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SHORT NOTICE

• Launch Gephi download

‣ https://gephi.org/users/download/

• Course content, resources…
‣ http://cazabetremy.fr/Teaching/BitcoinNetwork.html
‣

https://gephi.org/users/download/
http://cazabetremy.fr/Teaching/BitcoinNetwork.html


COMPLEX SYSTEMS

• Complex systems: 
‣ Systems composed of multiple parts in interactions
‣ The macro level behavior of the system depends on the micro level, and 

reciprocally (  micro, macro in economics…)

• Interdisciplinary field, thought to solve the problems of the 
reductionist approach.
‣ Reductionism: to understand a system, we need to understand its parts
‣ Complex system: we need to understand how parts are interacting.

≠



EXAMPLE OF CS

• Typical complex systems:
‣ Organisations, cities, human body, brain, ecosystems, etc.

• Brain:
‣ Micro level: neurons, synapses, receptors (light, sound, …), chemicals, … 
‣ Macro level: Signals, synchronization, … => Intelligence, decisions…

• Social networking platforms:
‣ Micro level: individuals, companies, bots, hackers, posts, communications…
‣ Macro level: information diffusion, patterns of activity, echo chamber/filter 

bubble, fake news, rich get richer phenomenon, etc.



EXAMPLE OF CS

• Economy ? (Financial) Markets ?



NETWORK SCIENCE

• Study interactions between entities at the micro level => 
represent interactions as a network

• Analyse this network based on tools from network 
science

• Vocabulary: network science  Complex/Social network 
analysis  Graph mining

≈
≈





NETWORKS

• Online social networks, e.g., Facebook, Twitter…
‣ Nodes: accounts
‣ Edges: relations (friend/follow) or interactions (wall post, like, retweet, mentions, 

etc.)

• Cryptocurrency
‣ Nodes: addresses or actors (wallet ? Set of addresses ?)
‣ Edges: transactions



NETWORK ANALYSIS
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GRAPHS & NETWORKS
Networks often refers to real systems
• www,
• social network
• metabolic network. 
• Language: (Network, node, link) 

In most cases we will use the two terms interchangeably. 

Graph is the mathematical 
representation of a network
• Language: (Graph, vertex, edge) 

Vertex Edge
person friendship
neuron synapse
Website hyperlink
company ownership

gene regulation



Types of 
Networks



Undirected networks

 G=(V, E) 
 (u,v) ∈ E ≡ (v,u) ∈ E 

• The directions of edges do 
not matter

• Interactions are possible 
between connected entities 
in both directions

The Internet: Nodes - routers, Links - physical wires

Opte project



Directed networks

 G=(V, E) 
 (u,v) ∈ E ≢ (v,u) ∈ E 

• The directions of 
edges matter

• Interactions are 
possible between 
connected entities 
only in specified 
directions

Citation network: Nodes - publications, Links - references

Moritz Stefaner, eigenfactor.com

http://eigenfactor.com


Weighted networks

 G=(V, E, w) 
 w: (u,v) ∈ E ⇒ R 

• Strength of 
interactions are 
assigned by the 
weight of links

Social interaction network: Nodes - individuals
                         Links - social interactions

Onnela et.al. New Journal of Physics 9, 179 (2007).



Bipartite network

 G=(U, V, E) 
U ∩ V = ∅ 
∀(u,v) ∈ E, u ∈ U and v ∈ V

Gene-desease network:
          Nodes - Desease (7)&Genes (747)
          Links - gene-desease relationship

Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3



Multiplex and multilayer networks

 G=(V, Ei), i=1…M 
• Nodes can be present in 

multiple networks 
simultaneously 

• These networks are 
connected (can influence 
each other) via the 
common nodes

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

M=2
[Mendez-Bermudez et al. 2017]



Temporal and evolving networks
 G=(V, Et), (u,v,t,d) ∈ Et 
          t - time of interaction (u,v) 
   d - duration of interaction (u,v,t) 

   
  G=(Vt’, Et’) 
      v(t) ∈ Vt’  
      (u,v,t) ∈ Et’

Mobile communication network
     Nodes - individuals
     Links - calls and SMS

• Temporal links encode time varying interactions

• Dynamical nodes and 
links  encode the 
evolution of the 
network



COURSE OBJECTIVES



COURSE OBJECTIVES

• Theory:
‣ Learn the basics of network science and network analysis, +some machine 

learning/data science concepts

• Practice:
‣ Learn how to apply those concepts to graphs of small/medium size

• Project:
‣ Apply what you learnt on a subset of the bitcoin transaction network



THE BITCOIN TRANSACTION 
NETWORK



BITCOIN
• In this class, we are not interested in:

‣ Cryptographic aspects
‣ How the blockchain works
‣ Governance of cryptocurrencies
‣ Smart contracts
‣ ICO
‣ Macro-level analysis (transaction fee evolution, market price, etc.)

• What we are interested in:
‣ Observing and understanding what is happening at the micro-level in one 

cryptocurrency (for this class, the largest one, Bitcoin) => Look under the 
hood !

