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PRESENTATION

What about you ?



COURSE ORGANIZATION

• Every day, 2h lectures, 2h practicals.

• We learn a new topic, we apply it on example graphs.

• You can come with your own data. There are many websites 
with repositories of “interesting” graphs, 
‣  http://networkrepository.com
‣ Marvel, TV series, economics, soccer…

http://networkrepository.com


COURSE ORGANIZATION

• Gradation for every week

• End of first week: 
‣ Send a report on the analysis of a graph you have chosen according to what 

we have studied (What you think is relevant)

• End of last week:
‣ Send a report on the analysis of a DYNAMIC graph according to what we have 

studied.

• One part of the report should be a Jupyter Notebook



INTRODUCTION



GRAPH OR NETWORKS

• What you have seen last week:
‣ Graph theory => Efficient algorithms, complexity analysis, proofs…

• What we will see together:
‣ How to make data “speak”
‣ Not any kind of data: relational ones, modeled by networks



CONTEXT

• Big data, data science, data mining, machine learning, artificial 
intelligence ….

• Input: Data

• Output:
‣ Knowledge
‣ Model
‣ Prediction



CONTEXT

• Let’s take an example: Colombian elections

• Data:
‣ Results (by geographical regions)
‣ Polls before the vote
‣ Surveys: Age, genre, income, marital status, etc.
‣ …



CONTEXT

• Acquiring Knowledge: 
‣ Geographical disparities
‣ Opinions of social classes
‣ Long term evolution of the society
‣ …



CONTEXT
• Predicting: 

‣ Time series analysis: predict the futur given trends
‣ Predict the vote of a person given its profile
‣ Predict how societal evolutions will affect votes
‣ …



CONTEXT

• Data oriented decision making/analysis is now ubiquitous:
‣ Finance 
‣ Sport (money game…)
‣ Industry (Predictive Maintenance,  Supply chain optimisation…)
‣ Politics (Cambridge analytica..)

• And Data-Oriented applications continues to expand
‣ Self driving cars (data, data, data)
‣ Smart cities
‣ Physics, Biology, Medicine, … 



GRAPHS ?

• Coming back to Colombian elections
‣ What information could we add besides features describing each individual ?
‣ =>Adding relational data
‣ Who is a relative (daughter/sister/grandmother/…) of whom ?
‣ Who is a friend of whom ?
‣ Who works in the same company ?
‣ …

• Tell me who your friends are and I’ll tell you who you are

• Knowledge/Opinions propagates and form “social networks”



GRAPHS ?

• “But this information is much harder to obtain than individual 
ones… right ?”

• On the contrary ! Social Media !

• +, why not, cell phone, emails, WhattsApp, …



GRAPHS ?

• Graphs can also represent any type of data:
‣ Step1) Compute correlations between elements
‣ Step2) Filter out low values
‣ Step3) You have a graph !

• Often used to scale algorithms (DBscan…)

• Or to apply network analysis tools 

• (More on that later)



GRAPHS ?
• What is so special about graphs ? Isn’t it a feature like any 

other ?

• Classical data mining/machine learning can be summarized as:
‣ An item is described as a VECTOR: [x1,x2,x3,…,xN]
‣ We learn sequences of operations on these vectors to predict something

- IF age>X and income>Y and city in [….] THEN  Vote=Mr. XXX
‣ If your feature is not numeric, you transform it to numbers. 

- For instance: department= NAME
- Some methods can handle them directly (decision trees, …)
- Or transformation to vector: 
- 30 departments: Each person has a vector with 29 zeros and a 1



GRAPHS ?

• A graph can be represented as:
‣ A list of edges : [{v1,v2}, {v1,v3}, {v5,v7},… ]
‣ A neighborhood list: {v1:{v2,v3},v2:{v1},v5:{v7},…}
‣ An adjacency matrix



GRAPHS ?

