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EOMMUNITY DE | ECHCHS

» Community detection Is equivalent to “clustering” In
unstructured data

» Clustering: unsupervised machine learning

» Find groups of nodes that are close to each other
» Hundreds of methods published since 1950 (k-means)
» Problem: what does “close to each other” means ¢




MUNITY DE T ECHCHS

MiniBatchKMeansAffinityPropagation = MeanShift SpectralClustering

Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




EOMMUNITY DE | ECHCHS

» Community detection:

» Find groups of nodes that are: 4
- Closely connected to each other a0\

- Weakly connected to the rest of the network

» No formal definrtion Aﬁ
» Thousands of methods published since 2003 =

| — e —




WHY COMMUNITY
e T EC OIS

* Do you remember small world networks!

» High clustering coefficient
» (friends of my friends are my friends)

» Different from random networks. How to explain it ! Evenly
distributed ¢

* => |n real networks, presence of dense groups: communities



SOME HIS TORE

* I he graph partitioning problem was a classic problem in graph
theory

iR ocs ke this:
» How to split a network in K equal parts such that there is a minimal number of
edges between part.
» It was one problem among many others

» Variants were proposed:
- What if partitions are not exactly same size ?
- What if the number of parts is not exactly k ?



SOME HIS TORE

* Then in 2002, [Girvan & Newman 2002], introduction of the
problem of “community discovery'

» Observation that social networks are very often composed of groups
» The number and the size of these groups Is not known in advance
» Can we design an algorithm to discover automatically those groups !



COMMUNITY STRUCTURE IN
Al GRAFES

* If you plot the graph of your facebook friends, it looks like this

cluster
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COMMUNITY STRUCTURE IN
peAL GRAFTS

* Connections In the brain ?

A

O = Occipital

O = Central

O = Frontoparietal
@ = Default mode
[] = Rich club




COMMUNITY STRUCTURE IN
peAL GRAFTS

* Phone call communications in Belgium ?




FIRST METHOD BY GIRVAN &
NEVWMAN

N@EmPUte the Detweenness of all edges

» 2)Remove the edge of highest betweenness
» 3)Repeat untll all edges have been removed
» => |t Is called a divisive method

» =>What you obtain Is a dendrogram

* How to cut this dendrogram at the best level !



FIRST METHOD BY GIRVAN &

NEVWMAN

Cluster Dendrogram
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FIRST METHOD BY GIRVAN &
NEVWMAN

* Introduction of the Modularity

* The modularity 1s computed for a partrition of a graph
» (each node belongs to one and only one community)

BliRcompares :
» the observed fraction of edges inside communities

» to the expected fraction of edges inside communities in a random network



MODULARITY
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MODULARITY

* One point to note:

» Number of edges in a random network: what type of random network ?

* Original (and still mostly used) modularity:
» The Configuration model, or degree preserving random model
» The degrees of nodes Is conserved.

» Multi-edges and loops are allowed (for practical reasons)
» Probability/number of edges:  kiky




FIRST METHOD BY GIRVAN &
NEVWMAN

* Back to the method:

» Create a dendrogram by removing edges
» Cut the dendrogram at the best level using modularity

* =>|n the end, your objective Is... to optimize the Modularity,
right ¢

* Why not optimizing it directly !



MODULARITY OPTIMIZATION

* From 2004 to 2008: The golden age of Modularity

» Scores of methods proposed to optimize it

» Graph spectral approaches
» Meta-heuristics approches (simulated annealing, multi-agent. . .)
» Local/Gloabal approaches...

