BITCOIN NETWORK AND MACHINE LEARNING
 Cazabet Rémy

WHO AM I

- Rémy Cazabet
- Associate Professor (Maître de conférences)
- Université Lyon I
- LIRIS, DM2L Team (Data Mining \& Machine Learning)
- Computer Scientist => Network Scientist
- Member of IXXI, Lyon's institute of Complex Systems

SHORT NOTICE

- Launch Gephi download
- https://gephi.org/users/download/
- Course content, resources...
- http://cazabetremy.fr/Teaching/BitcoinNetwork.html

COMPLEX SYSTEMS

- Complex systems:
- Systems composed of multiple parts in interactions
- The macro level behavior of the system depends on the micro level, and reciprocally (\neq micro, macro in economics...)
- Interdisciplinary field, thought to solve the problems of the reductionist approach.
- Reductionism: to understand a system, we need to understand its parts
- Complex system: we need to understand how parts are interacting.

EXAMPLE OF CS

- Typical complex systems:
- Organisations, cities, human body, brain, ecosystems, etc.
- Brain:
- Micro level: neurons, synapses, receptors (light, sound, ...), chemicals, ...
- Macro level: Signals, synchronization, ... => Intelligence, decisions...
- Social networking platforms:
- Micro level: individuals, companies, bots, hackers, posts, communications...
- Macro level: information diffusion, patterns of activity, echo chamber/filter bubble, fake news, rich get richer phenomenon, etc.

EXAMPLE OF CS

- Economy ? (Financial) Markets ?

NETWORK SCIENCE

- Study interactions between entities at the micro level => represent interactions as a network
- Analyse this network based on tools from network science
- Vocabulary: network science \approx Complex/Social network analysis \approx Graph mining

NETWORKS

- Online social networks, e.g., Facebook, Twitter...
- Nodes: accounts
- Edges: relations (friend/follow) or interactions (wall post, like, retweet, mentions, etc.)
- Cryptocurrency
- Nodes: addresses or actors (wallet ? Set of addresses ?)
- Edges: transactions

NETWORK ANALYSIS

REFERENCES

Albert-László Barabási
NETWORK SCIENCE

Google: "network science finance" => I'm not an expert in economic networks :)

Pop-science books
 REFERENCES

Albert-László Barabási

GRAPHS \& NETWORKS

Networks often refers to real systems

- WWW,
- social network

- metabolic network.
- Language: (Network, node, link)

Graph is the mathematical representation of a network

- Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

Vertex	Edge
person	friendship
neuron	synapse
Website	hyperlink
company	ownership
gene	regulation

Types of Networks

Undirected networks

$G=(V, E)$
$(u, v) \in E \equiv(v, u) \in E$

- The directions of edges do not matter
- Interactions are possible between connected entities in both directions

The Internet: Nodes - routers, Links - physical wires

Directed networks

$$
\begin{aligned}
& G=(V, E) \\
& (u, v) \in E \not \equiv(v, u) \in E
\end{aligned}
$$

- The directions of edges matter
- Interactions are possible between connected entities only in specified directions

Citation network: Nodes - publications, Links - references

Weighted networks

$$
\begin{aligned}
& G=(V, E, w) \\
& w:(u, v) \in E \Rightarrow R
\end{aligned}
$$

- Strength of interactions are assigned by the weight of links

Social interaction network: Nodes - individuals
Links - social interactions

Bipartite network

$$
\begin{aligned}
& G=(U, V, E) \quad \text { Links }-\subseteq \\
& U \cap V=\varnothing \\
& \forall(u, v) \in E, u \in U \text { and } v \in V
\end{aligned}
$$

Multiplex and multilayer networks

$G=\left(V, E_{i}\right), i=1 \ldots M$

- Nodes can be present in multiple networks simultaneously
- These networks are connected (can influence each other) via the common nodes

[Mendez-Bermudez et al. 2017]