‣ How what is happening at the micro-level can be connected to what we 
observe at the macro-level (crisis, price fluctuation, macro-indicators…)



BITCOIN - MACRO LEVEL



BITCOIN - MACRO LEVEL

https://www.blockchain.com/en/charts



BITCOIN - MACRO LEVEL

• This type of aggregated data is mostly identical to data you are 
used to in economy

• Can be studied with time series analysis (ARIMA, …)

• What is unique about Bitcoin:
‣ We have all data about all transactions done using a given currency
‣ We can use this information in relation with macro-level statistics 
‣ We can use it for new type of analysis



BITCOIN - DATA
• The data we use: Content of the bitcoin blockchain

‣ Seen as a simple list of transactions

Transaction From To Value

t0 @1 @2 5

t1 @1 @3 2

… … … …

• Bitcoin transactions are a little bit more complicated than that



BITCOIN - DATA
• You can explore it using tools such as a blockchain explorer

‣ E.g.: https://www.blockchain.com/explorer

https://www.blockchain.com/explorer


BITCOIN - DATA
• You can explore it using tools such as a blockchain explorer

‣ E.g.: https://www.blockchain.com/explorer

https://www.blockchain.com/explorer


UNDERSTANDING BITCOIN 
TRANSACTIONS

• Transactions are between m “inputs” and n “outputs”

• Each input (resp. output) is a pair (value,bitcoin address)

• inputs are necessarily outputs of previous transactions
‣ Unlocked by the private key of the payer

31



UNDERSTANDING BITCOIN 
TRANSACTIONS

• A user possess a private key

• A user can generate public keys (bitcoin adresses)
‣ Instantaneously 
‣ At no cost
‣ As often as wanted

• Public key  lock that can be opened only by an associated 
private key

≈
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ILLUSTRATION
Tr 1

1BusVkYQvbbGbSDZNo5DfhrFeQdgK1Y1VY

Public keys of user U1 : 

2 btc2 btc

33



ILLUSTRATION
Tr 1

2 btc2 btc

Tr 2

3 btc3 btc 1BusVkYQvbbGbSDZNo5DfhrFeQdgK1Y1VY

Public keys of user U1 : 

1QFdbGkhiCDFF45mBHgzWUdiqv55NJbd4u

34



ILLUSTRATION
Tr 1

2 btc2 btc

Tr 2

3 btc3 btc 1BusVkYQvbbGbSDZNo5DfhrFeQdgK1Y1VY

Public keys of user U1 : 

1QFdbGkhiCDFF45mBHgzWUdiqv55NJbd4u

Tr 3

4 btc4 btc

“Wallet” of U1:
• 9 btc
• Divided in 3 “output”
• Locked by 2 different public keys

35



ILLUSTRATION
Payment of 8 btc to U2:

Payment

Change

Tr 4

Tr 1

2 btc2 btc

Tr 2

3 btc3 btc

Tr 3

4 btc4 btc

8 btc

1 btc

36



ADDRESS NETWORK
• First network, node=Address

‣ Naive approach
‣ One address  one user!

• Node: bitcoin address (public key)

• Edge: input addresses to output addresses.

• Problem: most transactions have several inputs, several outputs
‣ Values ?

≠

1 btc3 btc

2 btc 4 btc

@1@1

@2

@3

@4

@3

@2 @4

? btc



ADDRESS NETWORK

‣ # Transactions: 490 441
‣ # Transaction outputs: 1 210 004 (avg. 2,46)
‣ # Transaction inputs 1 211 790 (avg. 2.47)
‣ # Addresses: 933 645
‣ # @->@ Edges: 3 014 350

• Very big, hard to interpret



ACTOR NETWORK
• Transactions between “actors” of the bitcoin ecosystem

‣ Individuals with their own private key (e.g., using BRD, Atomic Wallet, etc.)
‣ Companies/organisations with their own private key
‣ Exchanges (e.g., Binance, CoinBase, etc.)
‣ Mining Pool
‣ etc.

• An actor has one private key, but can have many public keys/
addresses

• How to retrieve addresses belonging to the same actor?



ACTOR NETWORK

Payment

Change

Tr 4

2 btc2 btc

Tr 2

3 btc3 btc

Tr 3

4 btc4 btc

8 btc

1 btc

 and   are inputs of the same transaction 
=> same actor



ACTOR NETWORK

• Actor identification: find all addresses of a same user
‣ Currently a research question…

• Heuristics (input):
‣ All addresses in input of a same transaction belongs to the same person



ACTOR NETWORK

T1

@2

@3

@2

@4

@2

@6

@2

@7

@8

@1

T2 T3 T4

@10

@11

T5

@1

@2

@3

@4

@6

@7

@8

@10

@11

Actor 1 Actor 2



ACTOR NETWORK

• Actor identification: find all addresses of a same user
‣ Currently a research question…

• Heuristics (input):
‣ All addresses in input of a same transaction belongs to the same person

• Heuristics (output):
‣ One of the addresses in output is probably a change address, thus an 

address of the same user as the one in input
‣ But which one ?



ACTOR NETWORK

44

Payment of 8 btc to U2:

Payment

Change

Tr 4

Tr 1

2 btc2 btc

Tr 2

3 btc3 btc

Tr 3

4 btc4 btc

8 btc

1 btc

Same user



ACTOR NETWORK

• Heuristics (output):
‣ One of the addresses in output is probably a change address, thus an 

address of the same user as the one in input
‣ But which one ?

- Lower value ?
- Value with the same decimal as input?
- Learn which one using machine learning and examples ?
- …
- => A research question, not in the scope of this class.

‣



ACTOR NETWORK

• Group of addresses => Anonymous actor
‣ Can we know who is this actor?
‣ It is enough to identify one address
‣ One transaction with a person/company => we know one of its addresses
‣ On the internet, many company/individuals provide their addresses.
‣ For some actors, we might infer their category 

- => Miners
- => Large transactions profiles VS low transaction profiles
- Has made transactions to identified money laundering services => suspicious
- Machine learning => Automatically recognize profiles, identify similar actors, …
- etc.



