodes

[Mendez-Bermudez et al. 2017]

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

Temporal and evolving networks

$G=(V, E_t), (u,v,t,d) \in E_t$

t - time of interaction (u,v)

d - duration of interaction (u,v,t)

Temporal links encode time varying interactions

 $G = (V_t, E_t)$ $v(t) \in V_t$ $(u, v, t) \in E_t$

 Dynamical nodes and links encode the evolution of the network

Mobile communication network Nodes - individuals Links - calls and SMS

COURSE OBJECTIVES

COURSE OBJECTIVES

- Theory:
 - Learn the basics of network science and network analysis, +some machine learning/data science concepts
- Practice:
 - Learn how to apply those concepts to graphs of small/medium size
- Project:
 - Apply what you learnt on a subset of the bitcoin transaction network

THE BITCOIN TRANSACTION NETWORK

BITCOIN

- In this class, we are **not** interested in:
 - Cryptographic aspects
 - How the blockchain works
 - Governance of cryptocurrencies
 - Smart contracts
 - ► ICO
 - Macro-level analysis (transaction fee evolution, market price, etc.)
- What we are interested in:
 - Observing and understanding what is happening at the micro-level in one cryptocurrency (for this class, the largest one, Bitcoin) => Look under the hood !
 - How what is happening at the micro-level can be connected to what we observe at the macro-level (crisis, price fluctuation, macro-indicators...)

BITCOIN - MACRO LEVEL

https://www.blockchain.com/en/charts

BITCOIN - MACRO LEVEL

- This type of aggregated data is mostly identical to data you are used to in economy
- Can be studied with time series analysis (ARIMA, ...)
- What is unique about Bitcoin:
 - We have all data about all transactions done using a given currency
 - We can use this information in relation with macro-level statistics
 - We can use it for new type of analysis

BITCOIN - DATA

- The data we use: Content of the bitcoin blockchain
 - Seen as a simple list of transactions

Transaction	From	То	Value
tO		@2	5
tl		@3	2

• Bitcoin transactions are a little bit more complicated than that

BITCOIN - DATA

You can explore it using tools such as a blockchain explorer
E.g.: <u>https://www.blockchain.com/explorer</u>

Transactions						
1 2 3 4 5 Next +10						
Hash	4f8d922cb55ef80bd272ea0caa816d220789cbcc8d8435415a6f7f5			2020-01-16 10:56		
	COINBASE (Newly Generated Coins)		+	1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY OP_RETURN OP_RETURN OP_RETURN	12.57483993 BTC 0.00000000 BTC 0.00000000 BTC 0.00000000 BTC	
Fee	0.0000000 BTC				12.57483993 BTC	
	(0.000 sat/B - 0.000 sat/WU - 377 bytes)				10	
					1 Confirmations	
Hash	7f1b409d20899c72698ae94e21541828256c7b5109f2ff6b4982316					
	1FLEdjadaP9Zih2Vu4fbkY5SbyNcfu85n2	0.00029891 BTC 🌐	.	16S7Dfb7oD9Cy3RNFkqKSQMMNjxYdhcqQ7	0.00895513 BTC 🏶	
	1NDWrhpHZouTFnB8uoRzEtxPhLZ6SLb2WQ	0.00450559 BTC 🌐		3JoNoM1NxbvYCvsbZW8jjb2K5F4cpdAwWr	0.01408432 BTC 🌐	
	199RNd2JH9snPJFYoayuy9MiAZcu36ftjB	0.01928015 BTC 🌐				
Fee	0.00104520 BTC				0.02303945 BTC	
	(201.776 sat/B - 50.444 sat/WU - 518 bytes)				1 Confirmations	
					Contirmations	
Hash	e04d42b758f43c93c09adcf08250e00d9c646118c2be167854c13d				2020-01-16 10:56	
	34UExmBatmg8HccyFn1Zi93XpkwLAeyNtb	0.00369290 BTC 🌐	-	346jtLokRPBUwaQPM1TZkC8kxyrc1iuavi	4.79133982 BTC 🏶	
	3MGTiY83SatUbxDexxi3yDziCg6eH7Zd1v	0.01280760 BTC 🌐				
	3LTjJ7n5sf8vhLqVDFKLNYo486dmsRjo4N	0.00257434 BTC 🌐				
	3MRbeCXA1ZTA73NGZSjhiS9bTB2it42Qux 3E5HeK5iNNNH4QqVfq2CKGy53xomaLlocN9	0.02100000 BTC 🙂				
	3PvLyDHFKuiPgTD6QjAD98p61FQqkDpUHP	0.00200000 BTC (
	3JFxmAqzCkCnSwJdXootcDywPBUHBUYVzi	0.04191421 BTC 🌐				
	3HzE43w3gb5sx1VQKKJTmVCyzRKTkRbaMf	0.00239492 BTC 🌐				
	3Lou9V7CqvGvAk9B6qVfV9VNMEMB7myPfi	0.00200000 BTC 🌐				
		0.00100000 BTC 🐨				
_	Load more inputs (os remaining)					
Fee	0.01069765 BTC (85.404 sat/B - 40.114 sat/WU - 12526 bytes)				4.79133982 BTC	
					1 Confirmations	