Temporal and evolving networks

$$
G=\left(V, E_{t}\right),(u, v, t, d) \in E_{t}
$$

t - time of interaction (u,v)
d - duration of interaction (u, v, t)

- Temporal links encode time varying interactions

$$
\begin{gathered}
G=\left(V_{t^{\prime}}, E_{t^{\prime}}\right) \\
v(t) \in V_{t^{\prime}} \\
(u, v, t) \in E_{t^{\prime}}
\end{gathered}
$$

- Dynamical nodes and links encode the evolution of the network

Mobile communication network
Nodes - individuals
Links - calls and SMS

COURSE OBJECTIVES

COURSE OBJECTIVES

- Theory:
- Learn the basics of network science and network analysis, +some machine learning/data science concepts
- Practice:
- Learn how to apply those concepts to graphs of small/medium size
- Project:
- Apply what you learnt on a subset of the bitcoin transaction network

THE BITCOINTRANSACTION NETWORK

BITCOIN

- In this class, we are not interested in:
- Cryptographic aspects
- How the blockchain works
- Governance of cryptocurrencies
- Smart contracts
- ICO
- Macro-level analysis (transaction fee evolution, market price, etc.)
- What we are interested in:
- Observing and understanding what is happening at the micro-level in one cryptocurrency (for this class, the largest one, Bitcoin) => Look under the hood !
- How what is happening at the micro-level can be connected to what we observe at the macro-level (crisis, price fluctuation, macro-indicators...)

BITCOIN - MACRO LEVEL

Bitcoins in circulation

The total number of bitcoins that have already been mined

The total size of all block headers and transactions.

Total Number of Transactions Per

The number of daily confirmed Bitcoin transactions.

Unique Addresses

The total number of unique addresses used on the Bitcoin blockchain.

Average USD market price across major bitcoin exchanges.

The average block size in MB.
Average Block Size

The total USD value of bitcoin supply in circulation.

The total USD value of trading volume on major bitcoin exchanges.

Transactions per Block
Median Transaction Confirmation Time (with fee)

The average number of transactions per block.

The median time for a transaction to be accepted into a mined block

Total Number of Transactions

Total number of transactions.

Transactions Rate

The number of Bitcoin transactions added to the mempool per second.

BITCOIN - MACRO LEVEL

- This type of aggregated data is mostly identical to data you are used to in economy
- Can be studied with time series analysis (ARIMA, ...)
- What is unique about Bitcoin:
- We have all data about all transactions done using a given currency
- We can use this information in relation with macro-level statistics
- We can use it for new type of analysis

BITCOIN - DATA

- The data we use: Content of the bitcoin blockchain
- Seen as a simple list of transactions

Transaction	From	To	Value
$\mathrm{t0}$	@l	@2	5
tl	@l	@3	2
\ldots	\ldots	\ldots	\ldots

- Bitcoin transactions are a little bit more complicated than that

BITCOIN - DATA

- You can explore it using tools such as a blockchain explorer
- E.g.: https://www.blockchain.com/explorer

Hash 7f1b409d20899c72698ae94e21541828256c7b5109f2ff6b4982316．．． $\begin{array}{lc}\text { 1FLEdjadaP9Zih2Vu4fbkY5SbyNcfu85n2 } & 0.00029891 \text { BTC 必 } \\ \text { 1NDWrhpHZouTFnB8uoRzEtxPhLZ6SLb2WQ } & 0.00450559 \text { BTC 身 } \\ \text { 199RNd2JH9snPJFYoayuy9MiAZcu36ftjB } & 0.01928015 \text { BTC 安 }\end{array}$
0.00104520 BTC
（201．776 sat／B－ 50.444 sat／WU－ 518 bytes）

