
Asses node importance: 
Centrality measures



NODE

• We can measure nodes importance using so-called 
centrality. 

• Bad term: nothing to do with being central in general

• Usage:
‣ Some centralities have straightforward interpretation
‣ Centralities can be used as node features for machine learning on graph

- (Classification, link prediction, …)



Connectivity
based

centrality measures



NODE DEGREE

• Degree: how many neighbors

• Often enough to find important nodes
‣ Main characters of a series talk with the more people
‣ Largest airports have the most connections
‣ …

• But not always
‣ Facebook users with the most friends are spam
‣ Webpages/wikipedia pages with most links are simple lists of references
‣ …



NODE CLUSTERING 
COEFFICIENT

• Clustering coefficient: closed triangles/triads

• Tells you if the neighbors of the node are connected

• Be careful! 
‣ Degree 2: value 0 or 1
‣ Degree 1000: Not 0 or 1 (usually)
‣ Ranking them is not meaningful 

• Can be used as a proxy for “communities” belonging:
‣ If node belong to single group: high CC
‣ If node belong to several groups: lower CC



RECURSIVE DEFINITIONS

• Recursive importance:
‣ Important nodes are those connected to important nodes

• Several centralities based on this idea:
‣ Eigenvector centrality
‣ PageRank
‣ Katz centrality
‣ …



RECURSIVE DEFINITION

• We would like scores such as :
‣ Each node has a score (centrality), 
‣ If every node “sends” its score to its neighbors, the sum of all scores received 

by each node will be equal to its original score

and PageRank. Other popular versions are the Katz centrality and hub/authority scores, which we
will not cover here.

Eigenvector centrality

Taking the recursive idea about importance at face value, we may write down the following equation:

x(t+1)
i =

n
∑

j=1

Aijx
(t)
j , (1)

where Aij is an element of the adjacency matrix (and thus selects contributions to i’s importance

based on whether i and j are connected), and with the initial condition x(0)i = 1 for all i.

This formulation is a model in which each vertex “votes” for the importance of its neighbors by
transferring some of its importance to them. By iterating the equation, with the iteration number
indexed by t, importance flows across the network. However, this equation by itself will not pro-
duce useful importance estimates because the values xi increase with t. But, absolute values are
not of interest themselves, and relative values may be derived by normalizing at any (or every) step.4

Applying this method to the karate club for different choices of t yields the following table. Notice
that by the t = 15th iteration, the vector x has essentially stopped changing, indicating convergence
on a fixed point. (Convergence here is particularly fast in part because the network has a small
diameter.)

vertex x(1) x(5) x(10) x(15) x(20) degree, k
1 0.103 0.076 0.071 0.071 0.071 16
2 0.058 0.055 0.053 0.053 0.053 9
3 0.064 0.065 0.064 0.064 0.064 10
4 0.038 0.043 0.042 0.042 0.042 6
5 0.019 0.015 0.015 0.015 0.015 3
6 0.026 0.016 0.016 0.016 0.016 4
7 0.026 0.016 0.016 0.016 0.016 4
8 0.026 0.034 0.034 0.034 0.034 4
9 0.032 0.044 0.046 0.046 0.046 5
10 0.013 0.020 0.021 0.021 0.021 2
11 0.019 0.015 0.015 0.015 0.015 3
12 0.006 0.010 0.011 0.011 0.011 1
13 0.013 0.017 0.017 0.017 0.017 2
14 0.032 0.044 0.046 0.045 0.045 5
15 0.013 0.019 0.021 0.020 0.020 2
16 0.013 0.019 0.021 0.020 0.020 2
17 0.013 0.005 0.005 0.005 0.005 2
18 0.013 0.018 0.019 0.019 0.019 2
19 0.013 0.019 0.021 0.020 0.020 2
20 0.019 0.028 0.030 0.030 0.030 3
21 0.013 0.019 0.021 0.020 0.020 2
22 0.013 0.018 0.019 0.019 0.019 2
23 0.013 0.019 0.021 0.020 0.020 2
24 0.032 0.029 0.030 0.030 0.030 5
25 0.019 0.012 0.011 0.011 0.011 3
26 0.019 0.013 0.012 0.012 0.012 3
27 0.013 0.015 0.015 0.015 0.015 2
28 0.026 0.026 0.027 0.027 0.027 4
29 0.019 0.026 0.026 0.026 0.026 3
30 0.026 0.026 0.027 0.027 0.027 4
31 0.026 0.034 0.035 0.035 0.035 4
32 0.038 0.037 0.039 0.038 0.038 6
33 0.077 0.066 0.062 0.062 0.062 12
34 0.109 0.082 0.074 0.075 0.075 17

Illustrating the close relationship between degree and eigenvector centrality, the centrality scores
here are larger among the high-degree vertices, e.g., 1, 34, 33, 3 and 2.