OBTAINED NETWORK

1

Category  1
Category 2

47

Identified nodes

2



OBTAINED NETWORK

1

Category  1
Category 2

48

Identified nodes

2

1

Time

2



ADDRESS NETWORK
• Example: 2 days (August 2&3 2016)

• Address network
‣ # Transactions: 490 441
‣ # Transaction outputs: 1 210 004 (avg. 2,46)
‣ # Transaction inputs 1 211 790 (avg. 2.47)
‣ # Addresses: 933 645
‣ # @->@ Edges: 3 014 350

• Actor network
‣ # Clusters: 456 012
‣ Largest clusters sizes: 20 023, 19 381, 17 244
‣ # Actor -> Actor Edges : 956 347



GRAPH DESCRIPTION



DESCRIPTION OF GRAPHS

• When confronted with a graph, how to describe it?

• How to compare graphs?

• What can we say about a graph?



SIZE
• A network is composed of nodes and edges. 

• Size: How many nodes and edges ? (n & m)

#nodes (n) #edges (m)
Wikipedia HL 2M 30M
Twitter 2015 288M 60B

Facebook 2015 1.4B 400B
Brain c. Elegans 280 6393

Roads US 2M 2.7M
Airport traffic 3k 31k



DENSITY 

#nodes #edges Density avg. deg
Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416
Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 
Elegans

280 6393 0,16 46
Roads Calif. 2M 2.7M 6x10-7 2,7

Airport 
traffic

3k 31k 0,007 21

Defined as: 
Directed

Undirected

Often more relevant: average degree ( 2|E| / |V| )



DENSITY 

• It has been observed that: [Leskovec. 2006]
‣ When graphs increase in size, the average degree increases
‣ This increase is very slow

• Think of friends in a social network



Node degree
Number of connections of a node

2

3

2

3

1

1

1

• Undirected network

wherem =

P
i ki
2

m = |E|

ki = Ai1 +Ai2 + ...+AiN =
NX

j

Aij



Node degree
Number of connections of a node

2

3

2

3

1

1

1

• Directed network

• Undirected network

In degree

Out degree

1

0

0

1

1

2

3

2

00

3
1

1 1

where

mean degree

m =

P
i ki
2

m = |E|

hki = 1

N

NX

i

ki

ki = Ai1 +Ai2 + ...+AiN =
NX

j

Aij

koutj =
NX

i

Aij

kini =
NX

j

Aij



Weighted degree: strength
• Weighted networks

1

2

3

4 5

6

7

8

10
9

6

1
3

6

45

1

3

4

6

12

4

18

9

1

3

4
4

4

The sum of the weights of links connected to node i

si = wi1 + wi2 + ... + wiN = Σj wij



DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

 Sometimes with CDF (Cumulative Distribution Function)



DEGREE DISTRIBUTION

• In a fully random graph (Erdos-Renyi), degree distribution is a 
normal distribution centered on the average degree 

• In real graphs, in general, it is not the case:
‣ A high majority of small degree nodes
‣ A small minority of nodes with very high degree (Hubs)

• Often modeled by a power law



DEGREE DISTRIBUTION

POWER-LAW DISTRIBUTIONS IN EMPIRICAL DATA [Clauset 2009]

Power laws in empirical data (degrees and other things)



DEGREE DISTRIBUTION
Power law/Scale free distribution:

[Quanta magazine 2018]



Node clustering coefficient
• Measure of interconnectivity
• What fraction of neighbours of a node are connected to each 

other?

u

Cu = (2x2)/(4x3) = 1/3

• eu - number of links between the 
neighbours of node u 

• (ku(ku-1))/2 - maximum number of 
triangles

Definition: Watts and Strogatz 2002

Average local clustering coefficient

Local clustering coefficientGlobal clustering coefficient

Cu =
2eu

ku(ku − 1)

C =
1
N ∑

u

Cu

C = 9/18 = 1/2



CLUSTERING COEFFICIENT

The higher the value, 
the more locally dense is the network.

“Friends of my friends are my friends”

Higher in real networks than random



CLUSTERING COEFFICIENT

• Global CC:
‣ Random (ER): =density: very small for large graphs 
‣ Facebook ego-networks: 0.6
‣ Twitter lists: 0.56
‣ California Road networks: 0.04



Path length



Path length



Path length

hdi = 1

N(N � 1)

X

i 6=j

dij

• dmax  diameter- the maximum distance between any pairs of nodes

• ⟨d⟩ average path length - for directed graphs

• where dij is the shortest distance between 
nodes i and j

• multiplicative is (2 x max number of links)
• distance between unconnected nodes is 0

• ⟨d⟩ average path length - for un-directed graphs

hdi = 2

N(N � 1)

X

i<j

dij

• since dij = dji

• multiplicative is (max number of links)



AVERAGE PATH LENGTH

• The famous 6 degrees of separation (Milgram experiment)
‣ In fact 6 hops
‣ (More on that next slide)

• Not too sensible to noise

• Tells you if the network is “stretched” or “hairball” like



SIDE-STORY: MILGRAM 
EXPERIMENT

• Small world experiment (60’s)
‣ Give a (physical) mail to random people
‣ Ask them to send to someone they don’t know

- They know his city, job
‣ They send to their most relevant contact

• Results: In average, 6 hops to arrive



SIDE-STORY: MILGRAM 
EXPERIMENT

• Many criticism on the experiment itself: 
‣ Some mails did not arrive
‣ Small sample
‣ …

• Checked on “real” complete graphs (giant component):
‣ MSN messenger
‣ Facebook
‣ The world wide web
‣ …



SIDE-STORY: MILGRAM 
EXPERIMENT

Facebook



Connectivity and components

• A connected component is a subset of vertices 
with at least one path connecting each of them

• A network may consist of a single connected 
component (a connected network) or several of 
those

• Distances between nodes in disjoint 
components are not defined (infinite)

• Bridge: if we remove it, the graph becomes 
disconnected.