Hash	7f1b409d20899c72698ae94e21541828256c7b5109f2ff6b4982316				2020-01-16 10:55
	1FLEdjadaP9Zih2Vu4fbkY5SbyNcfu85n2 1NDWrhpHZouTFnB8uoRzEtxPhLZ6SLb2WQ 199RNd2JH9snPJFYoayuy9MiAZcu36ftjB	0.00029891 BTC () 0.00450559 BTC () 0.01928015 BTC ()	+	16S7Dfb7oD9Cy3RNFkqKSQMMNjxYdhcqQ7 3JoNoM1NxbvYCvsbZW8jjb2K5F4cpdAwWr	0.00895513 BTC 🏶 0.01408432 BTC 🏶
Fee	0.00104520 BTC (201.776 sat/B - 50.444 sat/WU - 518 bytes)				0.02303945 BTC 1 Confirmations
Hash	e04d42b758f43c93c09adcf08250e00d9c646118c2be167854c13d			2020-01-16 10:56	
	34UExmBatmg8HccyFn1Zi93XpkwLAeyNtb 3MGTiY83SatUbxDexxi3yDziCg6eH7Zd1v 3LTjJ7n5sf8vhLqVDFKLNYo486dmsRjo4N 3MRbeCXA1ZTA73NGZSjhiS9bTB2if42Qux 3F5HeK5iNNNHAQqVfo2CKGy53xomaUocN9 3PvLyDHFKuiPgTD6QjAD98p61FQqkDpUHP 3JFxmAqzCkCnSwJdXootcDywPBUHBUYVzi 3HzE43w3gb5sx1VQKKJTmVCyzRKTkRbaMf 3Lou9V7CqvGvAk9B6qVfV9VNMEMB7myPfi 3EN1io5CbKdKRDDod3YJGWoaiFD4dbZXmq Load more inputs (63 remaining)	0.00369290 BTC (*) 0.01280760 BTC (*) 0.00257434 BTC (*) 0.02100000 BTC (*) 0.00245706 BTC (*) 0.00200000 BTC (*) 0.00239492 BTC (*) 0.00239492 BTC (*) 0.00200000 BTC (*)	•	346jtLokRPBUwaQPM1TZkC8kxyrc1iuavi	4.79133982 BTC
Fee	0.01069765 BTC (85.404 sat/B - 40.114 sat/WU - 12526 bytes)				4.79133982 BTC
					1 Confirmations

UNDERSTANDING BITCOIN TRANSACTIONS

- Transactions are between *m* "inputs" and *n* "outputs"
- Each input (resp. output) is a pair (value, bitcoin address)
- inputs are necessarily outputs of previous transactions
 - Unlocked by the private key of the payer