4Large values of t will tend to produce overflow errors in most matrix computations, and thus normalizing is a
necessary component of a complete calculation.
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 is the centrality of node i.
 =1 if there is an edge, 0 otherwise

xi
Aij



RECURSIVE DEFINITION

• This problem can be solved by what is called the power 
method:
‣ 1) We initialize all scores to random values
‣ 2)Each score is updated according to the desired rule, until reaching a stable 

point (after normalization)

• Why does it converge?
‣ Perron-Frobenius theorem for real and irreducible square matrices with non-

negative entries
‣ =>True for undirected graphs with a single connected component

and PageRank. Other popular versions are the Katz centrality and hub/authority scores, which we
will not cover here.
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EIGENVECTOR CENTRALITY
• What we just described is called the Eigenvector centrality

• A couple eigenvector ( ) and eigenvalue ( ) is defined by the 
following relation: 
‣  is a vector of size n, which can be interpreted as the scores of nodes
‣  yield a new vector of size n, which corresponds for each node to receive the 

sum of the scores of its neighbors (like in the power method)
‣ The equality means that the new scores are proportional to the previous scores

• What Perron-Frobenius algorithm says is that the power 
method will always converge to the leading eigenvector, i.e., the 
eigenvector associated with the highest eigenvalue

x λ
Ax = λx

x
Ax



Eigenvector Centrality
Some problems in case of directed network:
• Adjacency matrix is asymmetric
• 2 sets of eigenvectors (Left & Right)
• 2 leading eigenvectors 

• Use right eigenvectors : consider nodes that 
are pointing towards you 

17

Eigenvector centrality — Bonacich centrality 
I am important if my friends are important too

Vertex A is connected but 
has only outgoing link 
= Its centrality will be 0 

Vertex B has outgoing and 
ingoing 

But Ingoing comes from A 
= Its centrality will be 0 

Only in strongly connected component 

Acyclic networks (citation network) do not have strongly connected 
component 

-Vertex A is connected but has only outgoing link = Its centrality will be 0 

-Vertex B has outgoing and an incoming link, but incoming link comes from A 
= Its centrality will be 0 
-etc.

But problem with source nodes (0 in-degree)

Solution: Only in strongly connected component 
Note: Acyclic networks (citation network) do not have strongly connected component 



PageRank Centrality
• Eigenvector centrality generalised for directed networks

PageRank
The Anatomy of a Large-Scale Hypertextual Web Search Engine!

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International 
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.!

Wednesday, November 14, 12
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Wednesday, November 14, 12



PageRank Centrality
(Side notes)

-“We chose our system name, Google, because it 
is a common spelling of googol, or  and fits well with our goal of building very large-
scale search “

10100

-“[…] at the same time, search engines have migrated from the academic domain to the 
commercial. Up until now most search engine development has gone on at 
companies with little publication of technical details. This causes search 
engine technology to remain largely a black art and to be advertising 
oriented (see Appendix A). With Google, we have a strong goal to push 
more development and understanding into the academic realm.”

-“[...], we expect that advertising funded search engines will be inherently 
biased towards the advertisers and away from the needs of the 
consumers."



PAGERANK

• 2 main improvements over eigenvector centrality: 
‣ In directed networks, problem of source nodes

-  => Add a constant centrality gain for every node
‣ Nodes with very high centralities give very high centralities to all their neighbors 

(even if that is their only in-coming link)
- => What each node “is worth” is divided equally among its neighbors (normalization by the 

degree)

PageRank

PageRank is another kind of eigenvector centrality,7 but which has some nicer features than the
Bonacich (and Katz) definitions. In particular, the classic eigenvector centrality performs poorly
when applied to directed networks. In general, centralities will be zero for all vertices not within a
strongly connected component, even if those vertices have high in-degree. Moreover, in an directed
acyclic graph, there are no strongly connected components larger than a single vertex, and thus
only vertices with no out-going edges (kout = 0) will have non-zero centrality. These are not desir-
able behaviors for a centrality score.

PageRank solves these problems by adding two features to our vertex voting model. First, it assigns
every vertex a small amount of centrality regardless of its network position. This eliminates the
problems caused by vertices with zero in-degree—who have no other way of gaining any centrality—
and allows them to contribute to the centrality of vertices they link to. As a result, vertices with
high in-degree will tend to have higher centrality as a result of being linked to, regardless of whether
those neighbors themselves have any links to them. Second, it divides the centrality contribution
of a vertex by its out-degree. This eliminates the problematic situation in which a large number
of vertex centralities are increased merely because they are pointed to by a single high-centrality
vertex.

Mathematically, the addition of these features modifies Eq. (1) to become

xi = α
n
∑

j=1

Aij
xj
koutj

+ β , (3)

where α and β are positive constants. The first term represents the contribution from the classic
(Bonacich) eigenvector centrality, while the second is the “free” or uniform centrality that every
vertex receives. The value of β is a simple scaling constant and thus by convention we will choose
β = 1; as a result, α alone scales the relative contributions of the eigenvector and uniform centrality
components. Further, we must choose a resolution method for the case of kout = 0, which would
result in a divide-by-zero in the calculation. This problem is solved by artificially simply setting
kout = 1 for each such vertex.

As a matrix formulation, PageRank is equivalent to

x = αAD−1x+ β1 (4)

= D(D− αA)−11 , (5)

where D is a diagonal matrix with Dii = max(kouti , 1), as described above, and where we have set
β = 1.