• The adjacency matrix of a network with several 
components can be written in a block-diagonal 
form, so that nonzero elements are confined to 
squares, with all other elements being zero

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero: 

Figure after Newman, 2010 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix 

Network Science: Graph Theory   2012 

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero: 

Figure after Newman, 2010 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix 

Network Science: Graph Theory   2012 



Connectivity and components - directed networks

• Strongly connected component (SCC): has a path from each node to every other 
node in the component

• Weakly connected component (WCC): it is connected if we disregard the 
directions

• In-component: nodes that can reach the SCC

• Out-component: nodes that can be reached from SCC

 

existence of a giant component G, defined as a component whose size scales with the number of nodes of 
the graph, and therefore diverges in the limit foN . The presence of a giant component implies that a 
large fraction of the graph is connected, in the sense that it is possible to find a way across a certain 
number of edges, joining any two nodes. 

The structure of the components of directed graphs is somewhat more complex as the presence of 
a path from the node i to the node j does not necessarily guarantee the presence of a corresponding path 
from j to i. Therefore, the definition of a giant component becomes fuzzy. In general, the component 
structure of a directed graph can be decomposed into a giant weakly connected component (GWCC), 
corresponding to the giant component of the same graph in which the edges are considered as undirected, 
plus a set of smaller disconnected components (DC), see Figure 3. The GWCC is itself composed of 
several parts due to the directed nature of its edges: The giant strongly connected component (GSCC), in 
which there is a directed path joining any pair of nodes. The giant IN-component (GIN), formed by the 
nodes from which it is possible to reach the GSCC by means of a directed path. The giant OUT-
component (GOUT), formed by the nodes that can be reached from the GSCC by means of a directed 
path. Last but not least there are the tendrils that contain nodes that cannot reach or be reached by the 
GSCC (among them, the tubes that connect the GIN and GOUT) that form the rest of the GWCC. 

 

 
 
Figure 3. Component structure of directed networks such as the WWW. Adopted from Broder et al. 
(2000). The component structure of directed graphs has important consequences for the accessibility of 
information in networks such as the World-Wide Web (Broder, Kumar, Maghoul, Raghavan, 
Rajagopalan, Stata, et al., 2000; Chakrabarti, Dom, Gibson, Kleinberg, Kumar, Raghavan, et al., 1999).  

3. Network Sampling 
Using the foregoing notions and notations, this section provides a short discussion of the issues related to 
the gathering of network data. Different application domains have very different affordances ranging from 
the size, type and richness of network data to the scientific questions that are asked. In some application 
domains it is relatively easy to gain access and work with a complete network dataset such as social 
network studies of smaller social groups, for example, all school children in a certain grade at a certain 
school. However, for many applications the acquisition of a complete network dataset is impossible due 
to time, resource or technical constraints. In this case, network sampling techniques are applied to acquire 
the most reliable dataset that exhibits major properties of the entire network. Network sampling thus 
refers to the process of acquiring network datasets and the discussion of statistical and technical 
  

9 

Figure from Broder et. al. (2000)



k-core decomposition

Given graph G = (V, E) 

Definition: A subgraph H = (C,E|C) induced by 
the set C ⊆ V is a k-core or a core of order k iff 
∀v ∈ C : degree(H (v)) ≥ k, and H is the maximum 
subgraph with this property. 

• A k-core of G can be obtained by recursively 
removing all the vertices of degree less than k, 
until all vertices in the remaining graph have at 
least degree k. 

Definition: A vertex i has coreness c if it belongs to the c-core but not to (c + 1)-core. 
 
Definition: A c-shell is composed by all the vertices whose coreness is c. The k-core is thus 
the union of all shells with c ≥ k. 

Goal: To identify dense cores of high degree nodes in networks

Core Decomposition in Graphs:
Concepts, Algorithms and Applications

Fragkiskos D. Malliaros1, Apostolos N. Papadopoulos2, Michalis Vazirgiannis1

1Computer Science Laboratory, École Polytechnique, France
2Department of Informatics, Aristotle University of Thessaloniki, Greece

{fmalliaros, mvazirg}@lix.polytechnique.fr, papadopo@csd.auth.gr

ABSTRACT
Graph mining is an important research area with a plethora of prac-
tical applications. Core decomposition in networks, is a fundamen-
tal operation strongly related to more complex mining tasks such as
community detection, dense subgraph discovery, identification of
influential nodes, network visualization, text mining, just to name a
few. In this tutorial, we present in detail the concept and properties
of core decomposition in graphs, the associated algorithms for its
efficient computation and some of its most important applications.

1. INTRODUCTION
Core decomposition is a well-studied topic in graph mining. In-

formally, the k-core decomposition is a threshold-based hierarchi-
cal decomposition of a graph into nested subgraphs. The basic idea
is that a threshold k is set on the degree of each node; nodes that
do not satisfy the threshold, are excluded from the process. There
exists a rich literature studying algorithmic aspects of core decom-
position by taking different viewpoints, such as distributed, stream-
ing, disk-resident data, to name a few. In addition, core decompo-
sition has been used successfully in many diverse application do-
mains, including social networks analysis and text analytics tasks.

Next, we formally define the concept of k-core decomposition
in graphs. Let G = (V,E) be an undirected graph. Let H be a
subgraph of G, i.e., H ⊆ G. Subgraph H is defined to be a k-core
of G, denoted by Gk, if it is a maximal connected subgraph of G in
which all nodes have degree at least k. The degeneracy δ∗(G) of a
graph G is defined as the maximum k for which graph G contains
a non-empty k-core subgraph. A node i has core number ci = k,
if it belongs to a k-core but not to any (k+1)-core. The k-shell is
the subgraph defined by the nodes that belong to the k-core but not
to the (k + 1)-core.