UNDERSTANDING BITCOIN TRANSACTIONS

• A user possess a **private key**

- A user can generate **public keys** (bitcoin adresses)
 - Instantaneously
 - At no cost
 - As often as wanted
- Public key ≈ lock that can be opened only by an associated private key

Public keys of user U1 :

IBusVkYQvbbGbSDZNo5DfhrFeQdgKIYIVY

Public keys of user UI :

IBusVkYQvbbGbSDZNo5DfhrFeQdgKIYIVY

IQFdbGkhiCDFF45mBHgzWUdiqv55NJbd4u

Public keys of user U1 :

IBusVkYQvbbGbSDZNo5DfhrFeQdgKIYIVY

1

IQFdbGkhiCDFF45mBHgzWUdiqv55NJbd4u

"Wallet" of UI:

- 9 btc
- Divided in 3 "output"
- Locked by 2 different public keys

ADDRESS NETWORK

- First network, node=Address
 - Naive approach
 - One address \neq one user!
- Node: bitcoin address (public key)
- Edge: input addresses to output addresses.
- Problem: most transactions have several inputs, several outputs
 Values ?

ADDRESS NETWORK

- # Transactions: 490 441
- # Transaction outputs: | 210 004 (avg. 2,46)
- # Transaction inputs | 2|| 790 (avg. 2.47)
- # Addresses: 933 645
- # @->@ Edges: 3 0 4 350
- Very big, hard to interpret

- Transactions between "actors" of the bitcoin ecosystem
 - Individuals with their own private key (e.g., using BRD, Atomic Wallet, etc.)
 - Companies/organisations with their own private key
 - Exchanges (e.g., Binance, CoinBase, etc.)
 - Mining Pool
 - etc.
- An actor has one private key, but can have many public keys/ addresses
- How to retrieve addresses belonging to the same actor?

- Actor identification: find all addresses of a same user
 - Currently a research question...
- Heuristics (input):
 - All addresses in input of a same transaction belongs to the same person

- Actor identification: find all addresses of a same user
 - Currently a research question...
- Heuristics (input):
 - All addresses in input of a same transaction belongs to the same person
- Heuristics (output):
 - One of the addresses in output is probably a change address, thus an address of the same user as the one in input
 - But which one ?

• Heuristics (output):

- One of the addresses in output is probably a change address, thus an address of the same user as the one in input
- But which one ?
 - Lower value ?
 - Value with the same decimal as input?
 - Learn which one using machine learning and examples ?
 - ...

- => A research question, not in the scope of this class.

Group of addresses => Anonymous actor

- Can we know who is this actor?
- It is enough to identify one address
- One transaction with a person/company => we know one of its addresses
- On the internet, many company/individuals provide their addresses.
- For some actors, we might infer their category
 - => Miners
 - => Large transactions profiles VS low transaction profiles
 - Has made transactions to identified money laundering services => suspicious
 - Machine learning => Automatically recognize profiles, identify similar actors, ...
 - etc.

OBTAINED NETWORK

Identified nodes

Category I

Category 2

OBTAINED NETWORK

Time

Category 2

ADDRESS NETWORK

- Example: 2 days (August 2&3 2016)
- Address network
 - # Transactions: 490 44 I
 - # Transaction outputs: | 2|0 004 (avg. 2,46)
 - # Transaction inputs | 2|| 790 (avg. 2.47)
 - # Addresses: 933 645
 - # @->@ Edges: 3 014 350
- Actor network
 - # Clusters: 456 012
 - Largest clusters sizes: 20 023, 19 381, 17 244
 - # Actor -> Actor Edges : 956 347

GRAPH DESCRIPTION

DESCRIPTION OF GRAPHS

- When confronted with a graph, how to describe it?
- How to compare graphs?
- What can we say about a graph?

