Asses node importance:
Centrality measures



NODE

* We can measure nodes importance using so-called
centrality.

* Bad term: nothing to do with being central in general

» Usage:
» Some centralities have straightforward interpretation

» Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)



Connectivity

centrality measures



INODE DEGREE

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

A

» But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

1SN



NODE CLUS TERING
EOEFHICIERNES

- Clustering coefficient: closed triangles/triads
» lells you If the neighbors of the node are connected

e Be carefull

» Degree 2:value O or |
» Degree 1000: Not O or | (usually)
» Ranking them is not meaningful

» Can be used as a proxy for “communities’” belonging:

» |f node belong to single group: high CC
» |f node belong to several groups: lower CC



RECURSIVE DEFINITIONS

* Recursive importance:
» Important nodes are those connected to important nodes

e Several centralities based on this idea:

» Eigenvector centrality
» PageRank
» Katz centrality

270 S



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» |f every node “sends’ its score to its neighbors, the sum of all scores received
oy each node will be equal to its original score

x§t+1) o ZAzng-t)

yel

X; Is the centrality of node 1.

A;; = if there is an edge, O otherwise



RECURSIVE DEFINITION

* [ his problem can be solved by what Is called the power
method: S _ 4,00
» |) We initialize all scores to random values =l

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!?

» Perron-Frobenius theorem for real and irreducible square matrices wrth non-
negative entries

» =>True for undirected graphs with a single connected component



CIGENVECTOR CENTRALITY

* What we just described is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a vector of size n, which can be interpreted as the scores of nodes

» Ax yield a new vector of size n, which corresponds for each node to receive the
sum of the scores of its neighbors (like in the power method)

» The equality means that the new scores are proportional to the previous scores

* What Perron-rrobenius algorithm says Is that the power
method will always converge to the leading eigenvector, 1.e., the
elgenvector associated with the highest eigenvalue



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) A b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f/\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree) — —

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-"[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[..], we expect that advertising funded search engines will be inherently
biased towards the advertisers and away from the needs of the
consumers.’



PAGERANK

* 2 main Improvements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node

» Nodes with very high centralities give very high centralities to all their neighbors
(even If that Is their only in-coming link)

- =>What each node "is worth" Is divided equally among its neighbors (normalization by the
degree)

x§t+1) £ Z Aij$§-t) = 15y = (@ ZA"J kout

With by convention =1 and a a parameter (usually 0.85)



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk
process with restart

Teleportation probability: the parameter a gives the probability that in the next step of
the RW will follow edges of the graph, or with probability /-a it will jump to a random
node

- If a<l, it assures that the RW will never be stuck at nodes with ko«:=0, but it can
restart the RW from a randomly selected other node



AT Z CENTRALTESE

Katz centrality of node 1=



AT Z CENTRALTESE

™ }

Repeat for all distances as long
As possible (convergence)



AT Z CENTRALTESE

Sum for each node }



AT Z CENTRALTESE

Alpha Is a parameter.
[ts strength decreases at
each rteration (Increased distance)



AT Z CENTRALTESE

Number of differaths from I to }
of length k



AT Z CENTRALTESE

Sum of paths to all other nodes at each
distance multiplied by a factor decreasing
with distance




Katz Centrality

It measures the relative degree of influence of a node within a network

oo N
; k 7 connected
CKatz(l) — E E a (A )l] pairs of nodes

in distance k
k=1 j=1

attenuation factor to
penalise influence
by distance

- Attenuation factor oo must be smaller than 1//44/,1.e.
the reciprocal of the absolute value of the largest
eigenvalue of A.

Matrix form:

Cu. = (U —aATy ' — DT

- where [ is the identity matrix, and I is the identity vector

- Katz centrality is useful for directed networks (citation nets, WWW) where
Eigenvector centrality fails



Geometric
centrality measures



EEOSENESS CENTRALHSS

C (i) n—1
c\l) =
zdl-j<oo dl“
- Farness: average of length of shortest paths to all other

nodes.