• We could use a line of the adjacency matrix as feature vector

• It does not work because:
‣ Sparsity: too many 0s
‣ Curse of dimensionality
‣ Similar features means similar item. Not for adj. matrix:

- It means connected to the same node
- What is interesting in graphs is elsewhere: not only direct neighbors



GRAPHS ?
• Field of Network Science

• Contributions from physicists, computer scientists/Engineers 
and mathematicians (beyond traditional scientific fields)

• For me, a “tool” for all scientists, like probabilities, spectral 
analysis or machine learning

• For computer science: related to ML, DM. Same level as 
Natural Language Processing, maybe



GRAPHS ?
• Graphs or networks?
• I use both terms interchangeably
• Graph theory: older field (env. 70 years), mostly 

theoretical, studying properties of graphs (usually synthetic) 
and algorithms on graphs

• Network Science: born from graph theory (env. 10 
years), interested in real networks, with both theory and 
applications

• Social Network Analysis: Older term than network 
science (env. 40 years), network science on SN



CHAPTER I
DESCRIBING A NETWORK AT 

THE GLOBAL SCALE



SIZE
• A network is composed of nodes and edges. 

• Size: How many nodes and edges ?

#nodes #edges
Wikipedia HL 2M 30M
Twitter 2015 288M 60B

Facebook 2015 1.4B 400B
Brain c. Elegans 280 6393

Roads US 129k 165k
Airport traffic 3k 31k



DENSITY 

#nodes #edges Density avg. deg
Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416
Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 
Elegans

280 6393 0.16 46
Roads Calif. 2M 2.7M 6x10-7 2.7

Airport 
traffic

3k 31k 0.007 21

Defined as: 
Directed

Undirected

Often more relevant: average degree ( 2|E| / |V| )



DENSITY 

• It has been observed that: [Leskovec. 2006]
‣ When graphs increase in size, the average degree increases
‣ This increase is very slow

• Think of friends in a social network



DENSITY 



DENSITY 

[Broido, Clauset 2018]



DEGREE DISTRIBUTION

• In a fully random graph (Erdos-Renyi), degree distribution is a 
normal distribution centered on the average degree 

• In real graphs, in general, it is not the case:
‣ A high majority of small degree nodes
‣ A small minority of nodes with very high degree (Hubs)

• Often modeled by a power law



DEGREE DISTRIBUTION

[Clauset 2009]



DEGREE DISTRIBUTION
Power law/Scale free distribution:

[Quanta magazine
2018]



DEGREE DISTRIBUTION
Power law/Scale free distribution:



DEGREE DISTRIBUTION

• This has important implications:
‣ There is no “scale” in the degree: the average degree is not representative
‣ It is not realistic to use “random graphs” (ER) for evaluating algorithms 

performance

• If the degree distribution is not a power law, some algorithms 
might not behave as expected (spatial networks…)



CLUSTERING COEFFICIENT

Triplet: set of 3 nodes connected by 2 or 3 edges

Global clustering coefficient

Average Clustering Coefficient

Clustering coefficient of a node:

Average CC:



CLUSTERING COEFFICIENT

The higher the value, 
the more locally dense is the network.

“Friends of my friends are my friends”

Higher in real networks than random



CLUSTERING COEFFICIENT

• Facebook ego-networks: 0.6

• Twitter lists: 0.56

• California Road networks: 0.04

• Random (ER): =density: very small for large graphs



CONNECTED COMPONENTS

• A connected component: a group of nodes all mutually 
reachable

• Most real networks:
‣ A “Giant connected component” including >99% nodes
‣ A few small connected components

• E.g.: Facebook 2011: 99.91%



DIAMETER

• Shortest path between nodes u and v: minimal number of 
hops between them.

• Diameter: the longest shortest path in the network

• Very sensible to outliers, not reliable



AVERAGE PATH LENGTH

• Average shortest path between all pairs of nodes

• The famous 6 degrees of separation (Milgram experiment)
‣ In fact 6 hops
‣ (More on that next slide)

• Not too sensible to noise

• Tells your if the network is “stretched” or “hairball” like



SIDE-STORY: MILGRAM 
EXPERIMENT

• Small world experiment (60’s)
‣ Give a (physical) mail to random people
‣ Ask them to send to someone they don’t know

- They know his city, job
‣ They send to their most relevant contact

• Results: In average, 6 hops to arrive



SIDE-STORY: MILGRAM 
EXPERIMENT

• Many criticism on the experiment itself: 
‣ Some mails did not arrive
‣ Small sample
‣ …

• Checked on “real” complete graphs (giant component):
‣ MSN messenger
‣ Facebook
‣ The world wide web
‣ …



SIDE-STORY: MILGRAM 
EXPERIMENT

Facebook



HOMOPHILY/ASSORTATIVITY

• Nodes might have a preference for some other nodes
‣ Similar nodes (age in social networks)
‣ Different nodes (genre in sentimental networks (yes, it has been done!))
‣ Nodes with a particular property