Hash e04d42b758f43c93c09adcf08250e00d9c646118c2be167854c13d．．．
34UExmBatmg8HccyFn1Zi93XpkwLAeyNtb 3MGTiY83SatUbxDexxi3yDziCg6eH7Zd1v 3LTjJ7n5sf8vhLqVDFKLNYo486dmsRjo4N 3MRbeCXA1ZTA73NGZSjhiS9bTB2if42Qux 3F5HeK5iNNNHAQqVfo2CKGy53xomaUocN9 3PvLyDHFKuiPgTD6QjAD98p61FQqkDpUHP 3JFxmAqzCkCnSwJdXootcDywPBUHBUYVzi 3HzE43w3gb5sx1VQKKJTmVCyzRKTkRbaMf 3Lou9V7CqvGvAk9B6qVfV9VNMEMB7myPfi 3EN1io5CbKdKRDDod3YJGWoaiFD4dbZXmq
0.00369290 BTC 半 0.01280760 BTC 乎 0.00257434 BTC 我
 0.00245706 BTC 乎 0.00200000 BTC 娄 0.04191421 BTC 番 0.00239492 BTC 弗 0.00200000 BTC 乎 0.06100000 BTC 半

Load more inputs．．．（63 remaining）
Fee
0.01069765 BTC
（ 85.404 sat／B -40.114 sat／WU－ 12526 bytes）

16S7Dfb7oD9Cy3RNFkqKSQMMNjxYdhcqQ7
3JoNoM1NxbvYCvsbZW8jjb2K5F4cpdAwWr

UNDERSTANDING BITCOIN TRANSACTIONS

- Transactions are between m "inputs" and n "outputs"
- Each input (resp. output) is a pair (value,bitcoin address)
- inputs are necessarily outputs of previous transactions
- Unlocked by the private key of the payer

UNDERSTANDING BITCOIN TRANSACTIONS

- A user possess a private key
- A user can generate public keys (bitcoin adresses)
- Instantaneously
- At no cost
- As often as wanted
- Public key \approx lock that can be opened only by an associated private key

ILLUSTRATION

Public keys of user UI:
1
IBusVkYQvbbGbSDZNo5DfhrFeQdgKIYIVY

ILLUSTRATION

Public keys of user UI:

1
IBusVkYQvbbGbSDZNo5DfhrFeQdgKIYIVY
(I QFdbGkhiCDFF45mBHgzWUdiqv55NJbd4u

ILLUSTRATION

Public keys of user UI:
1
I BusVkYQvbbGbSDZNo5DfhrFeQdgKIYIVY
(I QFdbGkhiCDFF45mBHgzWUdiqv55NJbd4u

"Wallet" of UI:

- 9 btc
- Divided in 3 "output"
- Locked by 2 different public keys

ILLUSTRATION

ADDRESS NETWORK

- First network, node=Address
- Naive approach
- One address \neq one user!
- Node: bitcoin address (public key)
- Edge: input addresses to output addresses.
- Problem: most transactions have several inputs, several outputs
- Values?

ADDRESS NETWORK

- \# Transactions: 490 44|
- \#Transaction outputs: I 210004 (avg. 2,46)
- \# Transaction inputs I 211790 (avg. 2.47)
- \# Addresses: 933645
- \# @->@ Edges: 3014350
- Very big, hard to interpret

ACTOR NETWORK

- Transactions between "actors" of the bitcoin ecosystem
- Individuals with their own private key (e.g., using BRD, Atomic Wallet, etc.)
- Companies/organisations with their own private key
- Exchanges (e.g., Binance, CoinBase, etc.)
- Mining Pool
- etc.
- An actor has one private key, but can have many public keys/ addresses
- How to retrieve addresses belonging to the same actor?

ACTOR NETWORK

1 and 8 are inputs of the same transaction => same actor

ACTOR NETWORK

- Actor identification: find all addresses of a same user
- Currently a research question...
- Heuristics (input):
- All addresses in input of a same transaction belongs to the same person

ACTOR NETWORK

TI	T2	T3	T4	T5
@1	@2	@2	@2	@।0
@ 2	@4	@6	@7	@।
@			@8	

ACTOR NETWORK

- Actor identification: find all addresses of a same user
- Currently a research question...
- Heuristics (input):
- All addresses in input of a same transaction belongs to the same person
- Heuristics (output):
- One of the addresses in output is probably a change address, thus an address of the same user as the one in input
- But which one?