7PageRank is usually attributed to S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search
engine.” Computer Networks and ISDN Systems 30, 107–117 (1998). However, as is often the case with good ideas,
it has been reinvented a number of times, and PageRank is, arguably, one of these reinventions. The idea of using
eigenvectors in a manner very similar to PageRank goes back as least as far as G. Pinski and F. Narin, “Citation
influence for journal aggregates of scientific publications: Theory, with application to the literature of physics.”
Information Processing & Management 12(5): 297–312 (1976), but may even go back further than that.
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and PageRank. Other popular versions are the Katz centrality and hub/authority scores, which we
will not cover here.

Eigenvector centrality

Taking the recursive idea about importance at face value, we may write down the following equation:

x(t+1)
i =

n
∑

j=1

Aijx
(t)
j , (1)

where Aij is an element of the adjacency matrix (and thus selects contributions to i’s importance

based on whether i and j are connected), and with the initial condition x(0)i = 1 for all i.

This formulation is a model in which each vertex “votes” for the importance of its neighbors by
transferring some of its importance to them. By iterating the equation, with the iteration number
indexed by t, importance flows across the network. However, this equation by itself will not pro-
duce useful importance estimates because the values xi increase with t. But, absolute values are
not of interest themselves, and relative values may be derived by normalizing at any (or every) step.4

Applying this method to the karate club for different choices of t yields the following table. Notice
that by the t = 15th iteration, the vector x has essentially stopped changing, indicating convergence
on a fixed point. (Convergence here is particularly fast in part because the network has a small
diameter.)

vertex x(1) x(5) x(10) x(15) x(20) degree, k
1 0.103 0.076 0.071 0.071 0.071 16
2 0.058 0.055 0.053 0.053 0.053 9
3 0.064 0.065 0.064 0.064 0.064 10
4 0.038 0.043 0.042 0.042 0.042 6
5 0.019 0.015 0.015 0.015 0.015 3
6 0.026 0.016 0.016 0.016 0.016 4
7 0.026 0.016 0.016 0.016 0.016 4
8 0.026 0.034 0.034 0.034 0.034 4
9 0.032 0.044 0.046 0.046 0.046 5
10 0.013 0.020 0.021 0.021 0.021 2
11 0.019 0.015 0.015 0.015 0.015 3
12 0.006 0.010 0.011 0.011 0.011 1
13 0.013 0.017 0.017 0.017 0.017 2
14 0.032 0.044 0.046 0.045 0.045 5
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18 0.013 0.018 0.019 0.019 0.019 2
19 0.013 0.019 0.021 0.020 0.020 2
20 0.019 0.028 0.030 0.030 0.030 3
21 0.013 0.019 0.021 0.020 0.020 2
22 0.013 0.018 0.019 0.019 0.019 2
23 0.013 0.019 0.021 0.020 0.020 2
24 0.032 0.029 0.030 0.030 0.030 5
25 0.019 0.012 0.011 0.011 0.011 3
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Illustrating the close relationship between degree and eigenvector centrality, the centrality scores
here are larger among the high-degree vertices, e.g., 1, 34, 33, 3 and 2.

4Large values of t will tend to produce overflow errors in most matrix computations, and thus normalizing is a
necessary component of a complete calculation.
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=>

With by convention =1 and  a parameter (usually 0.85)β α



PageRank - as Random Walk
Main idea: The PageRank computation can be interpreted as a Random Walk 
process with restart

Teleportation probability: the parameter α gives the probability that in the next step of 
the RW will follow edges of the graph, or with probability 1-α it will jump to a random 
node

• If α<1, it assures that the RW will never be stuck at nodes with kout=0, but it can 
restart the RW from a randomly selected other node



KATZ CENTRALITY

Katz centrality of node i=



KATZ CENTRALITY

Repeat for all distances as long 
As possible (convergence)



KATZ CENTRALITY

Sum for each node j



KATZ CENTRALITY

Alpha is a parameter.
Its strength decreases at 

each iteration (increased distance)



KATZ CENTRALITY

Number of different paths from i to j
of length k  



KATZ CENTRALITY

Sum of paths to all other nodes at each 
distance multiplied by a factor decreasing 

with distance



Katz Centrality
It measures the relative degree of influence of a node within a network

CKatz(i) =
∞

∑
k=1

N

∑
j=1

αk(Ak)ij
connected 
pairs of nodes 
in distance k

attenuation factor to 
penalise influence 
by distance

• Attenuation factor α must be smaller than 1/|λ0|, i.e. 
the reciprocal of the absolute value of the largest 
eigenvalue of A.

⃗C Katz = ((I − αAT)−1 − I) ⃗I

Matrix form:

• where     is the identity matrix, and     is the identity vector
• Katz centrality is useful for directed networks (citation nets, WWW) where 

Eigenvector centrality fails

I ⃗I



Geometric
centrality measures



CLOSENESS CENTRALITY

• Farness: average of length of shortest paths to all other 
nodes.