• “Assortativity” alone often used to mean “degree assortativity”
‣ Large nodes are preferentially connected to large nodes

• All this implies: “compared with a random network”



HOMOPHILY/ASSORTATIVITY



HOMOPHILY/ASSORTATIVITY

• Nodes might have a preference for some other nodes
‣ Similar nodes (age in social networks)
‣ Different nodes (genre in sentimental networks (yes, it has been done!))
‣ Nodes with a particular property

• “Assortativity” alone often used to mean “degree assortativity”
‣ Large nodes are preferentially connected to large nodes

• All this implies: “compared with a random network”



OTHER (A FEW EXAMPLES)

Triads counting



OTHER
Triads counting



OTHER
Graphlets



OTHER

Spectral properties

Look for
Spectral graph theory



PROPERTIES OF REAL 
NETWORKS



SMALL WORLD NETWORK
• Not formally defined. 

‣ Small average distance (< log(N) ?)
‣ High Clustering (>0.1 ?)

• Random networks (ER) have small avg. distance but low 
clustering

• Spatial networks have high clustering but high avg. distance



SMALL WORLD NETWORK
• Not formally defined. 

‣ Small average distance (< log(N) ?)
‣ High Clustering (>0.1 ?)

• Random networks (ER) have small avg. distance but low 
clustering

• Spatial networks have high clustering but high avg. distance



CLASSIFYING NETWORKS

[Kantarci et al. 2013]

divisive. In the former, each object is initially considered as a 
cluster, and those are iteratively merged until only one cluster 
containing all objects remains. In the latter, on the contrary, all 
the objects are in the same unique cluster, which is then 
repeatedly divided until obtaining only singleton clusters. The 
choice of the final clusters is made by selecting a level, called 
cut, in the dendrogram, according to some criterion of interest. 
We selected two popular algorithms: one agglomerative tool, 
Agnes (Agglomerative Nesting) [12], and one divisive tool, 
Diana (Divisive Analysis) [12].  

Density-based approaches. Starting from an initial object 
called seed; a cluster is constituted by iteratively aggregating 
close objects. The cluster grows as long as some conditions 
regarding its density still hold. When it is not the case anymore, 
the cluster is complete (its limits have been reached). Another 
seed is then picked, in order to constitute a new cluster. We 
selected the DBscan implementation of this approach [13]. It 
requires the user to specify two parameters allowing defining 
the notion of cluster density: first, a radius defining the 
neighborhood of an object; second, the minimal number of 
object required inside this neighborhood, so that it is 
considered as dense. 

C. Cluster Evaluation 
Each selected clustering method outputs several partitions 

of the dataset, either because it is hierarchical (Diana, Agnes) 
or because some parameters must be tuned (Pam, DBscan). In 
order to identify the best partitions, we therefore need to be 
able to quantify their quality. For this matter, we used the 
average Silhouette width. Moreover, once the best partition has 
been identified for each tool, we want to compare them from 
tool to tool, in order to check for agreement. For this purpose, 
we used the Adjusted Rand Index. 

Silhouette. This measure is based on two quantities noted 
 ( ) and  ( ) [14]. The former is the average distance between 
an object of interest   and the rest of the objects located in the 
same cluster. For the latter, we first perform the same 
operation, but for objects located in a different cluster.  ( ) is 
the minimum of this quantity processed over all other clusters. 
From  ( ) and  ( ), we can process the silhouette width for the 
object of interest: 

 ( )   
 ( )   ( )

    ( ( )  ( ))
 (14) 

The overall value is obtained by averaging  ( ) over all 
objects. Its range is [    ], and higher value means better 
quality. 

Adjusted Rand index. This measure was designed to 
compare two partitions of the same set [15]. Let us note     the 
number of instances belonging to cluster   in the first partition, 
and to cluster   in the second one. We can then note    the 
number of instances belonging to cluster   in the first partition, 
whatever their cluster in the second partition is, and    the 
symmetric quantity: number of instances in cluster  , 
independently from their cluster in the first partition. The 
Adjusted Rand Index is defined as: 

      
∑ (    )  [∑ (

  
 ) ∑ (   ) ] (  )   

 
 [∑ (

  
 )   ∑ (   ) ]   [∑ (   ) ∑ (   ) ] (  )

 (15) 

A value of   corresponds to perfect agreement, while   means 
random agreement. 