ACTOR NETWORK

ACTOR NETWORK

- Heuristics (output):
- One of the addresses in output is probably a change address, thus an address of the same user as the one in input
- But which one?
- Lower value?
- Value with the same decimal as input?
- Learn which one using machine learning and examples ?
- => A research question, not in the scope of this class.

ACTOR NETWORK

- Group of addresses => Anonymous actor
- Can we know who is this actor?
- It is enough to identify one address
- One transaction with a person/company => we know one of its addresses
- On the internet, many company/individuals provide their addresses.
- For some actors, we might infer their category
- => Miners
- => Large transactions profiles VS low transaction profiles
- Has made transactions to identified money laundering services => suspicious
- Machine learning => Automatically recognize profiles, identify similar actors, ...
- etc.

OBTAINED NETWORK

Identified nodes

- Category I
- Category 2

OBTAINED NETWORK

Identified nodes

- Category I

Category 2

ADDRESS NETWORK

- Example: 2 days (August 2\&3 2016)
- Address network
- \# Transactions: 490 44।
- \# Transaction outputs: I 210004 (avg. 2,46)
- \# Transaction inputs I 211790 (avg. 2.47)
- \# Addresses: 933645
- \# @->@ Edges: 3014350
- Actor network
- \# Clusters: 456012
- Largest clusters sizes: 20 023, 19 38।, I7 244
- \# Actor -> Actor Edges : 956347

GRAPH DESCRIPTION

DESCRIPTION OF GRAPHS

- When confronted with a graph, how to describe it?
- How to compare graphs?
-What can we say about a graph?

SIZE

- A network is composed of nodes and edges.
- Size: How many nodes and edges ? (n \& m)

Wikipedia HL	\#nodes (n)	\#edges (m)
Twitter 2015	2 M	30 M
Facebook 2015	288 M	60 B
Brain c. Elegans	1.4 B	400 B
Roads US	280	6393
Airport trafitic	2 M	2.7 M

DENSITY

$$
\text { Directed } \quad D=\frac{|E|}{|V|(|V|-1)}
$$

Defined as:

$$
\text { Undirected } \quad D=\frac{2|E|}{|V|(|V|-1)}
$$

Often more relevant: average degree ($2|\mathrm{E}|$ / |V|)

Wikipedia	\#nodes	2 M	\#edges	Density
avg. deg				
Twitter 2015	288 M	60 M	1.5×10^{-5}	30
Facebook	1.4 B	400 B	4×10^{-6}	416
Brain c.	280	6393	0,16	570
Roads Califi.	2 M	2.7 M	6×10^{-7}	46
Alrport	3 k	31 k	0,007	21

DENSITY

- It has been observed that: [Leskovec. 2006]
- When graphs increase in size, the average degree increases
- This increase is very slow
- Think of friends in a social network

Node degree

Number of connections of a node

- Undirected network

$$
\begin{aligned}
& k_{i}=A_{i 1}+A_{i 2}+\ldots+A_{i N}=\sum_{j}^{N} A_{i j} \\
& m=\frac{\sum_{i} k_{i}}{2} \quad \text { where } \quad m=|E|
\end{aligned}
$$

Node degree

Number of connections of a node

- Undirected network

$$
\begin{aligned}
& k_{i}=A_{i 1}+A_{i 2}+\ldots+A_{i N}=\sum_{j}^{N} A_{i j} \\
& m=\frac{\sum_{i} k_{i}}{2} \quad \text { where } \quad m=|E|
\end{aligned}
$$