SIZE

- A network is composed of nodes and edges.
- Size: How many nodes and edges ? (n & m)

	#nodes (n)	#edges (m)
Wikipedia HL	2M	30M
Twitter 2015	288M	60B
Facebook 2015	1.4B	400B
Brain c. Elegans	280	6393
Roads US	2M	2.7M
Airport traffic	Зk	31k

Often more relevant: average degree (2|E| / |V|)

	#nodes	#edges	Density	avg. deg	
Wikipedia	2M	30M	1.5x10 ⁻⁵	30	
Twitter 2015	288M	60B	1.4x10 ⁻⁶	416	
Facebook	1.4B	400B	4x10 ⁻⁹	570	
Brain c.	280	6393	0,16	46	
Roads Calif.	2M	2.7M	6x10 ⁻⁷	2,7	
Airport	Зk	31k	0,007	21	

DENSITY

- It has been observed that: [Leskovec. 2006]
 - When graphs increase in size, the average degree increases
 - This increase is very slow
- Think of friends in a social network

Node degree

Number of connections of a node

Undirected network

= |E| $\begin{array}{c}
2 & 1 & 0 & 1 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 1 & 0 & 0 \\
4 & 0 & 1 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 1 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}$

0 0

1 2 3 4 5 6 7 8 9 10

<u>.</u>

0

Node degree

Number of connections of a node

Undirected network

Directed network

$$k_{i} = A_{i1} + A_{i2} + \dots + A_{iN} = \sum_{j}^{N} A_{ij}$$
$$m = \frac{\sum_{i} k_{i}}{2} \quad \text{where} \quad m = |E|$$
$$\text{mean degree} \quad \langle k \rangle = \frac{1}{N} \sum_{i}^{N} k_{i}$$

In degree

$$x_i^{in} = \sum_j^N A_{ij}$$

Out degree

$$k_j^{out} = \sum_i^N A_{ij}$$

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	0	0	0	0	Ô
2	1	0	1	1	0	0	0	0	0	0
3	U	Т	U	\bot	U	U	U	U	U	U
4	0	1	1	0	1	0	1	0	0	0
5	0	0	0	1	0	1	0	1	0	0
6	0	0	0	0	1	0	0	0	0	0
7	0	0	0	1	0	0	0	0	0	0
8	0	0	0	0	1	0	0	0	0	0
9	U	U	U	U	U	U	v	U	U	\perp
10	Û	Û	0	0	Û	Û	Û	Û	1	0

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	0	0	0	0	0
2 4 5 6 7	00000			101010	0 1 0 1 0 1 0	0001000	010000	00100		
9 10	0	0	0	0	0	0	0	0	0 1	U U U
	1	2	3	4	5	6	7	8	9	10
1 2 3 4 5 6 7 8 9 10	0100000000	1011000000	0101000000	0110101000	0001010100	0000100000	000000000000000000000000000000000000000	0000100000	00000000001	0 0 0 0 0 0 0 0 0 0

Weighted degree: strength

Weighted networks

The sum of the weights of links connected to node *i*

$$s_i = w_{i1} + w_{i2} + \ldots + w_{iN} = \sum_j w_{ij}$$

DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

Sometimes with CDF (Cumulative Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
 - A high majority of small degree nodes
 - A small minority of nodes with very high degree (Hubs)
- Often modeled by a **power law**

DEGREE DISTRIBUTION

Power laws in empirical data (degrees and other things)

POWER-LAW DISTRIBUTIONS IN EMPIRICAL DATA [Clauset 2009]

To Be or Not to Be Scale-Free

Scientists study complex networks by looking at the distribution of the number of links (or "degree") of each node. Some experts see so-called scale-free networks everywhere. But a new study suggests greater diversity in real-world networks.

Random Network

Randomly connected networks have nodes with similar degrees. There are no (or virtually no) "hubs" — nodes with many times the average number of links.

The distribution of degrees is shaped roughly like a bell curve that peaks at the network's "characteristic scale."