» => 2008: the Louvain algorithm



LOUVAIN ALGORITHM

* SImple, greedy approach
» Easy to implement
» Extremely fast

* Yield a hierarchical community structure

» Beats state of the art on all aspects
» Speed
» Max modularity obtained
» Do not fall in some traps (see later)



LOUVAIN ALGORITHM

» Each node start in its own community

* Repeat until convergence

» FOR each node:

- FOR each neighbor:
it adding node to Iits community increase modularity, do it

* When converged, create an induced network

» Each community becomes a node
» Edge welight Is the sum of weights of edges between them

* Irick: Modularity 1s computed by community

» Global Modularity = sum of modularities of each community



RESOLUTION LIMIT

* Modularity == Definrtion of good communities ¢

» 2006-2008: series of articles [Fortunato-Lancicchinetti]

» Resolution limit of Modularity

» => Modularity has intrinsic flaws, it is only one measure of the
quality of communities

Bl isisee examples



RESOLUTION LIMIT

Let's consider a ring of cliques
P B Cligues are as dense as possible

Single edge between them:
& B2 =>As separated as possible

Any acceptable algorithm=>tach clique I1s a community



RESOLUTION LIMIT

But with modularity:
Small graphs=> OK

Large graphs==>
The max of modularity obtained
by merging cliques




RESOLUTION LIMIT

» Discovery that Modularrty has a “favorite scale’:

* For a graph of given density and size:

» Communities cannot be smaller than a fraction of nodes
» Communities cannot be larger than a fraction of nodes

» Modularity optimisation will never discover

» Small communities in large networks
» Large communities in small networks



O THER WEAKNESSES

» Modularity has other controversial/not-intuitive properties:

» Global measure => a difference in one hand of the network can change
communities at the other end (imagine a growing clique ring...)

» Unable to find no community:

- Network without community structure: Max modularity for random partrtions

* o this day, Louvain and modularity still most used methods

» Results are usually “good™/useful



ALTERNATIVES

» | 000+ Algorithms published, 2+ more every month (not an
exaggeration)

» Most of them are mostly uninteresting:

» They define their own definition of communities

» They show on a few network using a single validation method that their
method is better than Louvain (|1 0y.o. algorithm)

» Common saying: 'no algorithm Is better than other, it depends
on the network” (I don't really agree)



ALTERNATIVES

* Most serious alternatives (in my opinion)

» Infomap (based on information theory —compression)
» Stochastic block models (generative models)

* [hese methods have a clear definition of what are good
communities. [ heoretically gsrounded

* Most other methods are ad hoc=>They define a process,
without a clear definrtion



INFOMAP

» [Rosval 2009]

* Find the partition minimizing the description of any random
walk on the network

* We want to compress the description of random walks



Random
walk

INFOMA
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INFOMAP

* In practice, no assisnment of codes to nodes

* Information theory (Shannon coding, entropy)

« GIven

>

>

>

he size of communities
ne number of out-going links

ne number of intra-community links

» =>We know how many bits we need for the optimal code

L(M) = g~ H(Q) + > pb, H(P')

L e —




INFOMAP

L(M) = g~ H(Q) + > pb, H(P')
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INFOMAP
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INFOMAP

SR sum up:

» Infomap defines a quality function for a partrtion different than modularity
» Any algorithm can be used to optimize it (like Modularity)
» The most recent version uses the same algorithm as Louvain

» Advantage:

» Infomap can recognize random networks (no communities)
» It 1s nearly as fast as Louvain

* Drawback:

» |t seems to suffer from a sort of resolution limit



BOCHAS 11C BLOCK MOBSEs

» Stochastic Block Models (SBM) are based on generative
models of networks

* [hey are In fact more general than normal communities.

* The model is:

» Each node belongs to | and only | community
» To each pair of communirties, there Is an associated density (probability of each
edge to exist)



BOCHAS 11C BLOCK MOBSEs

» SBM can represent different things:

» Normal communities: density inside nodes of a same communities >> density
of pairs belonging to different communities.

» SBM allow to represent heterophily:

- In a“sentimental” network, 2 clusters men/women, high density between, low density inside.

* This is very powerful and potentially relevant

B ieblemi Olten hard to Interpret in real situations.
» SBM can be “constrained’: we impose that intra d.>inter d.



BOCHAS 11C BLOCK MOBSEs

» General idea of SBM community detection:

» Specify the desired number of cluster

» FInd parameters that minimize the “error’” of the model, I.e. difference between
observed network and average network generated by the SBM

» Underlying idea: Communities are “random sub-networks”

» Again, guestion Is: what type of random networks ?