Based on the above definitions, it is evident that if all the nodes
of the graph have degree at least one, i.e., dv ≥ 1, ∀v ∈ V , then
the 1-core subgraph corresponds to the whole graph, i.e., G1 ≡ G.
Furthermore, assuming that Gi, i = 0, 1, 2, . . . , δ∗(G) is the i-
core of G, then the k-core subgraphs are nested, i.e., G0 ⊇ G1 ⊇
G2 ⊇ . . . ⊇ Gδ∗(G). Typically, subgraph Gδ∗(G) is called maxi-
mal k-core subgraph of G.
Figure 1 depicts an example of a graph and the corresponding k-
core decomposition. As we observe, the degeneracy of this graph

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3

Figure 1: Example of the k-core decomposition.

is δ∗(G) = 3; thus, the decomposition creates three nested k-core
subgraphs, with the 3-core being the maximal one. The nested
structure of the k-core subgraphs is indicated by the dashed lines.
Furthermore, the color on the nodes indicates the core number c of
each node. Lastly, we should note here that the k-core subgraphs
are not necessarily connected.

2. GOALS AND OUTLINE
The goal of this tutorial is to present in detail the algorithmic

paradigm of core decomposition in graphs. In particular, we will
focus on the following points:

(i) Fundamental concepts of core decomposition. We present
the notion of k-core decomposition for unweighted and undi-
rected graphs and then extensions for weighted, directed, pro-
babilistic and signed ones. We also present generalizations of
the decomposition to node properties beyond the degree.

(ii) Algorithms for core decomposition. Computing the k-core
decomposition of a graph can be done through a simple pro-
cess that is based on the following property: to extract the
k-core subgraph, all nodes with degree less than k and their
adjacent edges should be recursively deleted. In the tutorial,
we present efficient algorithms for the k-core decomposition.
We also examine several extensions that have been proposed
by the databases community for large scale k-core decom-
position under various computation frameworks, including
streaming, distributed and disk-based algorithms. We also
examine how to estimate the k-core number of each node
using only local information.

(iii) Applications. We demonstrate applications of the k-core de-
composition in various domains, including dense subgraph
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GRAPHLETS



MATRIX PROPERTIES

• What is a Matrix?
‣ Not a 2D data table
‣ It describes a linear transformation, or linear function
‣ Said differently, it represents a set of equations



MATRIX PROPERTIES

x1 x2 x3 x4 x5 x6

x1’
x2’
x3’
x4’
x5’
x6’

x1′ = 0x1 + 1x2 + 0x3 + 0x4 + 1x5 + 0x6
x2′ = x1 + x3 + x5

…
x3′ = x2 + x4



MATRIX PROPERTIES
x1
x2
x3
x5
x5
x6

A= x=

Ax=

x1
x2
x3
x5
x5

x2 + x4
x1 + x3 + x5

x2 + x4
x3 + x5 + x6
x1 + x2 + x4

x4

x1

x2

x4x5
x6

x3

x1’

x2’

x4’x5’
x6’

x3’

A, x =

A, Ax=



MATRIX PROPERTIES

• Question: What is the result of Ax if
‣ x1=x2=x3=x4=x5=x6=1 ?

x1

x2

x4x5
x6

x3

x1’

x2’

x4’x5’
x6’

x3’

A, x =

A, Ax=



MATRIX PROPERTIES

• Question: What is the result of Ax if
‣ x1=x2=x3=x4=x5=x6=1 ?
‣ =>New values are degrees

x1

x2

x4x5
x6

x3

x1’

x2’

x4’x5’
x6’

x3’

A, x =

A, Ax=



MATRIX PROPERTIES

• What about  ?
‣  encodes the number of paths of lengths exactly 1 between pairs of nodes
‣  encodes the number of paths of lengths exactly 2 between pairs of nodes
‣  encodes the number of paths of lengths exactly 3 between pairs of nodes
‣ …

• Graph matrices operations can be interpreted as:
‣ Diffusion phenomenons
‣ Random walks

A2

A
A2

A3



EXEMPLE OF GRAPH 
ANALYSIS

• Source: [The Anatomy of the Facebook Social Graph, Ugander 
et al. 2011]

• The Facebook friendship network in 2011



EXEMPLE OF GRAPH 
ANALYSIS

• 721M users (nodes) (active in the last 28 days)

• 68B edges

• Average degree: 190 (average # friends)

• Median degree: 99

• Connected component: 99.91%



EXEMPLE OF GRAPH 
ANALYSIS

Component size
Distribution 



EXEMPLE OF GRAPH 
ANALYSIS

Degree distribution

Cumulative



EXEMPLE OF GRAPH 
ANALYSIS

Clustering coefficient
By degree

Median user : 0.14:
14% of users with a common 

friend are friends



EXEMPLE OF GRAPH 
ANALYSIS

My friends have more
Friends than me!

Many of my friends have the 
Same # of friends than me!



EXEMPLE OF GRAPH 
ANALYSIS

Age homophily



EXEMPLE OF GRAPH 
ANALYSIS

Country similarity

84.2% percent of edges are 

within countries 

(More in the community 
detection class)



NEXT CLASSES

• 1) Describe a network

• 2) Find and describe important nodes

• 3)Find and describe important group of nodes
‣ And a few more things



PROJECT PRESENTATION



PROJECT OBJECTIVE

• We have in a database all transactions between addresses and 
all transactions between actors from the beginning of bitcoin 
to August 2016

• Choose and obtain a small subset of this network that you 
consider interesting
‣ Around a particular transaction (illegal activity …)
‣ About some actors
‣ About a short period
‣ …



PROJECT OBJECTIVE

• Apply tools your learned about during the class to better 
understand this network

• Write a report about what you learnt, and what you could 
learn with more time/data
‣ If possible, a single Jupyter notebook with code and text
‣ A separate report is also possible if relevant



PROJECT OBJECTIVE

• Recommendations:

• I recommend to limit yourself to a few thousand nodes, and 
less than 10.000 edges

• The goal of the project is to interact! 
‣ Ask me if something is possible, how to do it… we are doing the project 

together.