- Directed network

In degree

$$
k_{i}^{i n}=\sum_{j}^{N} A_{i j}
$$

Out degree

$$
\langle k\rangle=\frac{1}{N} \sum_{i}^{N} k_{i}
$$

$$
k_{j}^{\text {out }}=\sum_{i}^{N} A_{i j}
$$

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	0	0	0	0	0
2	1	0	1	1	0	0	0	0	0	0
3	0	1	0	1	0	0	0	0	0	0
4	0	1	1	0	1	0	1	0	0	0
5	0	0	0	1	0	1	0	1	0	0
6	0	0	0	0	1	0	0	0	0	0
7	0	0	0	1	0	0	0	0	0	0
8	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	1
10	0	0	0	0	0	0	0	0	1	0
	1	2	3	4	5	6	7	8	9	10
				1						
1	0	1	0	0	0	0	0	0	0	0
2	1	0	1	1	0	0	0	0	0	0
3	0	1	0	1	0	0	0	0	0	0
4	0	1	1	0	1	0	1	0	0	0
5	0	0	0	1	0	1	0	1	0	0
6	0	0	0	0	1	0	0	0	0	0
7	0	0	0	1	0	0	0	0	0	0
8	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	1
10	0	0	0	0	0	0	0	0	1	0

Weighted degree: strength

- Weighted networks

The sum of the weights of links connected to node i

$$
s_{i}=w_{i l}+w_{i 2}+\ldots+w_{i N}=\Sigma_{j} w_{i j}
$$

$$
\begin{array}{lllllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 6 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 3 & 3 & 0 & 6 & 0 & 4 & 0 & 0 & 0 \\
\hline 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 3 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\
9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0
\end{array}
$$

DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

Sometimes with CDF (Cumulative Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
- A high majority of small degree nodes
- A small minority of nodes with very high degree (Hubs)
- Often modeled by a power law

DEGREE DISTRIBUTION

Power laws in empirical data (degrees and other things)

To Be or Not to Be Scale-Free

Scientists study complex networks by looking at the distribution of the number of links (or "degree") of each node.
Some experts see so-called scale-free networks everywhere. But a new study suggests greater diversity in real-world networks.

Random Network

Randomly connected networks have nodes with similar degrees. There are no (or virtually no) "hubs" nodes with many times the average number of links.

The distribution of degrees is shaped roughly like a bell curve that peaks at the network's "characteristic scale."

Twitter's Scale-Free Network

Most real-world networks of interest are not random. Some nonrandom networks have massive hubs with vastly higher degrees than other nodes.

The degrees roughly follow a power law distribution that has a "heavy tail." The distribution has no characteristic scale, making it scale-free.

f. Facebook's In-Between Network

Researchers have found that most nonrandom networks are not strictly scale-free. Many have a weak heavy tail and a rough characteristic scale.

This network has fewer and smaller hubs than in a scale-free network. The distribution of nodes has a scale and does not follow a pure power law.

Node clustering coefficient

- Measure of interconnectivity
- What fraction of neighbours of a node are connected to each other?

Global clustering coefficient
$C=\frac{3 \times \text { number of triangles }}{\text { number of connected triples of vertices }}=$
$=\quad$ number of closed triplets number of connected triples of vertices .

$C=9 / 18=1 / 2$
$\mathrm{C}_{\mathrm{u}}=(2 \times 2) /(4 \times 3)=1 / 3$

Local clustering coefficient

$$
C_{u}=\frac{2 e_{u}}{k_{u}\left(k_{u}-1\right)}
$$

- e_{u} - number of links between the neighbours of node u
- $\left(k_{u}\left(k_{u}-1\right)\right) / 2$ - maximum number of triangles

Average local clustering coefficient

$$
C=\frac{1}{N} \sum_{u} C_{u}
$$

CLUSTERING COEFFICIENT

The higher the value, the more locally dense is the network.
"Friends of my friends are my friends"
Higher in real networks than random

$\mathrm{c}=1$

$c=1 / 3$

$c=0$

CLUSTERING COEFFICIENT

- Global CC:
- Random (ER): =density: very small for large graphs
- Facebook ego-networks: 0.6

$\mathrm{c}=1$
- Twitter lists: 0.56
$c=1 / 3$
- California Road networks: 0.04

$c=0$

Path length

A path is a sequence of nodes in which each node is adjacent to the next one
$\boldsymbol{P}_{i 0, i n}$ of length \boldsymbol{n} between nodes i_{0} and i_{n} is an ordered collection of $\boldsymbol{n}+\boldsymbol{1}$ nodes and \boldsymbol{n} links

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

-A path can intersect itself and pass through the same link repeatedly. Each time a link is crossed, it is counted separately
-A legitimate path on the graph on the right:

ABCBCADEEBA

- In a directed network, the path can follow only the direction of an arrow.