» Erdos Renyi ?
» Degree corrected ! <=gives better results on real networks



BOCHAS 11C BLOCK MOBSEs

» Main weakness of SBM:
» Number of clusters must be specified (avoid trivial solution)

» Usual approach to solve it

» Similar to k-means in clustering: try different k and measure improvement
(elbow-method)

» Not satisfying

Sdlie Peixoto]

» Non-parametric SBM
» Use the principle of Minimum Description Length (MDL) (Occam’s razor)

» Principle of information theory and compression, combine
- The cost of the error

- The complexity of the model



BOCHAS 11C BLOCK MOBSEs

e s Ui Lp:

» SBM have a convincing definition of communities
In practice, slower than louvain/infomap

But more powertful

Can also say If there Is no community

And also suffer from a form or resolution limrt

v

v

v

v

» Less often used, but regain popularity since works by Peixoto
et al.



EVALUATION OF
COMMUNITY STRUCTURE



EVALUATION

* [wo main approaches, both Pros and Cons

» Synthetic networks with community structure
» Real networks with Ground Truth

» Same Idea; compare what we know we should find with what
each algorithm finds



SYNTHETIC NETWORKS

* Planted Partition models:

» Another name for SBM with manually chosen parameters
- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

» Problem: how to choose parameters!

- Either oversimplifying (all nodes same degrees, all communities same #nodes, all intern
densities equals...)

- Ortoo complex



SYNTHETIC NETWORKS




SYNTHETIC NETWORKS

* LFR Benchmark [Lancichinetti 2008]

» High level parameters:
- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of intern edges of each node
» Varying the mixing parameter makes community more or less well defined

RElEtERty the most used (by people not doing SBiM)



SYNTHETIC NETWORKS

LFR Benchmark Networks with 200 Nodes

1=0.1 1=0.3 p=05
#Edges=2206 #Edges=2628 #Edges= 2462
D |




SYNTHETIC NETWORKS

* Pros of synthetic generators:

» We know for sure the communities we should find
» We can control finely the parameters to check robustness of methods

- For instance, resolution limit. ..

S @ ons:

» Generated networks are not realist: more simple than real networks

» Generated communities might not be realist (We don't really know what real
communities look like...)



REAL NETWORKS WITH GT

* |In some networks, Ground Truth communities are known:

» Social networks, people belong to groups (Facebook, Friendsters, Orkut,
students In classes...)

» Products, belonging to categories (Amazon, music...)

» Other resources with defined groups (Wikipedia articles, Political groups for
vote data...)

* Some websites have collected such datasets, e.g.
» http://snap.stanford.edu/data/index.ntml



http://snap.stanford.edu/data/index.html

REAL NETWORKS WITH GT

* Pros of G communities:

» Retain the full complexity of networks and communities

@S

» No guarantee that communities are topological communities.

» In fact, they are not: some communities are not even a single connected
EONIPORENL. . .

» Currently, controversial topic

» Some authors say It Is non-sense to use them for validation
» Some others consider It necessary



REAL NETWORKS WITH GT

* Example: the most famous of all networks: Zackary Karate
Club

©) ()
(L
SN )
oZAloN\wdo
§ 7/ \\'G It your algorithm find the right
Q"ng@," ® 0" communities,

“}‘ 2D D Then 1t Is wrong...
e X ®
— N




MEASURING PARTITION
DI ARITIES

| ineeor G, we get:

» Reference communities
» Communities found by algorithms

* How to measure their similarity ¢

» NMI
B NM]
» Fl-score



MEASURING PARTITION
DI ARITIES

H(X) H(Y
 NMI: Normalized Mutual Information «»

» Classic notion of Information Theory: Mutual Information

» How much knowing one variable reduces uncertainty about the other
» Or how much in common between the two variables

- spreoa (20

VoY 2o X z) p(y)