SOME IDEAS



EGO-CENTERED NETWORK
• Wikileaks

1.5 Anonymity Analysis 19

Fig. 1.9: An egocentric visualization of the vertex representing WikiLeaks’ public-key in
the incomplete user network. The size of a vertex corresponds to its degree in the entire
incomplete user network. The color denotes the volume of Bitcoins – warmer colors have
larger volumes flowing through them. The three largest red vertices represent a Bitcoin
mining pool, a centralized Bitcoin wallet service, and an unknown entity.

Case Study – Part I: We analyse an alleged theft of 25 000 BTC reported
in the Bitcoin Forums15 by a user known as allinvain. The victim reported
that a large portion of his Bitcoins were sent to pkred16 on 13/06/2011 at
16:52:23 UTC. The theft occurred shortly after somebody broke into the
victim’s Slush pool account17 and changed the payout address to pkblue.18.
The Bitcoins rightfully belonged to pkgreen.19 At the time of theft, the stolen
Bitcoins had a market value of approximately half a million U.S. dollars. We
chose this case study to illustrate the potential risks to the anonymity of a
user (the thief) who has good reason to remain anonymous.

We consider the incomplete user network before any contractions. We re-
strict ourselves to the egocentric network surrounding the thief: we include
every vertex that is reachable by a path of length at most two ignoring direc-
tionality and all edges induced by these vertices. We also remove all loops,
multiple edges and edges that are not contained in some biconnected com-
ponent to avoid clutter. In Fig. 1.11, the red vertex represents the thief who

15 http://forum.bitcoin.org/index.php?topic=16457.0
16 1KPTdMb6p7H3YCwsyFqrEmKGmsHqe1Q3jg
17 http://mining.bitcoin.cz
18 15iUDqk6nLmav3B1xUHPQivDpfMruVsu9f
19 1J18yk7D353z3gRVcdbS7PV5Q8h5w6oWWG

Green in the center : wikileaks



A BITCOIN THEFT
1.5 Anonymity Analysis 23























 








































































 


 


 


 


 


 


 


 


 


 


 


 


 
  























Fig. 1.13: Visualisation of Bitcoin flow from the alleged theft. The left inset shows the
initial shu✏ing of Bitcoins among accounts close to that of the alleged thief. The right
inset shows the flow of Bitcoins during several subsequent days. The flows split and ater
merge, validating that the flows found by the tool are probably still controlled by a single
user.

In the left inset, we can see that the Bitcoins are shu✏ed between a small
number of accounts and then transferred back to the initial account. After
this shu✏ing step, we have identified four significant outflows of Bitcoins that
began at 19:49, 20:01, 20:13 and 20:55. Of particular interest are the outflows
that began at 20:55 (labeled as ‘1’ in both insets) and 20:13 (labeled as ‘2’ in
both insets). These outflows pass through several subsequent accounts over
a period of several hours. Flow 1 splits at the vertex labeled A in the right
inset at 04:05 on the day after the theft. Some of its Bitcoins rejoin Flow 2
at the vertex labeled B. This new combined flow is labeled as ‘3’ in the right
inset. The remaining Bitcoins from Flow 1 pass through several additional
vertices in the next two days. This flow is labeled as ‘4’ in the right inset.

A surprising event occurs on 16/06/2011 at approximately 13:37. A small
number of Bitcoins are transferred from Flow 3 to a heretofore unseen public-
key pk1.24 Approximately seven minutes later, a small number of Bitcoins
are transferred from Flow 3 to another heretofore unseen public-key pk2.25

Finally, there are two simultaneous transfers from Flow 4 to two more hereto-
fore unseen public-keys: pk326 and pk4.27 We have determined that these four
public-keys, pk1, pk2, pk3 and pk4 – which receive Bitcoins from two sepa-
rate flows that split from each other two days previously – are all contracted

24 1FKFiCYJSFqxT3zkZntHjfU47SvAzauZXN
25 1FhYawPhWDvkZCJVBrDfQoo2qC3EuKtb94
26 1MJZZmmSrQZ9NzeQt3hYP76oFC5dWAf2nD
27 12dJo17jcR78Uk1Ak5wfgyXtciU62MzcEc



MONEY LAUNDERING

Alice: 5 Bob1: 3 Charlie: 4

Bob2: 2

Alice: 2 Bob3: 1

tB

tCtA

Figure 1. Example of a partial transaction graph

transaction graph. To illustrate these graphs, we use the notation
of Figure 1. Nodes correspond to transactions. A directed edge
from one node to another denotes that an output of the source
transaction is referenced by an input of the target transaction
(i.e., if bitcoins from the source transaction are spent in the
target transaction). Directed edges not having a target node
correspond to outputs not yet referenced by an input. Edges
may be annotated with addresses and/or values if needed.

The example in Figure 1 should be read as follows. Alice
sends 3 bitcoins to Bob using transaction tA. To do so, she
references an output with a value of 5 from an (unnamed)
previous transaction and creates two outputs of tA, one sending
3 bitcoins to Bob, the other one returning 2 bitcoins to her.
Returning bitcoins to oneself is common practice. The amount
of bitcoins referenced by all inputs will usually not equal the
amount one actually wants to send. As inputs may only be
used once, a new output must be created to return the change.