• Closeness: inverse of the Farness (normalized by number of 
nodes)
‣ Highest closeness = More central
‣ Closness=1: directly connected to all other nodes

• Well defined only on connected networks

Ccl(i) =
n − 1

∑dij<∞ dij



CLOSENESS CENTRALITY
Ccl(i) =

n − 1
∑dij<∞ dij
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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CLOSENESS CENTRALITY



Betweenness Centrality
Assumption: important vertices are bridges over which information flows

Practically: if information spreads via shortest paths, important nodes are found on many 
shortest paths

Notation: σjk(i) = number of geodesic path from j to k via i: j → … → i → … → k

Definition:

Cb(i) = ∑
j≠k

#{geodesic path: j → … → i → … → k}
#{geodesic path: j → … → k}

= ∑
j≠k

σjk(i)
σjk

Normalised definition:

Cb(i) =
1
n2 ∑

j≠k

σjk(i)
σjk

where Cb ∈ [0,1]

σjk = number of geodesic path from j to k: j → … → k

Total number of ordered vertex pairs



Betweenness Centrality
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The following table compares the relative rankings derived from the di↵erent measures defined in
this lecture, along with a ranking by degree, for the top few most central vertices. (The last col-
umn gives the betweenness estimated by using only a single SSSP tree from each vertex, in order
to illustrate the di↵erences this approximation produces.) A few details are worth pointing out.
For instance, closeness scores are all very similar, di↵ering only in their second decimal place, while
other scores have greater variability, with betweenness having the broadest range. Although all
measures generally agree on which vertices are among the most important (mainly 1, 3, 32 and
34), they disagree on the precise ordering of their importance. Consider applying these measures
to a novel network: how would such disagreements complicate your interpretation of which vertices
are most important? what if there were more disagreement about which vertices were in the top five?

degree k/m closeness harmonic betweenness betweenness⇤

Eq. (7) Eq. (8) Eq. (11) Eq. (11)
1st largest 34 (0.1090) 1 (0.5862) 34 (0.7045) 1 (0.4577) 1 (0.4939)
2nd largest 1 (0.1026) 3 (0.5763) 1 (0.7020) 34 (0.3357) 34 (0.2708)
3rd largest 33 (0.0769) 34 (0.5667) 3 (0.6364) 33 (0.1906) 32 (0.2638)
4th largest 3 (0.0641) 32 (0.5574) 33 (0.6338) 3 (0.1892) 33 (0.2439)
5th largest 2 (0.0577) 9 (0.5312) 32 (0.5859) 32 (0.1843) 3 (0.1912)
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Finally, we return to the question of correlation between measures, as both harmonic and between-
ness centrality are functions of geodesic paths, which may produce correlated rankings. On the
other hand, such a correlation is not a foregone conclusion. Consider a vertex v that has only a
single connection to another, highly central vertex. This vertex would have a minimal betweenness
score, as it lies on no geodesic paths that do not begin or terminate at v, but its path lengths
are all very short, being a single step longer than the paths to the highly central node to which it
connects. Thus, v would have high closeness or harmonic centrality, but low betweenness.
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2nd largest 1 (0.1026) 3 (0.5763) 1 (0.7020) 34 (0.3357) 34 (0.2708)
3rd largest 33 (0.0769) 34 (0.5667) 3 (0.6364) 33 (0.1906) 32 (0.2638)
4th largest 3 (0.0641) 32 (0.5574) 33 (0.6338) 3 (0.1892) 33 (0.2439)
5th largest 2 (0.0577) 9 (0.5312) 32 (0.5859) 32 (0.1843) 3 (0.1912)
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Finally, we return to the question of correlation between measures, as both harmonic and between-
ness centrality are functions of geodesic paths, which may produce correlated rankings. On the
other hand, such a correlation is not a foregone conclusion. Consider a vertex v that has only a
single connection to another, highly central vertex. This vertex would have a minimal betweenness
score, as it lies on no geodesic paths that do not begin or terminate at v, but its path lengths
are all very short, being a single step longer than the paths to the highly central node to which it
connects. Thus, v would have high closeness or harmonic centrality, but low betweenness.

15

Zachary’s karate club network
Network Analysis and Modeling, CSCI 5352

Lecture 2

Prof. Aaron Clauset

2017

which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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i

Cb(i) =
78
144

Exact computation:

Floyd-Warshall:  O(n3) time complexity  
          O(n2) space complexity 

Approximate computation
 Dijskstra: O(n(m+n log n)) time complexity  

Cb(i) =
1
n2 ∑

j≠k

σjk(i)
σjk

where Cb ∈ [0,1]
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BETWEENNESS 

Can you guess the node/edge 
of

highest betweenness in 
the European rail network ?



Which is which?

Harmonic 
Closeness

Betweenness
Eigenvector

Katz
Degree



A: Betweenness
B:Closeness

C:Eigenvector
D:Degree

E:Harmonic 
F: Katz



Try again :)

Degree
Betweenness

Closeness
Eigenvector



Try again :)

A: Degree
B:Closeness

C: Betweenness
D: Eigenvector



Similarity
measures



Node similarity

Similarity between nodes based on their neighborhood

How much two nodes are similarly connected

• What does it mean that they have 3 neighbours in common?

• It is relative to their degree (different meaning for nodes with 3 or 100 neighbours)

➡Normalisation to penalise nodes with small degrees

We can define it using existing measures:

• Cosine Similarity

• Pearson Coefficient



Cosine similarity
Number of common neighbours:

3

Node similarity

» number of common neighbours

nij =
X

k

AikAkj

» What does it mean to have 3 vertices in 
common? 