L e————

 Normalized version: NMl

» Adjusted for chance: aNM|



MEASURING PARTITION
DI ARITIES

* Fl-score: Borrowed from machine learning
» Harmonic mean of Precision & Recall

2 precision - recall
F 1 — — 2 . —
L L precision + recall
recall ~ precision onremsesst | fonreny ey
Ry ; Precision = ——— Recall = ——
’recision Recall for Clustering: D r

(Pairs of nodes Iin the same clusters) — —




ALGORITHMS COMPARATIVE
ANALYSIS
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DT HER MESO-5CALE
ORGANIZATIONS



MESO-5SCALE

» Course |: MACRO properties of networks
» Course 2: MICRO properties of networks

« MESO-scale: what Is In-between

» Community structure

» Overlapping Community Structure
» Core-Periphery

» Spatial Organization



OVERLAPPING COMMUNITIES

* In real networks, communities are often overlapping

» Some of your High-School friends might be also University Friends
» A colleague might be a member of your family

s

» Overlapping community detection is considered much harder
» And Is not well defined

» Border between “attributes’ and overlapping communities ¢
» Community of Women, Community of | /-19yo, Community of fans of X...



OVERLAPPING COMMUNITIES

» Nevertheless, many algorithms (50+)

* | present only the most famous although it Is obsolete

» Because no agreement on another reference...



K-CLIQUE PERCOLATION

* (Other name: CPM, C-finder)
S lidmeierssize K of cligues
B ERieralcligues of size K

» 2)merge Iteratively all cligues having k-1 nodes in common



K-CLIQUE PERCOLATION

9
10

2 5 7 Cliques for k=3:
1 {1,2,3},{1, 3,4}, {2, 5, 6},
{5,6,7},{5,6,8},{6, 7,8}

{5,7,8},{5, 7,9}

3 4 6 8
k-clique Communities: {2,5.6} {1.2,3}
{1, 2, 3, 4}
{2, 5,6,7,8, 9} {5,6,7}_ {5,6,8}

(57.9) (1.34)

(5,7,8} {6,7,8}




K-CLIQUE PERCOLATION

» Obvious weakness: communities can be very very far from
random networks




OVERLAPPING COMMUNITIES

» Another approach | like (many algorithms)

» Each community is defined intrinsically.

Must verify a property

» Iry to add and remove randomly nodes
» Until the property 1s maximized.

» Natural overlap, low complexity
ERRECSIEmivwhIch property !

v



CORE-PERIPHERY

= & u -
I o
o o
H =
5} © a
=] o »
E 0 =] / ]
= & “u o
@ = - = a
-y 2 ]
P
- .
< o ‘m
- -
o —m
7 a
51 =
' g S
o 7 ; Qf | S L o]
o 7 Gy
AR iy o
X B
o
o =] ™ - b
=
o = -
n
It " B
a

Core-periphery structure in networks  adjacency matrix
core periphery

Inner core core

periphery gLVt
edge (source colour)

——

o
@® outer core
@

—




CORE-PERIPHERY

* Problem similar to communities:

» Concept easy to grasp

» Observed empirically in networks
* But how to define it formally?

* Main Ideas:

» Notion of decreasing density

- Fuzzy
- K-shells

» Flow: need to go through core to communicate between periphery



SPATIAL NETWORKS

* Consider the network of telecommunications between cities

* The number of communications can be modeled as:
el eRC " = Population C2 / d?

* This effect is very common on spatial networks

* [t means a strong meso-scale organization, without need of
community structures or core-periphery.