Continuing the description of Figure 1, Bob now wants to
send 4 bitcoins to Charlie. Instead of one, he actually owns
three different accounts and received 3 bitcoins from Alice to
his first: Bob1. In order to send the 4 bitcoins to Charlie, he
needs to create a transaction tC with two inputs. One references
the output of tA, in which Bob1 received 3 bitcoins, the other
one references an output of another transaction tB , in which
Bob2 received 2 bitcoins. Together, the referenced outputs sum
up to 5, allowing Bob to send 4 of them to Charlie and the
change back to him (by creating corresponding outputs in tC ).
These outputs are not referenced yet. Hence, it can be seen
that Bob owns at least 1 bitcoin, and Charlie owns at least 4.

B. Transaction Anonymization Services

Although Figure 1 may suggest that Bitcoin addresses
can be identified with actual individuals, it is in general
not so easy. Any user may create as many addresses as he
wants. Thus, situations such as Bob using three addresses are
pervasive. Without further information, nobody can link the
three addresses Bob1, Bob2, and Bob3 to his real identity. At
first sight, they may even belong to many instead of one person.
Identifying the people behind addresses can nevertheless be
possible.

Consider again the example of Figure 1 and assume Alice is
a Bitcoin exchange requiring its business partners to identify
themselves. Hence, she knows that address Bob1 belongs to

Alice1: 1

Bob1: 1

Charlie1: 1

Alice2: 1

Bob2: 1

Charlie2: 1

Mix1: 1

Mix2: 1

Mix3: 1

Figure 2. Block diagram of a hypothetical Bitcoin mixing service

Bob, as she transferred 3 bitcoins to it. The fact that outputs
belonging to both Bob1 and Bob2 are referenced as inputs
in the same transaction t3 could be interpreted as evidence
that Bob1 and Bob2 belong to the same person. Hence, Alice
can say with high certainty that also Bob2 is owned by Bob.
Moreover, the fact that a transaction usually has two outputs –
the actual output and the change – suggests that one of t3’s
outputs belongs to the same person who owns Bob1 and Bob2.
As bitcoins from two addresses have been combined to finance
a larger output of 4 bitcoins, chances are good that the small
output of only 1 bitcoin is the change. Hence, Alice may
conclude that also Bob3 belongs to Bob.

This simple example demonstrates that context information
may be useful to reason about identities behind Bitcoin
addresses. More comprehensive attempts to identify users have
been undertaken in [12], [13]. Hence, it is wrong to state that
Bitcoin is an anonymous digital currency. As a consequence,
services offering more anonymous transactions are proliferating
in the Bitcoin ecosystem. They are often referred to as mixing
services.

The idea of such a service can be sketched as follows (cf.
Figure 2). Suppose Alice, Bob, and Charlie all have 1 bitcoin at
addresses Alice1, Bob1, and Charlie1. They all fear they have
been identified and prefer to use a mixing service. Each of them
generates a new address (Alice2, Bob2, and Charlie2), sends
the bitcoin to an address of the service, and asks the service
to send a bitcoin to their respective new address. The service
has now 3 bitcoins at three addresses: Mix1, Mix2, and Mix3.
Alice, Bob, and Charlie do not care which address the mixing
service uses to send a bitcoin back. Hence, the service may
choose them at random. As long as it keeps this information
private, no external observer can know the persons behind
addresses after mixing, even if the observer knew them before
mixing. Given a particular person, e. g., Alice, all addresses
Alice2, Bob2, and Charlie2 appear equally likely.

Currently, a number of different mixing services for bitcoins
exist. As they disguise the origin of bitcoins, they can be
perceived as money laundering tools. Also, suggestive names
such as “BitLaundry” indicate the application scenarios the
service operators have in mind. The primary motivation for
providing these services is making profit. Hence, they send
back to their users only what has been payed in minus a fee.

Pre-publication copy. To appear in the proceedings of the 2013 eCrime Researchers Summit (eCrime) published by IEEE.
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Table II
TRANSACTIONS RECORDED IN THE BLOCKCHAIN.INFO SEND SHARED EXPERIMENT

Time Type Value Unique transaction ID (hash value)

t17 2013-05-27 16:09 In 0.40012345 c8536ce1809f296d9ed82c37a406a5cb01b63c780aa5b76324a2f26c1a7063cd
t18 2013-05-27 16:15 Out 0.39713345 7fa8bf0c9c346a3e1b57ce15409473693427411729ac5664487ce6f811016517
t19 2013-05-27 16:18 In 0.21212121 e72bf981bdf893a0acf55f9c54cab361c476a2bdf131d5127cc03ce105e79702
t20 2013-05-28 15:55 In 0.41 10ce8832084bb1625d180d71eafc79cdea46c24dd647e44e2a50c9309182892d
t21 2013-05-28 16:15 Out 0.2 c70237e203a5d3d70d1b92ced9253240810228e7b947ac73afc4e75ab34393e1
t22 2013-05-28 16:17 Out 0.2 6c4c0a974999c0f83fc2f4a581da223d3cc26f7b2eacccc85ebcf5a302e18f90
t23 2013-05-28 16:19 Out 0.2 b45d9a2a45c9985a9e1236aaff70d6865c562c2d7184303ebadb4303c8246d2c
t24 2013-05-28 20:02 In 0.63 c2319a47c5811aaa00575343030e80b31fa482f243b297a650dfc8b12b6b660e
t25 2013-05-28 20:05 Out 0.21 a3b0226c4fb44bbf0829c0be13b4dd4613daa517dd0c3616c651c04a3c06f43b
t26 2013-05-28 20:08 Out 0.21 f5c3c844d9c1b7f48c45826059df7608af532d3528e05b60d9fd28c2aca3b78e
t27 2013-05-28 20:13 Out 0.21992121 aab4d3d66f4a08c713e71becdd3c28cf9bf8fb34a29bf5f8d96dceb26bdecbe5
t28 2013-05-28 20:52 In 0.5 1fca72c0fe447c35a5db1cc6381cc9fde7439847354b01de773053e413ae9404
t29 2013-05-28 20:55 Out 0.204191 d0cf1c9fdcd2e4ac3e0421e8bd5f81ce85a1ed1e7ebc6cb78980e4c0b52b9e4b
t30 2013-05-28 20:57 Out 0.203799 985bd5a528e2992820f5a5a1b64d537b518e29dabd40651662e5fbe09b8caf49
t31 2013-05-28 21:07 In 0.6 b12e7bb024ab1a98dfe27375eb4b378cbb5e316751cee7faf5cc2c70cd5b738a
t32 2013-05-28 21:13 Out 0.2110955 4de6e9651f3801bfa110dce3e1c3d01c129dcfc87ad098909e508122014fc18f
t33 2013-05-28 21:15 Out 0.21336685 c2bd5ab1a52621684150ad3d4d087c131d9bbbd17d38d0db523da85ab5406bb2
t34 2013-05-28 21:30 Out 0.25707765 e490ad336994f2c570a5d28edc85c80316ed00f4d8cfd0a99a86a5a224ba127a