Twitter's Scale-Free Network

Most real-world networks of interest are not random. Some nonrandom networks have massive hubs with vastly higher degrees than other nodes.

The degrees roughly follow a power law distribution that has a "heavy tail." The distribution has no characteristic scale, making it scale-free.

Facebook's In-Between Network Researchers have found that most nonrandom

networks are not strictly scale-free. Many have a weak heavy tail and a rough characteristic scale.

This network has fewer and smaller hubs than in a scale-free network. The distribution of nodes has a scale and does not follow a pure power law.

5,000

Node clustering coefficient

- Measure of interconnectivity
- What fraction of neighbours of a node are connected to each other?

Global clustering coefficient

 $C = \frac{3 \times \text{number of triangles}}{\text{number of connected triples of vertices}} =$

number of closed triplets number of connected triples of vertices

Local clustering coefficient

$$C_u = \frac{2e_u}{k_u(k_u - 1)}$$

- e_u number of links between the neighbours of node u
- $(k_u(k_u-1))/2$ maximum number of triangles

Average local clustering coefficient

Definition: Watts and Strogatz 2002

CLUSTERING COEFFICIENT

The higher the value, the more **locally dense** is the network.

"Friends of my friends are my friends"

Higher in real networks than random

c = 0

CLUSTERING COEFFICIENT

- Global CC:
 - Random (ER): =density: very small for large graphs
 - Facebook ego-networks: 0.6
 - Twitter lists: 0.56
 - California Road networks: 0.04

Path length

A path is a sequence of nodes in which each node is adjacent to the next one

 $P_{i0,in}$ of length **n** between nodes i_0 and i_n is an ordered collection of **n+1** nodes and **n** links

$$P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$$

 A path can intersect itself and pass through the same link repeatedly. Each time a link is crossed, it is counted separately

•A legitimate path on the graph on the right: ABCBCADEEBA

• In a directed network, the path can follow only the direction of an arrow.

Path length

The *distance (shortest path, geodesic path)* between two nodes is defined as the number of edges along the shortest path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A

(on a BCA path).

Path length

- *d_{max}* diameter- the maximum distance between any pairs of nodes
- <d>average path length for directed graphs

$$\langle d \rangle = \frac{1}{N(N-1)} \sum_{i \neq j} d_{ij}$$

- where *d_{ij}* is the shortest distance between nodes *i* and *j*
- multiplicative is (2 x max number of links)
- distance between unconnected nodes is 0
- <d>average path length for un-directed graphs

$$\langle d \rangle = \frac{2}{N(N-1)} \sum_{i < j} d_{ij}$$

- since $d_{ij} = d_{ji}$
- multiplicative is (max number of links)

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment)
 - In fact 6 hops
 - (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
 - Give a (physical) mail to random people
 - Ask them to send to someone they don't know
 - They know his city, job
 - They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY: MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
 - Some mails did not arrive
 - Small sample
 - ► ...
- Checked on "real" complete graphs (giant component):
 - MSN messenger
 - Facebook
 - The world wide web
 - ...

SIDE-STORY: MILGRAM EXPERIMENT

Facebook

Connectivity and components

- A connected component is a subset of vertices with at least one path connecting each of them
- A network may consist of a single connected component (a connected network) or several of those
- Distances between nodes in disjoint components are not defined (infinite)
- Bridge: if we remove it, the graph becomes disconnected.
- The adjacency matrix of a network with several components can be written in a block-diagonal form, so that nonzero elements are confined to squares, with all other elements being zero

Figure after Newman, 2010
Connectivity and components - directed networks

- Strongly connected component (SCC): has a path from each node to every other node in the component
- Weakly connected component (WCC): it is connected if we disregard the directions
- In-component: nodes that can reach the SCC
- Out-component: nodes that can be reached from SCC

k-core decomposition

Goal: To identify dense cores of high degree nodes in networks

Given graph G = (V, E)

Definition: A subgraph H = (C, E|C) induced by the set $C \subseteq V$ is a **k-core or a core of order k** iff $\forall v \in C : degree(H(v)) \ge k$, and *H* is the maximum subgraph with this property.