- Closeness: inverse of the Farness (normalized by number of

nodes)

» Highest closeness = More central
» Closness=|: directly connected to all other nodes

* Well defined only on connected networks



EEOSENESS CENTRALHSS

Z d;j<oo dij

(22—, S
¢ p-adX
T C )

, 12 -1 11
C.,(i) = = —i=1055
Bx1+7%x2+1x%x3) 20

Ccl(i) =




EEOSENESS CENTRALHSS
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Betweenness Centrality

Assumption: important vertices are bridges over which information flows

Practically: if information spreads via shortest paths, important nodes are found on many

shortest paths

Notation: 0,(i) = number of geodesic path from jtokviai:j— ... > i — ..

oy = humber of geodesic path from jto k:j — ... =k

Definition:

C.(i) Z #{geodesicpath:j— ... =i > ... = k} Z o (1)
=
/ #{geodesic path: j - ... - k}

j#k

Normalised definition:

1 o o)
Cl)=—= Y = where ¢, € [0,1]

Total number of ordered vertex pairs

.=k



Betweenness Centrality

Zachary’s karate club network

. 1 0 (1)
C,(1) = o 2 / where C, € [0,1]
ke Ok

. 78
=
Z 144

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity betweenness



BE [ WEENNESS CENTRALITY

12495980 - 19088726
19088726 - 27886000

D 27886000 - 43568276

7638822 - 12495980

Amsterdam Betweenness no limit
4393830 - 7638822

Betweennes
B 111707392 - 206674924

B 43568276 - 65663810
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BE T WEENNESS

& Can you guess the node/edge
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Which i1s which?
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Betweenness
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Similarity
measures




Node similarity

Similarity between nodes based on their neighborhood

How much two nodes are similarly connected

- What does it mean that they have 3 neighbours in common?

- |t is relative to their degree (different meaning for nodes with 3 or 100 neighbours)

=Normalisation to penalise nodes with small degrees
We can define it using existing measures:
- Cosine Similarity

- Pearson Coefficient



Cosine similarity

Cosine similarity between two non-zero vectors: Number of common neighbours:

r-Y Nij = Z Aik Ak

cos 0 =

Vectors are the rows of adjacency matrix
2k AikAky
2 2
\/Zk Az‘k \/Zk Ajk

0;; = cost =

Number of common

neighbours

normalised by the
Dx AikAr; iy geometric mean of

Cosine similarity: o;; = —
4 Y V Kik; \/ kik; | their degrees




Pearson coefficient

Correlation between rows of the adjacency matrix
GOV D (Aik — (Ai)) (Aji — (4;))
F oo VLA — (AP VA = (4)))°

cov: covariance, expected product of deviations from individual expected values
o. std deviation, square root of the expected squared deviation from the mean

Intuition, numerator: Number of common neighbours compared to the
expected number of common neighbours

D (A — (AN(Ak = (4) = T Apdy - N

)
3 n

Properties
 r(i,j)=0 - if the number of common neighbours exactly as many as we

would expect by chance
 r(i,j)>0 - if nodes have more neighbours in common than expected

* r(i,j)<0 - if nodes have fewer neighbours in common than expected



Homophily - Assortative mixing

"birds of a feather flock together"

« Property of (social) networks that nodes with similar properties tends to be connected
with a higher probability than expected

- |t appears as correlation between vertex properties of x(i) and x(j) if (i,j)EE

Vertex properties

- age

* gender

 nationality

- political beliefs

* socioeconomic status
- habitual place

« oObesity .

- Homophily can be a link creation mechanism
or consequence of social influence (and it is

Hig?]school network

d|ff|CU|t tO dlStII‘]QUISh) colored by race (J Moody)

? Connected people of the same political opinion are connected because they were a priori similar
(homophily) or they become similar after they become connected (social influence)?



Homophily - Assortative mixing

Dissasortative mixing

- Contrary of homophily, where dissimilar nodes are tend to be connected

Examples

2o
- Sexual networks .,
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Homophily - Assortative mixing

To quantify homophily

D .iCii

Discrete properties

a;b;

e

women
black  hispanic white other a;
black | 0.258 0.016 0.035 0.013 | 0.323
& | hispanic | 0.012 0.157 0.058 0.019 | 0.247
g white | 0.013 0.023 0.306 0.035 | 0.377
other | 0.005 0.007 0.024 0.016 | 0.053
b; | 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix e;; and the values of a; and
h; for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

No assortative mixing :