Figure 3. Partial transaction graphs of the Blockchain.info Send Shared experiment

maximum to 717.94096 BTC (94948 USD on 2013-04-26).
The average payout size is 3.8328 BTC (548 USD on 2013-04-
25) with a standard deviation of 24.5344 BTC (3510 USD on
2013-04-25) The distribution of the payout sizes is shown in
the left part of Figure 7. Most transactions have a size between
0.1 and 5 BTC, with a median of 0.80111 BTC. The large
difference between median and mean can be ascribed to a few
large transactions. As the anonymity set for large transactions
is small, it can be easier to trace those.

A week after the first experiment, we make a second
deposit of 0.31 BTC (33 USD on 2013-05-07). This time we
withdraw 0.21 BTC (23 USD on 2013-05-15), spread over two
transactions and two days. Again, we create the transaction
graph of the inbound transactions and see a long chain of
single input transactions. It originates from a transaction17 that,
similar to the communities in the first experiment, combines

17Unique transaction ID: d7cfafaba42d952fee3ec4617f07d40808bc52fd14e50
7cd7fb2e0e168d40635

Pre-publication copy. To appear in the proceedings of the 2013 eCrime Researchers Summit (eCrime) published by IEEE.
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EXCEPTIONAL 
TRANSACTIONS ANALYSIS

14 Dorit Ron, Adi Shamir

5. Reid, F., Harrigan M.: An Analysis of Anonymity in the Bitcoin System,
arXiv:1107.4524v2 [physics.soc-ph] 7 May 2012.

6. Hamacher, K., Katzenbeisser, S.: Bitcoin - An Analysis, 29 Dec 2011, http://www.
youtube.com/watch?v=hlWyTqL1hFA

7. Bitcoin’s block number 0, http://blockexplorer.com/b/0
8. Bitcoin’s block number 180,000, http://blockexplorer.com/b/180000
9. Cormen, T.H., Leiserson, C.H., Rivest, R.L., Stein, C.: Introduction to Algorithms,

Second Edition. MIT Press and McGrawHill, 2001. Chapter 21: Data structures for
Disjoint Sets, pp. 498-524.
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the most active entities in Bitcoin as listed in Table 7.[Ron & Shamir]



[Ron & Shamir]

Quantitative Analysis of the Full Bitcoin Transaction Graph 19
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ANALYSIS OF NETWORK 
PROPERTIES

containing node v. To calculate Dv we ignored the directionality of
the links; dv is the degree of node v in the undirected network.

In the initial phase C is high, fluctuating around 0:15 (see Fig. 5),
possibly a result of transactions taking place between addresses
belonging to a few enthusiasts trying out the Bitcoin system by
moving money between their own addresses. In the trading phase,
the clustering coefficient reaches a stationary value around
C&0:05, which is still higher than the clustering coefficient for
random networks with the same degree sequence
(Crand&0:0037(9)).

To explain the observed broad degree distribution, we turn to
the microscopic statistics of link formation. Most real complex
networks exhibit distributions that can be approximated by power-
laws. Preferential attachment was introduced as a possible
mechanism to explain the prevalence of this property [21].
Indeed, direct measurements confirmed that preferential attach-

ment governs the evolution of many real systems, e.g. scientific
citation networks [22–24], collaboration networks [25], social
networks [26,27] or language use [28]. In its original form,
preferential attachment describes the process when the probability
of forming a new link is proportional to the degree of the target
node [29]. In the past decade, several generalizations and
modifications of the original model were proposed, aiming to
reproduce further structural characteristics of real systems [30–
33]. Here, we investigate the nonlinear preferential attachment
model [30], where the probability that a new link connects to node
v is.

p(kv)~
ka

vP
w ka

w

, ð4Þ

Figure 4. Evolution of the Gini coefficient of the degree and the balance distributions. We observe the distinct initial phase lasting until
mid-2011. The trading phase is characterized by approximately constant coefficients.
doi:10.1371/journal.pone.0086197.g004

Figure 5. Evolution of the clustering coefficient and the out-in degree correlation coefficient. After the initial phase, both measures reach
a stationary value.
doi:10.1371/journal.pone.0086197.g005
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WHAT TO DO NOW

• http://cazabetremy.fr/Teaching/BitcoinNetwork.html

• Download the two provided networks. Choose one and load 
it with Gephi

http://cazabetremy.fr/Teaching/BitcoinNetwork.html