 A k-core of G can be obtained by recursively removing all the vertices of degree less than k, until all vertices in the remaining graph have at least degree k.

Definition: A vertex *i* has **coreness** *c* if it belongs to the *c*-core but not to (c + 1)-core.

Definition: A *c*-shell is composed by all the vertices whose coreness is *c*. The k-core is thus the union of all shells with $c \ge k$.

TRIADS COUNTING

TRIADS COUNTING

GRAPHLETS

- What is a Matrix?
 - Not a 2D data table
 - It describes a linear transformation, or linear function
 - Said differently, it represents a set of equations

. . .

 $x1' = 0x_1 + 1x_2 + 0x_3 + 0x_4 + 1x_5 + 0x_6$ $x2' = x_1 + x_3 + x_5$ $x3' = x_2 + x_4$

X=

 x_2 x_3 x_5 x_5 x_5 x_6

x6 $A, \times =$ x5 x4 x1 xЗ x2 x6' x5' x4' A, A =x1' x2' x3'

Question: What is the result of Ax if
x1=x2=x3=x4=x5=x6=1 ?

- Question: What is the result of Ax if
 - ► x | = x2 = x3 = x4 = x5 = x6 = | ?
 - =>New values are degrees

- What about A^2 ?
 - A encodes the number of paths of lengths exactly I between pairs of nodes
 - A^2 encodes the number of paths of lengths exactly **2** between pairs of nodes
 - A^3 encodes the number of paths of lengths exactly **3** between pairs of nodes

- Graph matrices operations can be interpreted as:
 - Diffusion phenomenons
 - Random walks

<u>+ . . .</u>

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 2011]
- The Facebook friendship network in 2011

- 721M users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average # friends)
- Median degree: 99
- Connected component: 99.91%

Component size Distribution

Cumulative

Degree distribution

Clustering coefficient By degree

Median user: 0.14: 14% of users with a common friend are friends

My friends have more Friends than me!

Many of my friends have the Same # of friends than me!

Age homophily

Country similarity

84.2% percent of edges are within countries

(More in the community detection class)

NEXT CLASSES

- I) Describe a network
- 2) Find and describe important nodes
- 3)Find and describe important group of nodes
 - And a few more things

PROJECT PRESENTATION

PROJECT OBJECTIVE

- We have in a database all transactions between addresses and all transactions between actors from the beginning of bitcoin to August 2016
- Choose and obtain a small subset of this network that you consider interesting
 - Around a particular transaction (illegal activity ...)
 - About some actors
 - About a short period
 -

PROJECT OBJECTIVE

- Apply tools your learned about during the class to better understand this network
- Write a report about what you learnt, and what you could learn with more time/data
 - If possible, a single Jupyter notebook with code and text
 - A separate report is also possible if relevant

PROJECT OBJECTIVE

- Recommendations:
- I recommend to limit yourself to a few thousand nodes, and less than 10.000 edges
- The goal of the project is to interact!
 - Ask me if something is possible, how to do it... we are doing the project together.

SOME IDEAS

EGO-CENTERED NETWORK

Wikileaks

Green in the center : wikileaks

A BITCOIN THEFT

MONEY LAUNDERING

Figure 2. Block diagram of a hypothetical Bitcoin mixing service

[Möser & Böhme]

MONEY LAUNDERING

[Möser & Böhme]

EXCEPTIONAL TRANSACTIONS ANALYSIS

[Ron & Shamir]

EXCEPTIONAL TRANSACTIONS ANALYSIS

[Ron & Shamir]

ANALYSIS OF NETWORK PROPERTIES

WHATTO DO NOW

- <u>http://cazabetremy.fr/Teaching/BitcoinNetwork.html</u>
- Download the two provided networks. Choose one and load it with Gephi