IV. RESULTS AND DISCUSSION 
Our dataset consists of a collection of     networks, all of 

them publicly available on the Internet. One of our goals was to 
study how the type of system represented by the network 
affects its topology. For this reason, we grouped them in   
different domains: social interactions, scientific citations, 
communication, ecological systems, biomolecular interactions, 
computer networks and transportation systems. Social 
networks correspond to acquaintances, sexual and trust 
networks. Scientific citations represent bibliographic 
references. Communication networks include email and phone 
networks. Ecological networks are constituted of taxa and their 
predator-prey relationships.  Biomolecular networks include 
protein, metabolic and genetic interaction networks. Computer 
networks include various representations of the Internet and the 
Web. Transportation networks correspond to airport 
interconnections and road systems. The number of networks 
for each domain is represented in TABLE I. In this section, we 
present our analysis of these data, using the methods described 
in section III. 

TABLE I. DISTRIBUTION OF NETWORKS OVER DOMAINS 

Domain Number of Networks 
Social 25 

Citation 20 
Communication 28 

Ecology 20 
Biomolecular 32 

Computer 21 
Transportation 5 

A. Topological Properties 
Let us describe our datasets in terms of the topological 

measures presented in section II. Those results are summarized 
in TABLE II, which contains lower and upper bounds, mean 
( ) and standard deviations ( ) for the main measures, and for 
each domain. The notations are the same than in section II, 
namely: size, density, average degree, global transitivity, 
average distance, diameter, radius and modularity. 

Size. For all domains, the size of the smallest networks is of 
the same order of magnitude: a few tens of nodes. However, 
this is not the case for the largest ones. The largest Ecological 
and Transportation networks contain a few hundred nodes. For 
Social, Communication and Biomolecular networks, it is 
several thousand nodes. And Citation and Computer Science 
networks reach several tens of thousands of nodes. This 
highlights the fact real-world network sizes are very 
heterogeneous, spanning   orders of magnitude. This is 
confirmed by the generally large standard deviations. 

Density. Similarly to what can be observed in the literature, 
most of our networks are very sparse, as seen in the average 
density and standard deviation of all domains. For some of 
them, the density is even as low as     . However, the average 
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density of Social and Transportation networks is clearly higher 
(roughly the double of the others). Moreover, some networks 
are remarkably dense in the Social, Communication and 
Biomolecular domains, as highlighted by their upper bounds.  

Degree. According to the Kolomogorov-Simirnov tests we 
performed, all the studied networks have a power-law-
distributed degree, a prominent feature in complex networks 
literature. For most domains, degree bounds have the same 
order of magnitude: a few units for the lower bound, several 
tens for the upper bound. The exceptions are Transportation, 
Communication and Citation networks, whose upper bounds 
reach several hundreds. For the Citation domain, this can be 
explained by the fact the networks are larger (in terms of 
nodes), compared to other domains, while they are as dense. 
For the Transportation and Communication domains, the 
networks are small but dense, which can explain these high 
upper bounds. 

Transitivity. The literature highlights the fact real-world 
networks generally have a high transitivity. It does not seem to 
be the case so much when looking at the average values 
obtained on our dataset, which range from      to     . A look 
at the bounds shows us the smallest values are almost zero, and 
the highest ones are not so large (around        ), with the 
exception of Social and Transportation networks (     and 
    , respectively). The relatively large standard deviations 
highlight the heterogeneity of the networks in terms of 
transitivity. However, when comparing with values expected 
for ER networks with the same size and density, it turns out the 
networks of our dataset are more transitive.  

Distance. The order of magnitude of the average distance 
and both distance bounds are roughly the same for all domains: 
the lower bounds are close to  , the upper bounds are close to 
  , and the average distances lie in between. All networks 
consequently have a very small average distance, when 
compared to their size in terms of nodes. Larger networks have 
a higher distance, but the increase is marginal. The observed 
average distances are higher than those expected for ER 

random networks of same size and density. This means the 
observed values alone are not sufficient to decide if the 
networks are small-world.  

Eccentricity. For most networks, we observe a bimodal 
distribution of eccentricity, most of the nodes having very low 
or very high values. In terms of diameter, the order of 
magnitude of the diameter is the same for most domains, 
independently from the network size: it ranges from a few hops 
to a few tens. However, this is not true for the Social and 
Ecological networks, since the upper bound is tens of 
thousands of hops for them.  This means that, even if the 
average distance is of the same order of magnitude than in 
other domains, it is possible for nodes to be much farther from 
the network center in Social and Ecological networks. 
Interestingly, the same observation does not hold for the radius, 
which is roughly similar for most domains. Computer networks 
stand out though, with a radius of hundreds of hops, instead of 
tens for the other domains.  