» Need a normalisation.

Cosine similarity between two non-zero vectors:

5

Cosine similarity

» number of common neighbours

nij =
X

k

AikAkj

» Use varying degree of the nodes  
» cosine / Salton’s cosine

x.y = |x||y| cos ✓

cos ✓ =
x.y

|x||y|

Vectors are the rows of adjacency matrix

6

Cosine similarity
» number of common neighbours

�ij = cos ✓ =

P
k AikAkj

pP
k A

2
ik

qP
k A

2
jk

Ai,j = 0/1

A2
ij = Aij

X

k

A2
ik =

X

k

Ajk = ki
Cosine similarity:

7

Cosine similarity
» number of common neighbours

�ij =

P
k AikAkjp
kikj

=
nijp
kikj

» divided by the geometric mean of their degree

Number of common 
neighbours 
normalised by the 
geometric mean of 
their degrees



Pearson coefficient

12

=
X

k

(Aik � hAii)(Ajk � hAji)

» n times the cov(A_i , A_j) of two rows 
» normalize the cov by the cosine so that max value 

is 1

rij =
cov(Ai, AJ)

�i�J

=

P
k(Aik � hAii)(Ajk � hAji)pP

k(Aik � hAii)2
pP

k(Ajk � hAji)2rij =
cov(Ai, Aj)

σiσj

cov: covariance, expected product of deviations from individual expected values
: std deviation, square root of the expected squared deviation from the meanσ

Correlation between rows of the adjacency matrix

• r(i,j)=0 - if the number of common neighbours exactly as many as we 
would expect by chance

• r(i,j)>0 - if nodes have more neighbours in common than expected

• r(i,j)<0 - if nodes have fewer neighbours in common than expected

Properties

10

Pearson coefficient
» Actual number in common  minus expected 

number
X

k

AikAjk � kikj
n

=
X

k

AikAjk � 1

n

X

k

Aik

X

l

Ajl

=
X

k

AikAjk � nhAiihAji

=
X

k

(AikAjk � hAiihAji)

=
X

k

(Aik � hAii)(Ajk � hAji)

11

=
X

k

(Aik � hAii)(Ajk � hAji)

» 0 
» number in common exactly what we would 

expect 
» > 0 

» i & j have more neighbours in common 
» < 0 

» i & j have fewer neighbours in common

=

Intuition, numerator: Number of common neighbours compared to the 
expected number of common neighbours



Homophily - Assortative mixing
"birds of a feather flock together"
• Property of (social) networks that nodes with similar properties tends to be connected 

with a higher probability than expected

• It appears as correlation between vertex properties of x(i) and x(j) if (i,j)∈E

Vertex properties
• age
• gender
• nationality
• political beliefs
• socioeconomic status
• habitual place
• obesity
• …

? Connected people of the same political opinion are connected because they were a priori similar 
(homophily) or they become similar after they become connected (social influence)?

• Homophily can be a link creation mechanism 
or consequence of social influence (and it is 
difficult to distinguish)

Highschool network 

colored by race (J Moody)



Homophily - Assortative mixing

• Contrary of homophily, where dissimilar nodes are tend to be connected

Dissasortative mixing

Examples
• Sexual networks
• Predator - prey 

ecological networks



Homophily - Assortative mixing
To quantify homophily Discrete properties

2

women
black hispanic white other ai

m
en

black 0.258 0.016 0.035 0.013 0.323
hispanic 0.012 0.157 0.058 0.019 0.247

white 0.013 0.023 0.306 0.035 0.377
other 0.005 0.007 0.024 0.016 0.053

bi 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix eij and the values of ai and
bi for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

effect on network structure and behavior. The outline
of the paper is as follows. In Section II we study the
effects of assortative mixing by discrete characteristics
such as language or race. In Section III we study mixing
by scalar properties such as age and particularly vertex
degree; since degree is itself a property of the network
topology, the latter type of mixing leads to some novel
network structures not seen with other types. In Sec-
tion IV we give our conclusions. A preliminary report of
some of the results in this paper has appeared previously
as Ref. 22.

II. DISCRETE CHARACTERISTICS

In this section we consider assortative mixing accord-
ing to discrete or enumerative vertex characteristics.
Such mixing can be characterized by a quantity eij , which
we define to be the fraction of edges in a network that
connect a vertex of type i to one of type j. On an undi-
rected network this quantity is symmetric in its indices
eij = eji, while on directed networks or bipartite net-
works it may be asymmetric. It satisfies the sum rules

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj , (1)

where ai and bi are the fraction of each type of end of an
edge that is attached to vertices of type i. On undirected
graphs, where the ends of edges are all of the same type,
ai = bi [75].

For example, Table I shows data on the values of eij

for mixing by race among sexual partners in a 1992 study
carried out in the city of San Francisco, California [23].
This part of the study focused on heterosexuals, so this
is a bipartite network, the two vertex types representing
men and women, with edges running only between ver-
tices of unlike types. This means that in this case the
ends of an edge are different and the matrix eij is asym-
metric. As the table shows, mixing is highly assortative
in this network, with individuals strongly preferring part-
ners from the same group as themselves.