SPATIAL NETWORKS

Bicycle Sharing System (BSS) in Lyon

Dataset: trips (5y) + sociodemographic around stations



SPATIA

L INE TV

4 - > N £y
. O 0//// / "i—“—“—/— - //” 7_:315,48 la Feyssine\‘i‘\\}?’\"v' v ‘
o /oy 0" g . N
O Qo Ag°0 0 (o) 0
)/V/ ./_///”o’ i ,) L@OUS o
/ ) C;,P{‘ o o 7 4 // f/ i o O
OO/ ) 0 " T “°,.'f U pafcdetatste ©© O ©O @)
& o / o (o) ,‘//Q"L"'Or. °© o
| 6] | o Q0 0047 /1 5. 99 © ¢ o
y | @) 8(9 00 O 4N o =D e e 2 8
\ U AL o © Vlleur 6nQe
‘-'OOOOF". o -‘"llo ©, ° o © ooo o -k
oot Y 15 b’ e °‘ - [+ o (o) (o] &
. O q ‘ '° o [+ ° o [+ ] 1 oo . O o 0
oDer "o da ey LI DR
ne ®) 7 N oo b - o o © o) ©
‘o & 00 [ (o] ° O O
| ,0° &® mo® ¢ L0%° .- Om ® (o)
A o / J ¥ o O (o)
(o) O OO o fg&v ,,A' o © o ©00 © ° o ° X . (®)
o © 0,25 oo "o ey D 1
@ ofo %‘foo o %8 ey A8 %e i © o 01 %
/o~ o M ° o ° s
i o /. Lyo8Pe Q R %
Q o & Aérondgsengn O, 7 o' 3
SR 0 A& o
s N ’ F o
(/° 4 ° .o Lo Sgpe o° °0
i & -lés- ‘; |1 ol (o] o
Salntf Foy-lées A & o G o Lyfh ge Qg
yon - WA, o Avrondissemeat B
| ‘;'_ | g"‘- o o o
\J%\ r§°‘, (o) OO o o (o} o
o o o o
| (8]
\N8 / Parc i{o GertSnd n O O

Nodes: station (2

D poslition)

EggesinlUmber of trips over aipElies



SPATIAL NETWORKS

» Gravity with custom
deterrence function

* #irips between any pair of
station depends on their
“popularity” and their distance.

» Distance influence learnt from
data

,Gra\.? WI\ I\ f(d,])

| —




SPATIAL NETWORKS

Computation of a deterrence function:
Impact of distance on edge probability

(Comparing observation with Configuration Model)

D i j|dsy=d Aig

il =
Zz’,j|dij:d NiN;
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SPATIAL NETWORKS
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COMBINING MESO-5CALE

» | )Compute the spatial model

» 2)Remove the effect of space

» 3)Use community detection to discover communities that
were previously hidden by spatial effects



COMMUNITY STRUCTURE
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COMMUNITY STRUCTURE
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PRACTICALS



AU T AR

* |)Synthetic networks
» Using networkx, generate synthetic networks (planted partitions or LFR) of
increasingly well defined community structure
» Use several algorithms on them
» Compare partitions to the ground truth and between them

- (method “adjusted_mutual_info_score" from library “sklearn”



AU T AR

» 2)On your favorite network, detect communities

» Compare communities found by several algorithms
» Number and size !
» Search for stable parts ¢

» Study the relation of nodes with communities. Are there some nodes that have
strong relations with several ! Do you think that overlaps are relevant for your
network !



AU T AR

» 3)On the airport dataset, find communirties, and create the
induced network (each community becomes a node, weight of

edges=number of original links

» Give automatically a name to communities, by combining properties of nodes
of higher degree inside the community

» Visualize this network

» |s it different with another algorithm ¢

» What happens If you run an algorithm on the induced graph!?

- And If you run an algorithm on a single community seen as a graph?



AU T AR

* Networkx has few community detection algorithms.

* You can find algorithms outside:

» Louvain: https://github.com/taynaud/python-louvain

» Infomap: https://github.com/mapequation/infomap/blob/master/examples/
python/infomap-examples.ipynb

» SBM: https://graph-tool.skewed.de



https://github.com/taynaud/python-louvain
https://github.com/mapequation/infomap/blob/master/examples/python/infomap-examples.ipynb
https://github.com/mapequation/infomap/blob/master/examples/python/infomap-examples.ipynb
https://github.com/mapequation/infomap/blob/master/examples/python/infomap-examples.ipynb
https://graph-tool.skewed.de