Centrality. For most networks, the betweenness and 
edgebetweenness centralities are homogeneous, following a 
normal-like distribution. This means that, in a given network, 
most nodes and links lie on the same number of shortest paths, 
and only a few have extreme values. The presence of only a 
few central links supports the assumption the networks are 
modular: those links are known to connect communities. On 
the contrary, the closeness centrality distribution is bimodal. 
Both modes are extreme values like for the eccentricity.  

Modularity. The modularity ranges from close to zero, or 
even slightly negative values, to as high as     . Most 
networks have a clearly non-zero modularity, though. The most 
modular networks belong to the Citation domain. Most 
domains have a relatively high average (       ). However, 
this is not the case of the Transportation and Ecological 
domains, whose average modularity values are      for the 
former and almost zero for the later. Thus, modularity seems to 
be exceptional for those domains, whereas it is the norm for the 

TABLE II. OVERVIEW OF TOPOLOGICAL MEASURES RELATIVELY TO DOMAINS 

 𝒏 𝜹  𝒌  𝑪  𝒅  𝑫 𝑹 𝑸 

Social 
[11, 1882] 
𝜇:143.88 
𝜎: 448.52 

[0.0004, 0.38] 
𝜇: 0,29 
𝜎: 0,25 

[1.85, 66.69] 
𝜇: 11.39 
𝜎: 14.54 

[0.01, 0.87] 
𝜇: 0.38 
𝜎:0.25 

[1.26, 9.33] 
𝜇: 2.80 
𝜎: 1.68 

[2, 305124] 
𝜇: 12212.12 
𝜎: 61023.31 

[2, 16] 
𝜇: 3.2 
𝜎:4.07 

[-0,03, 0.89] 
𝜇: 0.31 
𝜎: 0.29 

Citation 
[35, 27779] 
𝜇:3424.53 
𝜎: 7547.97 

[0.0004, 0.26] 
𝜇: 0.07 
𝜎: 0.09 

[3.24, 516.80] 
𝜇: 39.81 
𝜎: 104.77 

[0.03, 0.69] 
𝜇: 0.23 
𝜎: 0.17 

[1.76, 8.46] 
𝜇: 3.88 
𝜎: 1.55 

[3, 37] 
𝜇: 13.93 
𝜎: 0.26 

[2, 49] 
𝜇: 8.29 
𝜎: 13.67 

[0.14, 0.93] 
𝜇: 0.41 
𝜎: 0.20 

Communication 
[12, 3861] 
𝜇: 427.93 
𝜎:103.822 

[0.0004, 0.36] 
𝜇: 0.12 
𝜎: 0.11 

[1.83, 27.70] 
𝜇: 7.50 
𝜎: 5.66 

[0.01, 0.88] 
𝜇: 0.25 
𝜎: 0.22 

[1.21, 6.53] 
𝜇: 2.98 
𝜎: 1.50 

[3, 33] 
𝜇: 10.35 
𝜎: 8.42 

[2, 22] 
𝜇: 5.25 
𝜎: 6.64 

[0.01, 0.79] 
𝜇: 0.42 
𝜎: 0.24 

Ecological 
[24, 128] 
𝜇: 65.38 
𝜎: 35.00 

[0.0816, 0.23] 
𝜇: 0.15 
𝜎: 0.03 

[5.13, 33.39] 
𝜇: 18.15 
𝜎: 10.11 

[0.25, 0.49] 
𝜇: 0.38 
𝜎: 0.08 

[1.81, 3.36] 
𝜇: 2.31 
𝜎: 0.35 

[8, 947493] 
𝜇: 133126.5 
𝜎: 302590.7 

[2, 11] 
𝜇: 3 
𝜎: 2.16 

[0.01, 0.53] 
𝜇: 0.04 
𝜎: 0.12 

Biomolecular 
[23, 3839] 
𝜇 1099.44 
𝜎:889.27 

[0.0012, 0.34] 
𝜇: 0.02 
𝜎: 0.06 

[2.15, 15.88] 
𝜇: 5.34 
𝜎: 2.37 

[0.02, 0.57] 
𝜇: 0.07 
𝜎: 0.14 

[1.80, 7.65] 
𝜇: 4.66 
𝜎: 1.16 

[3, 35] 
𝜇: 13.03 
𝜎: 5.33 

[2, 63] 
𝜇: 9.79 
𝜎: 15.90 

[0.01, 0.78] 
𝜇: 0.52 
𝜎: 0.17 

Computer 
[18, 10680] 
𝜇: 158.28 
𝜎:2973.78 

[0.0002, 0.50] 
𝜇: 0.05 
𝜎: 0.11 

[2.54, 39.1] 
𝜇: 6.95 
𝜎: 8.67 

[0.01, 0.50] 
𝜇: 0.12 
𝜎: 0.14 

[1.49, 18.98] 
𝜇: 4.31 
𝜎: 3.48 

[2, 46] 
𝜇: 11.65 
𝜎: 8.71 

[2, 352] 
𝜇: 38.13 
𝜎: 86.11 

[0.01, 0.88] 
𝜇: 0.43 
𝜎: 0.26 

Transportation 
[75, 332] 
𝜇:174.40 
𝜎: 107.60 

[0.0327, 0.24] 
𝜇: 0.22 
𝜎: 0.26 

[4.23, 194,64] 
𝜇: 37.90 
𝜎: 69.61 

[0.01, 0.84] 
𝜇: 0.32 
𝜎: 0.26 

[1.21, 3.48] 
𝜇: 2.37 
𝜎: 0.70 

[3, 19] 
𝜇: 6.94 
𝜎: 6.27 

[2, 16] 
𝜇: 4.28 
𝜎: 5.67 

[0.01, 0.44] 
𝜇: 0.15 
𝜎: 0.16 

 
Density avg. degree 

avg. CC
avg. distance

Diameter Radius Modularity