A. Measuring discrete assortative mixing

To quantify the level of assortative mixing in a network
we define an assortativity coefficient thus:

r =

∑

i eii −
∑

i aibi

1 −
∑

i aibi
=

Tr e − ‖ e2 ‖

1 − ‖ e2 ‖
, (2)

where e is the matrix whose elements are eij and ‖x ‖
means the sum of all elements of the matrix x. This
formula gives r = 0 when there is no assortative mixing,
since eij = aibj in that case, and r = 1 when there is
perfect assortative mixing and

∑

i eii = 1. If the network
is perfectly disassortative, i.e., every edge connects two
vertices of different types, then r is negative and has the
value

rmin = −

∑

i aibi

1 −
∑

i aibi
, (3)

which lies in general in the range −1 ≤ r < 0. One
might ask what this value signifies. Why do we not sim-
ply have r = −1 for a perfectly disassortative network?
The answer is that a perfectly disassortative network is
normally closer to a randomly mixed network than is a
perfectly assortative network. When there are several dif-
ferent vertex types (e.g., four in the case shown in Table I)
then random mixing will most often pair unlike vertices,
so that the network appears to be mostly disassortative.
Therefore it is appropriate that the value r = 0 for the
random network should be closer to that for the perfectly
disassortative network than for the perfectly assortative
one.

A quantity with properties similar to those of Eq. (2)
has been proposed previously by Gupta et al. [25]. How-
ever the definition of Gupta et al. gives misleading results
in certain situations, such as, for example, when one type
of vertex is much less numerous than other types, as is the
case in Table I. In this paper therefore we use Eq. (2),
which doesn’t suffer from this problem. The difference
between the two measures is discussed in more detail in
Appendix A.

Using the values from Table I in Eq. (2), we find that
r = 0.621 for the network of sexual partnerships, imply-
ing, as we observed already, that this network is strongly
assortative by race—individuals draw their partners from
their own group far more often than one would expect on
the basis of pure chance.

As another example of the application of Eq. (2), con-
sider the network studied by Girvan and Newman [16]
representing the timetable of American college football
games, in which vertices represent universities and col-
leges, and edges represent regular season games between
teams during the year in question. Colleges are grouped
into “conferences,” which are defined primarily by geog-
raphy, and teams normally play more often against other
teams in their own conference than they do against teams
from other conferences. In other words, there should be
assortative mixing of colleges by conference in the sched-
ule network. For the 2000 season schedule studied in
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en

black 0.258 0.016 0.035 0.013 0.323
hispanic 0.012 0.157 0.058 0.019 0.247

white 0.013 0.023 0.306 0.035 0.377
other 0.005 0.007 0.024 0.016 0.053

bi 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix eij and the values of ai and
bi for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

effect on network structure and behavior. The outline
of the paper is as follows. In Section II we study the
effects of assortative mixing by discrete characteristics
such as language or race. In Section III we study mixing
by scalar properties such as age and particularly vertex
degree; since degree is itself a property of the network
topology, the latter type of mixing leads to some novel
network structures not seen with other types. In Sec-
tion IV we give our conclusions. A preliminary report of
some of the results in this paper has appeared previously
as Ref. 22.

II. DISCRETE CHARACTERISTICS

In this section we consider assortative mixing accord-
ing to discrete or enumerative vertex characteristics.
Such mixing can be characterized by a quantity eij , which
we define to be the fraction of edges in a network that
connect a vertex of type i to one of type j. On an undi-
rected network this quantity is symmetric in its indices
eij = eji, while on directed networks or bipartite net-
works it may be asymmetric. It satisfies the sum rules

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj , (1)

where ai and bi are the fraction of each type of end of an
edge that is attached to vertices of type i. On undirected
graphs, where the ends of edges are all of the same type,
ai = bi [75].

For example, Table I shows data on the values of eij

for mixing by race among sexual partners in a 1992 study
carried out in the city of San Francisco, California [23].
This part of the study focused on heterosexuals, so this
is a bipartite network, the two vertex types representing
men and women, with edges running only between ver-
tices of unlike types. This means that in this case the
ends of an edge are different and the matrix eij is asym-
metric. As the table shows, mixing is highly assortative
in this network, with individuals strongly preferring part-
ners from the same group as themselves.

A. Measuring discrete assortative mixing

To quantify the level of assortative mixing in a network
we define an assortativity coefficient thus:

r =

∑

i eii −
∑

i aibi

1 −
∑

i aibi
=

Tr e − ‖ e2 ‖

1 − ‖ e2 ‖
, (2)

where e is the matrix whose elements are eij and ‖x ‖
means the sum of all elements of the matrix x. This
formula gives r = 0 when there is no assortative mixing,
since eij = aibj in that case, and r = 1 when there is
perfect assortative mixing and

∑

i eii = 1. If the network
is perfectly disassortative, i.e., every edge connects two
vertices of different types, then r is negative and has the
value

rmin = −

∑

i aibi

1 −
∑

i aibi
, (3)

which lies in general in the range −1 ≤ r < 0. One
might ask what this value signifies. Why do we not sim-
ply have r = −1 for a perfectly disassortative network?
The answer is that a perfectly disassortative network is
normally closer to a randomly mixed network than is a
perfectly assortative network. When there are several dif-
ferent vertex types (e.g., four in the case shown in Table I)
then random mixing will most often pair unlike vertices,
so that the network appears to be mostly disassortative.
Therefore it is appropriate that the value r = 0 for the
random network should be closer to that for the perfectly
disassortative network than for the perfectly assortative
one.