Path length

Path length

- $d_{\max }$ diameter- the maximum distance between any pairs of nodes
- $\langle d\rangle$ average path length - for directed graphs

$$
\langle d\rangle=\frac{1}{N(N-1)} \sum_{i \neq j} d_{i j}
$$

- where $d_{i j}$ is the shortest distance between nodes i and j
- multiplicative is ($2 \times$ max number of links)
- distance between unconnected nodes is 0
- $\langle d\rangle$ average path length - for un-directed graphs

$$
\langle d\rangle=\frac{2}{N(N-1)} \sum_{i<j} d_{i j}
$$

- since $d_{i j}=d_{j i}$
- multiplicative is (max number of links)

The path with the shortest length between two nodes (distance).

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment)
- In fact 6 hops
- (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
- Give a (physical) mail to random people
- Ask them to send to someone they don't know - They know his city, job
- They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY:MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
- Some mails did not arrive
- Small sample
- Checked on "real" complete graphs (giant component):
- MSN messenger
- Facebook
- The world wide web

SIDE-STORY:MILGRAM EXPERIMENT

Facebook

Connectivity and components

- A connected component is a subset of vertices with at least one path connecting each of them
- A network may consist of a single connected component (a connected network) or several of those
- Distances between nodes in disjoint components are not defined (infinite)
- Bridge: if we remove it, the graph becomes disconnected.
- The adjacency matrix of a network with several components can be written in a block-diagonal form, so that nonzero elements are confined to squares, with all other elements being zero

Connectivity and components - directed networks

- Strongly connected component (SCC): has a path from each node to every other node in the component
- Weakly connected component (WCC): it is connected if we disregard the directions
- In-component: nodes that can reach the SCC
- Out-component: nodes that can be reached from SCC

Figure from Broder et. al. (2000)

k -core decomposition

Goal: To identify dense cores of high degree nodes in networks

Given graph $G=(V, E)$
Definition: A subgraph $H=(C, E / C)$ induced by the set $C \subseteq V$ is a \mathbf{k}-core or a core of order \mathbf{k} iff $\forall v \in C: \operatorname{degree}(H(v)) \geq k$, and H is the maximum subgraph with this property.

- A k-core of G can be obtained by recursively removing all the vertices of degree less than k, until all vertices in the remaining graph have at least degree k.

Definition: A vertex i has coreness \boldsymbol{c} if it belongs to the c-core but not to $(c+1)$-core .
Definition: A \boldsymbol{c}-shell is composed by all the vertices whose coreness is c. The k -core is thus the union of all shells with $c \geq k$.

TRIADS COUNTING

TRIADS COUNTING

GRAPHLETS

MATRIX PROPERTIES

- What is a Matrix?
- Not a 2D data table
- It describes a linear transformation, or linear function
- Said differently, it represents a set of equations

MATRIX PROPERTIES

$$
\begin{aligned}
& \quad \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \\
& \times \prime^{\prime} \\
& \times 2^{\prime} \\
& \times 3^{\prime} \\
& \times 3^{\prime} \\
& \times 4^{\prime} \\
& \times 5^{\prime} \\
& \times 6^{\prime} \\
& \times 6
\end{aligned}\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& x 1^{\prime}=0 x_{1}+1 x_{2}+0 x_{3}+0 x_{4}+1 x_{5}+0 x_{6} \\
& x 2^{\prime}=x_{1}+x_{3}+x_{5} \\
& x 3^{\prime}=x_{2}+x_{4} \\
&
\end{aligned}
$$