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consistent with our knowledge though: since it is power-laws-
distributed, we know the average is not a characteristic value. 

C. Domain Comparison 
The domains constitute the natural partition of our dataset. 

In order to understand what makes them different, we 
performed an ANOVA. This analysis aims at identifying which 
global measures allow discriminating domains. The ANOVA 
reveals   measures are significantly different in at least one 
domain: average distance (      ), density (      ), 
modularity (      ) and transitivity (      ). We 
performed Tukey’s post-hoc test to identify which domains 
have different average values for these measures. TABLE VI 
displays the significantly different measures by pair of 
domains. 

All four measures are significantly different between 
Biomolecular and Computer networks on one side, and 
Ecology and Social networks on the other side. One the 
contrary, Biomolecular and Computer networks are not 
significantly different, and neither are Ecology and Social 
networks. Although it is not as marked, Transportation 
networks are also different from both Biomolecular and 
Computer networks, but not from Ecology and Social 
networks. Finally, Citation networks lie somewhere in 
between, since they differ in one measure from all domains but 
Computer.  

In the end, a clear separation appears between two groups 
of domains. The first contains Biomolecular, Citation and 
Computer networks, and the other includes Ecology, 
Transportation, Social and Communication networks. The 
question is now to know if this separation, based on a subset of 
the global measures only, is confirmed when considering the 
whole available information, thanks to the cluster analysis. 

D. Network Clusters 
As mentioned in section III, we have applied all 4 selected 

clustering algorithms (Agnes, Diana, DBscan and PAM) over 
the whole dataset; using the Silhouette measure to identify the 
best partitions, and the Adjusted Rand Index (ARI) to compare 
them. All methods reach their maximal Silhouette value for   
clusters. Diana has the highest Silhouette with     , Pam being 
a close second with     , followed by DBscan (    ) and 
Agnes (    ). These values are not very high (the Silhouette 
upper bound being 1), but they still show there is a non-random 
separation between two groups of networks, as the lower bound 
of Silhouette is   .  

The clusters found by Diana and Agnes have largely similar 
structures, with an ARI of     . After them, Pam and Agnes 

show the second highest similarity with a      ARI, and Diana 
and PAM reach the value 0.41. On the contrary, the clusters 
found by DBscan are very different, since the ARI is almost 
zero when compared with all three other methods. Because of 
the nature of this algorithm, it certainly means it found non-
convex clusters. Those are worth exploring, however in the rest 
of this work, we decided to focus on the clusters identified by 
Pam, because it is highly similar to both hierarchical 
algorithms, and it is very close to Diana in terms of Silhouette. 
Therefore, we aimed at making a trade-off between the cluster 
quality and agreement between algorithms. 