A quantity with properties similar to those of Eq. (2)
has been proposed previously by Gupta et al. [25]. How-
ever the definition of Gupta et al. gives misleading results
in certain situations, such as, for example, when one type
of vertex is much less numerous than other types, as is the
case in Table I. In this paper therefore we use Eq. (2),
which doesn’t suffer from this problem. The difference
between the two measures is discussed in more detail in
Appendix A.

Using the values from Table I in Eq. (2), we find that
r = 0.621 for the network of sexual partnerships, imply-
ing, as we observed already, that this network is strongly
assortative by race—individuals draw their partners from
their own group far more often than one would expect on
the basis of pure chance.

As another example of the application of Eq. (2), con-
sider the network studied by Girvan and Newman [16]
representing the timetable of American college football
games, in which vertices represent universities and col-
leges, and edges represent regular season games between
teams during the year in question. Colleges are grouped
into “conferences,” which are defined primarily by geog-
raphy, and teams normally play more often against other
teams in their own conference than they do against teams
from other conferences. In other words, there should be
assortative mixing of colleges by conference in the sched-
ule network. For the 2000 season schedule studied in

No assortative mixing : r=0 ( )
Perfectly assortative: r=1

Perfectly disassortative: -1<r<0

eij = aibj



Homophily - Assortative mixing
To quantify homophily Scalar properties

r=0, no assortative mixing,
r>0 assortative mixing,
r<0 disassortative mixing
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

Pearson correlation coefficient of properties
at both extremities of edges

: fraction of edges joining nodes with values x and yexy



Degree-degree correlation

• A particular type of application is the degree correlation:

• Are important nodes connected to other important nodes with a higher probability than 
expected?

• The degree can be used as any other scalar property

PEARSON-CORRELATION 
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normalization: 

� 

σr
2 =max jk(e jk − q jqk ) = jk(qkδ jk − q jqk )

jk
∑

jk
∑

� 

−1≤ r ≤1

If there are degree correlations, ejk will differ from qjqk. The magnitude of the correlation is 
captured by <jk>-<j><k> difference, which is:  

� 

jk(e jk − q jqk )
jk
∑

<jk>-<j><k> is expected to be:  
 positive for assortative networks,  
 zero for neutral networks, 
 negative for dissasortative networks  

To compare different networks, we should normalize it with its maximum value; the 
maximum is reached for a perfectly assortative network, i.e. ejk=qk�jk  

� 

r =
jk(e jk − q jqk )

jk
∑

σr
2

� 

r ≤ 0 disassortative 
neutral 
assortative 

� 

r = 0

� 

r ≥ 0
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network type size n assortativity r error σr ref.

social































physics coauthorship undirected 52 909 0.363 0.002 a
biology coauthorship undirected 1 520 251 0.127 0.0004 a
mathematics coauthorship undirected 253 339 0.120 0.002 b
film actor collaborations undirected 449 913 0.208 0.0002 c
company directors undirected 7 673 0.276 0.004 d
student relationships undirected 573 −0.029 0.037 e
email address books directed 16 881 0.092 0.004 f

technological











power grid undirected 4 941 −0.003 0.013 g
Internet undirected 10 697 −0.189 0.002 h
World-Wide Web directed 269 504 −0.067 0.0002 i
software dependencies directed 3 162 −0.016 0.020 j

biological















protein interactions undirected 2 115 −0.156 0.010 k
metabolic network undirected 765 −0.240 0.007 l
neural network directed 307 −0.226 0.016 m
marine food web directed 134 −0.263 0.037 n
freshwater food web directed 92 −0.326 0.031 o

TABLE II: Size n, degree assortativity coefficient r, and expected error σr on the assortativity, for a number of social,
technological, and biological networks, both directed and undirected. Social networks: coauthorship networks of (a) physicists
and biologists [43] and (b) mathematicians [44], in which authors are connected if they have coauthored one or more articles
in learned journals; (c) collaborations of film actors in which actors are connected if they have appeared together in one or
more movies [5, 7]; (d) directors of Fortune 1000 companies for 1999, in which two directors are connected if they sit on the
board of directors of the same company [45]; (e) romantic (not necessarily sexual) relationships between students at a US high
school [46]; (f) network of email address books of computer users on a large computer system, in which an edge from user A
to user B indicates that B appears in A’s address book [47]. Technological networks: (g) network of high voltage transmission
lines in the Western States Power Grid of the United States [5]; (h) network of direct peering relationships between autonomous
systems on the Internet, April 2001 [48]; (i) network of hyperlinks between pages in the World-Wide Web domain nd.edu, circa
1999 [49]; (j) network of dependencies between software packages in the GNU/Linux operating system, in which an edge from
package A to package B indicates that A relies on components of B for its operation. Biological networks: (k) protein–protein
interaction network in the yeast S. Cerevisiae [50]; (l) metabolic network of the bacterium E. Coli [51]; (m) neural network of
the nematode worm C. Elegans [5, 52]; tropic interactions between species in the food webs of (n) Ythan Estuary, Scotland [53]
and (o) Little Rock Lake, Wisconsin [54].