Per

=0 (e;; = a;b;)
Perfectly assortat
ectly disassortative: - | <r<(

eie=—1

-y,

a;b;



Homophily - Assortative mixing

To quantify homophily Scalar properties
O Pearson correlation coefficient of properties
' ' at both extremities of edges
£ 301 S - | ey fraction of edges joining nodes with values x and y
:120 20 — l. d‘.--:'f"" .;_::' . '_ ) . B Ty Y x
N ny xy(efﬂy R afl?by)
" 1 T )
1010'"'2|0'"'3|0'H'4|0'”'5|0H Ta0b
age of husband [years| with o, standard deviation of a,

r=0, no assortative mixing,
>0 assortative mixing,
r<0 disassortative mixing



Degree-degree correlation

« A particular type of application is the degree correlation:

« Are important nodes connected to other important nodes with a higher probability than

expected?

« The degree can be used as any other scalar property

social <

technological <

biological <

network type size n | assortativity r | error o,
physics coauthorship undirected 52 909 0.363 0.002
biology coauthorship undirected | 1520251 0.127 0.0004
mathematics coauthorship | undirected 253 339 0.120 0.002
film actor collaborations undirected 449913 0.208 0.0002
company directors undirected 7673 0.276 0.004
student relationships undirected 573 —0.029 0.037
email address books directed 16 881 0.092 0.004
power grid undirected 4941 —0.003 0.013
Internet undirected 10 697 —0.189 0.002
World-Wide Web directed 269 504 —0.067 0.0002
software dependencies directed 3162 —0.016 0.020
protein interactions undirected 2115 —0.156 0.010
metabolic network undirected 765 —0.240 0.007
neural network directed 307 —0.226 0.016
marine food web directed 134 —0.263 0.037
freshwater food web directed 92 —0.326 0.031

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



Rich-club coefficient

* How well connected are the well connected among themselves

¢ (k) =

2E>k

It is calculated on a list of node degree sorted in ascendant order as

N_(N.y—1)

N-x denotes the number of nodes with degree k or larger than k
E-x measures the number of links between them
Results are usually compared to random references

- configuration model of equivalent synthetic network

- configuration model of the empirical network

ratio @()rig/@rand
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NE TWORKVISUALISATION



NETWORKVISUALIZATION

* How to interpret a network drawing?
* What does the position of nodes means!?

» Can we draw conclusion from the drawing alone?



NETWORKVISUALIZATION

Network Visualization  » Tow
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NETWORKVISUALIZATION

» Random layout

» Assign random positions to nodes, draw edges
- Useless for more than 5-6 nodes

» Geographical layout

» The position of nodes is fixed apriori, often based on geographical location
» Variant: position nodes on a circle based on a single, | D property (age...)




NETWORKVISUALIZATION

* Most commonly used: Automatic layout

» Non deterministic

» Iries to arrange nodes so that the network is easy to read and understand
- Minimize edge crossings!
- Most commonly, tries to put connected nodes close and unconnected nodes far




NETWORKVISUALIZATION

http://kwonoh.net/dsl/
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http://kwonoh.net/dgl/

NETWORKVISUALIZATION

* Most common algorithms are variant of the force directed

layout

» Kamada-Kawal
» Fruchterman-Reingold

s

* Force directed layout: a simple physical model

» Repulsive forces between nodes

» Edges are attracting forces

» There are minimal (to avoid node overlap) and maximal (to avoid connected
component drifting out of the figure) distances



NETWORKVISUALIZATION

» Can we Interpret a force layout!
o s

M 2BIO1 W MP W PC

e W 28102 B MP*1 [ PC*
Political Blogs 28103 @ MP<2 M PSI*

Liberals ;
? Conservatives

2004 United States Presidential Election Network

— —

(a) Contact Network (b) Friendship Network (c) Facebook Relationships*

L —— N



NETWORKVISUALIZATION

» Can we Interpret a force layout!
s
» And no.
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NETWORKVISUALIZATION

» Can we Interpret a force layout!

» Yes...
» And no.

A &




WHAI 10O DO NOW

» http://cazabetremy.ir/ Teaching/BitcoinNetwork.html

* Download the two provided networks. Choose one and load
it with Gephi



http://cazabetremy.fr/Teaching/BitcoinNetwork.html