 TABLE VII represents the distribution of networks of 
different domains over the two clusters detected by Pam. While 
Biomolecular, Citation and Computer networks are largely 
grouped in the first cluster, Ecological, Transport, Social and 
Communication networks are mostly grouped in the second 
cluster. The first cluster is dominated by Biological networks, 
whereas Social and Communication clusters dominate the 
second one. Interestingly, these clusters confirm the partition 
we previously inferred from the ANOVA conducted over the 
domains, using the global measures alone. However, the 
bisection is finer, since it is performed at the level of networks, 
and not at that of the domains. This allows highlighting the fact 
a small minority networks do not have topological features 
typical of their own domain, and therefore constitute outliers 
worth studying in further details. 

 TABLE VII. DISTRIBUTION OF DOMAINS OVER CLUSTERS 

 Cluster 1 Cluster 2 
Biomolecular 29 3 

Citation 16 4 
Computer 19 2 
Ecology 1 19 

Transportation 0 5 
Social 5 20 

Communication 5 23 
 

In order to identify the discriminant topological measures 
for our clusters, and compare them with those previously 
obtained for the domains, we conducted another ANOVA. It 
indicates not less than   measures differ significantly between 
the clusters. For global measures, we have transitivity (   
     )  diameter (        ), modularity (       )  
average distance (       ), density (      ) and average 
degree (       ). For local measures, it is closeness 
(      ), local transitivity (      ) and edgebetweenness 
(      ).  

Amongst the discriminant global measures, we find the 4 
ones already identified when studying the domains: modularity, 

TABLE VI. SIGNIFICANT MEASURES FOR NETWORK DOMAINS 

 Biomolecular Citation Computer Ecology Transportation Social Communication 
Biomolecular - 𝐶  𝐶, 𝑄,  𝑑 , 𝛿 𝐶, 𝑄,  𝑑  𝛿 𝐶, 𝑄,  𝑑  𝐶,  𝑑  

Citation - -   𝑑  𝛿 𝑄 𝛿 
Computer - - - 𝐶, 𝑄,  𝑑 , 𝛿 𝑄 𝛿, 𝐶,  𝑑 , 𝑄  𝑑  

Ecology - - - -  𝑄  
Transportation - - - - -   

Social - - - - - - 𝛿 
Communication - - - - - - - 

 

other ones. 

B. Correlation Study 
We now examine the correlations between the topological 

measures studied in the previous subsection. As mentioned 
before, we distinguish two types of measures: global and local 
ones. To ease the interpretation of our results, we split the 
correlation study in three parts: global vs. global, local vs. local 
and global vs. local.  

Global vs. global. TABLE III shows the correlation 
between global measures only. Most of the values are close to 
zero, indicating no linear relationships between the measures. 
However, a few strong positive and negative correlations are 
also observed. The highest (    ) one is measured between the 
density and transitivity, which can be explained by the fact that 
when a network becomes denser, the possibility to find 
triangles increases, too. The average distance and radius are 
also highly correlated (    ). This is certainly due to the fact 
both measures reflect how compact the network is.  

Density and transitivity are both negatively correlated to 
average distance (      and      , respectively). When the 
network becomes denser, the average distance automatically 
decreases: because of the additional links, the shortest paths 
become even shorter. When the average distance is large, the 
probability for direct connections decreases, impacting the 
number of triangles.  

Modularity is positively correlated with average distance 
(    ), and like this measure, it is negatively correlated with 
both density and transitivity (      and       respectively). 
Indeed, the presence of a community structure requires links to 
be concentrated in communities. So, the network must be 
relatively sparse: if it is too dense, then the community 
structure cannot exist. The presence of a community structure 
increases the average distance: the sparsity of direct 
connections between nodes from different communities makes 
shortest paths longer, in average. 

TABLE III. CORRELATION BETWEEN GLOBAL MEASURES 

                   
  - 0.16 0.76 -0.45 0.02 -0.14 -0.71 
    - - 0.12 -0.16 -0.01 0.00 -0.13 
  - - - -0.43 0.04 -0.09 -0.51 
    - - - - -0.09 0.59 0.60 
  - - - - - -0.03 -0.12 
  - - - - - - 0.16 
  - - - - - - - 
 

Local vs. local. Local measures take the form of 
distributions, so it is not possible to compare them directly 
using Pearson’s coefficient. Instead, we considered two series 
constituted of the distances between these distributions, for 
each pair of networks in our dataset. So, we insist on the fact 
we do not consider the direct correlation between two measures 
here, but rather the correlation of the distances based on these 
measures. In other words, a strong correlation value means that 
if both measure are distributed similarly (resp. differently) in 
one network, they will also be distributed similarly (resp. 
differently) in the other. These results are presented in TABLE 
IV, using the same notation than in section II, namely: degree, 

local transitivity, eccentricity, betweenness, closeness and 
edgebetweenness. 