B. Models of assortative mixing by degree

In Ref. 22 we studied the ensemble of graphs that have
a specified value of the matrix ejk and solved exactly for
its average properties using generating function methods
similar to those of Section II B. We showed that the phase
transition at which a giant component first appears in
such networks occurs at a point given by det(I−m) = 0,
where m is the matrix with elements mjk = kejk/qj . One
can also calculate exactly the size of the giant component,
and the distribution of sizes of the small components be-
low the phase transition. While these developments are
mathematically elegant, however, their usefulness is lim-
ited by the fact that the generating functions involved
are rarely calculable in closed form for arbitrary speci-
fied ejk, and the determinant of the matrix I−m almost
never is. In this paper, therefore, we take an alternative
approach, making use of computer simulation.

We would like to generate on a computer a random
network having, for instance, a particular value of the
matrix ejk. (This also fixes the degree distribution, via
Eq. (23).) In Ref. 22 we discussed one possible way of
doing this using an algorithm similar that of Section II C.
One would draw edges from the desired distribution ejk

and then join the degree k ends randomly in groups of k
to create the network. (This algorithm has also been

discussed recently by Dorogovtsev et al. [40].) As we
pointed out, however, this algorithm is flawed because
in order to create a network without any dangling edges
the number of degree k ends must be a multiple of k for
all k. It is very unlikely that these constraints will be
satisfied by chance, and there does not appear to be any
simple way of arranging for them to be satisfied without
introducing bias into the ensemble of graphs. Instead,
therefore, we use a Monte Carlo sampling scheme which is
essentially equivalent to the Metropolis–Hastings method
widely used in the mathematical and social sciences for
generating model networks [55, 56]. The algorithm is as
follows.

1. Given the desired edge distribution ejk, we first
calculate the corresponding distribution of excess
degrees qk from Eq. (23), and then invert Eq. (22)
to find the degree distribution:

pk =
qk−1/k
∑

j qj−1/j
. (27)

Note that this equation cannot tell us how many
vertices there are of degree zero in the network.
This information is not contained in the edge dis-
tribution ejk since no edges connect to degree-zero
vertices, and so must be specified separately. On



Rich-club coefficient
• How well connected are the well connected among themselves
• It is calculated on a list  of node degree sorted in ascendant order as

• N>k denotes the number of nodes with degree k or larger than k
• E>k measures the number of links between them
• Results are usually compared to random references

• configuration model of equivalent synthetic network
• configuration model of the empirical network 

the rich-club coefficient

• How well connected are high-
degree vertices among 
themselves?

• The rich-club coefficient:

• (N>k = # of nodes with degree 
higher than k; E>k = # of links 
between these)

• Values should be compared to 
some random reference or 
null model

• Usually, the configuration 
model is used

• Take as many nodes as in the 
original network, with exactly the 
same degrees, and connect 
randomly

• Empirical networks: exchange 
endpoints of randomly chosen 
pairs of links until the whole 
network has been rewired, see 
lecture 1
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the rich-club coefficient
Colizz’a et al., Nature Physics 2, 2006 
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Algorithm
• rank nodes by degree
• remove nodes in an 

ascendant degree order
• measure the density of 

the remaining network



NETWORK VISUALISATION



NETWORK VISUALIZATION

• How to interpret a network drawing?

• What does the position of nodes means?

• Can we draw conclusion from the drawing alone?



NETWORK VISUALIZATION



NETWORK VISUALIZATION
• Random layout

‣ Assign random positions to nodes, draw edges 
- Useless for more than 5-6 nodes

• Geographical layout
‣ The position of nodes is fixed apriori, often based on geographical location
‣ Variant: position nodes on a circle based on a single, 1D property (age…)



NETWORK VISUALIZATION
• Most commonly used: Automatic layout

‣ Non deterministic
‣ Tries to arrange nodes so that the network is easy to read and understand

- Minimize edge crossings?
- Most commonly, tries to put connected nodes close and unconnected nodes far



NETWORK VISUALIZATION
http://kwonoh.net/dgl/

http://kwonoh.net/dgl/


NETWORK VISUALIZATION

• Most common algorithms are variant of the force directed 
layout
‣ Kamada-Kawai
‣ Fruchterman-Reingold
‣ …

• Force directed layout: a simple physical model
‣ Repulsive forces between nodes
‣ Edges are attracting forces
‣ There are minimal (to avoid node overlap) and maximal (to avoid connected 

component drifting out of the figure) distances



NETWORK VISUALIZATION

• Can we interpret a force layout?
‣ Yes…



NETWORK VISUALIZATION
• Can we interpret a force layout?

‣ Yes…
‣ And no.



NETWORK VISUALIZATION
• Can we interpret a force layout?

‣ Yes…
‣ And no.



WHAT TO DO NOW

• http://cazabetremy.fr/Teaching/BitcoinNetwork.html

• Download the two provided networks. Choose one and load 
it with Gephi

http://cazabetremy.fr/Teaching/BitcoinNetwork.html