MATRIX PROPERTIES

$$
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{5} \\
x_{5}
\end{array}\right)
$$

$$
\boldsymbol{A}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{2}+x_{4} \\
x_{1}+x_{3}+x_{5} \\
x_{2}+x_{4} \\
x_{3}+x_{5}+x_{6} \\
x_{1}+x_{2}+x_{4} \\
x_{4}
\end{array}\right)
$$

$A, A x=$

MATRIX PROPERTIES

- Question: What is the result of $A x$ if
- $x \mid=\times 2=\times 3=\times 4=\times 5=\times 6=1$?

MATRIX PROPERTIES

- Question:What is the result of $A x$ if
- $x 1=\times 2=\times 3=\times 4=\times 5=\times 6=1$?
- $=>$ New values are degrees

MATRIX PROPERTIES

- What about A^{2} ?
- A encodes the number of paths of lengths exactly I between pairs of nodes
- A^{2} encodes the number of paths of lengths exactly $\mathbf{2}$ between pairs of nodes
- A^{3} encodes the number of paths of lengths exactly $\mathbf{3}$ between pairs of nodes
- ...
- Graph matrices operations can be interpreted as:
- Diffusion phenomenons
- Random walks

EXEMPLE OF GRAPH ANALYSIS

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 20 I I]
- The Facebook friendship network in 2011

EXEMPLE OF GRAPH ANALYSIS

- 72 IM users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average \# friends)
- Median degree: 99
- Connected component: 99.9।\%

EXEMPLE OF GRAPH ANALYSIS

Component size
 Distribution

EXEMPLE OF GRAPH ANALYSIS

Cumulative
Degree distribution

EXEMPLE OF GRAPH ANALYSIS

Clustering coefficient By degree

Median user: 0.14:
14% of users with a common friend are friends

EXEMPLE OF GRAPH ANALYSIS

My friends have more Friends than me!

Many of my friends have the Same \# of friends than me!

EXEMPLE OF GRAPH ANALYSIS

Age homophily

EXEMPLE OF GRAPH ANALYSIS

Country similarity
84.2\% percent of edges are within countries
(More in the community detection class)

NEXT CLASSES

- I) Describe a network
- 2) Find and describe important nodes
-3)Find and describe important group of nodes
- And a few more things

PROJECT PRESENTATION

PROJECT OBJECTIVE

- We have in a database all transactions between addresses and all transactions between actors from the beginning of bitcoin to August 2016
- Choose and obtain a small subset of this network that you consider interesting
- Around a particular transaction (illegal activity ...)
- About some actors
- About a short period

PROJECT OBJECTIVE

- Apply tools your learned about during the class to better understand this network
- Write a report about what you learnt, and what you could learn with more time/data
- If possible, a single Jupyter notebook with code and text
- A separate report is also possible if relevant

PROJECT OBJECTIVE

- Recommendations:
- I recommend to limit yourself to a few thousand nodes, and less than 10.000 edges
- The goal of the project is to interact!
- Ask me if something is possible, how to do it... we are doing the project together.

SOME IDEAS

EGO-CENTERED NETWORK

- Wikileaks

Green in the center : wikileaks

A BITCOINTHEFT

MONEY LAUNDERING

Figure 1. Example of a partial transaction graph

Figure 2. Block diagram of a hypothetical Bitcoin mixing service

[Möser \& Böhme]

MONEY LAUNDERING

[Möser \& Böhme]

EXCEPTIONAL

 TRANSACTIONS ANALYSIS

 TRANSACTIONS ANALYSIS}

[Ron \& Shamir]

ANALYSIS OF NETWORK PROPERTIES

[Kondor et al]

WHATTO DO NOW

- http://cazabetremy.fr/Teaching/BitcoinNetwork.html
- Download the two provided networks. Choose one and load it with Gephi