Some measures are not correlated with any other: it is the 
case for edgebetweenness. On the contrary, we observe a 
relatively strong correlation between the remaining measures. 
This is particularly true of degree and local transitivity (    ), 
which indicates their distributions change similarly from one 
network to another. This does not necessarily mean degree and 
transitivity are directly linearly dependent, but rather that when 
two networks have a similar degree distribution, they also have 
a similar transitivity distribution, and vice-versa. Betweenness 
centrality is strongly (eccentricity) or at least significantly 
(degree, transitivity, closeness) correlated with all other 
measures except edgebetweenness. More generally, the 
correlation between all measures but the edgebetweenness is 
never smaller than     . This indicates there is a certain 
redundancy in the information conveyed by these measures. 

TABLE IV. CORRELATION BETWEEN LOCAL MEASURE DISTANCES 

  ( )  ( )  ( )   ( )   ( )    ( ) 
 ( ) - 1.00 0.34 0.55 0.24 0.10 
 ( ) - - 0.23 0.43 0.33 0.01 
 ( ) - - - 0.79 0.40 -0.01 
  ( ) - - - - 0.45 0.01 
  ( ) - - - - - -0.01 
   ( ) - - - - - - 

 
Global vs. local. To study the correlation between global 

and local measures, we also used the distances. Here again, it is 
important to be cautious with our interpretation: a strong 
correlation means that when two networks are similar in terms 
of some global measure, they are also similar regarding the 
distribution of the considered local measure. TABLE V shows 
the results we obtained. 

Most of the measures are not correlated. However, we 
observe a relatively strong positive correlation for some of 
them. The highest is observed for density and eccentricity 
(1.00). This means that, when two networks have the same 
density, they tend to have the same eccentricity distribution 
(and vice-versa). At a much lesser extent, the same remark can 
be made for the closeness and betweenness centrality. 

TABLE V. CORRELATION BETWEEN GLOBAL AND LOCAL MEASURE 
DISTANCES 

                   
 ( ) 0.10 -0.09 0.25 0.13 0.01 0.00 0.00 
  ( ) 0.43 -0.09 0.23 0.00 0.01 0.00 0.00 
  ( ) 0.44 0.01 0.18 0.04 -0.04 0.00 0.00 
 ( ) 0.31 -0.06 0.33 0.02 0.01 0.00 0.00 
 ( ) 0.24 -0.25 0.04 -0.01 -0.01 0.00 0.00 
   ( ) 1.00 -0.12 0.43   -0.01 0.07 0.00 0.00 

 

Average degree, radius, average distance and modularity 
are correlated with no local measure. Average degree is not 
even correlated with degree distribution, and neither are radius 
and average distance with distance distribution. This 
observation is valuable, since it means those local measures are 
not summarized by the corresponding global measures, 
contrary to what one could a priori assume. For degree, this is 
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• Source: [The Anatomy of the Facebook Social Graph, Ugander 
et al. 2011]

• The Facebook friendship network in 2011
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• 721M users (nodes) (active in the last 28 days)

• 68B edges

• Average degree: 190 (average # friends)

• Median degree: 99

• Connected component: 99.91%
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Component size
Distribution 
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Degree distribution

Cumulative
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Clustering coefficient
By degree

Median user : 0.14:
14% of pair friends
Are actually friends
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My friends have more
Friends than me!

Many of my friends have the 
Same # of friends than me!
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Age homophily
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Country similarity

84.2% percent of edges are 

within countries 

(More in the community 
detection class)



MANIPULATING AND 
VISUALIZING GRAPHS

Using Gephi (Demo)



PRACTICAL
• Choose a network (I recommend to start with the soccer one 

;) )
‣ http://cazabetremy.fr/Teaching/catedra.html

• Use Gephi to visualize it
‣ Layout, node size and colors, edge size and colors, name…

• Choose a larger graph and try to visualize it

• Use filtering tools to clarify

• Export and interpret 

http://cazabetremy.fr/Teaching/catedra.html

